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Abstract— Nonprehensile manipulation such as pushing
can play a significant role in complex scenarios. Objects
may have diverse, even anisotropic properties under push-
ing in different environments. This increases the com-
plexity of the pushing problem. We propose an approach
to adapting dynamic movement primitives (DMPs) based
on the observed object-motion behaviour and experienced
forces. We also investigate an alternative optimal control
based technique that enable dexterous and adaptive manip-
ulation using pushability and manipulability of objects.

I. INTRODUCTION

Pushing is often used to simplify or to improve
the precision of complex manipulative skills. If you
imagine you are trying to place an object, for example
to put a book on a shelf, or to carry out any tabletop
manipulation, in most cases you will place the object
approximately, and then use pushing movements to
bring it to the desired position and orientation. Also,
pushing is commonly used to move objects out of the
way or to make grasping other objects easier. Enabling
similar pushing skills for robots can serve multiple pur-
poses: correcting the placement of an object, clearing
paths and shoving objects into free space, maneuvering
large objects or objects that are hard to grasp, enhanc-
ing pick-and-place operations, stc.

In our preliminary experiments, we observed that
single-contact pushing of objects even in a straight
line is not trivial due to differing properties of objects.
Humans are able to push various objects in a desired
way by pushing them approximately into designated
directions and changing the hand motion based on
observed senses and behaviours. We aim to incorporate
a similar concept into the robot manipulation skills by
adapting robot motion controllers based on the object
behaviour and experienced forces. For motion control
we use dynamic movement primitives (DMPs) which
were proposed as an efficient way for learning and
controlling complex robot behaviours [1].
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Fig. 1. Object data set used for pushing tests (left); pushing
experiments with a KUKA LWR arm (right)

II. RELATED WORK
Many researchers have studied nonprehensile ma-

nipulation by pushing with robotic manipulators or
with the robot base. This topic raised interest in dif-
ferent research areas which resulted in a variety of ap-
proaches and problems related to pushing. Early work
on pushing done by Mason and Lynch [2] presented a
theoretical model of the dynamics of pushing with the
robotic manipulator. One of the first systems that took
into account vision feedback for building a forward
model of a planar object was created by Salganicoff
et al. [3]. In later work, the action of pushing was
often used for learning dynamic models, behaviours
and object specific properties by observing results of
the push [4], [5]. Several methods treat the problem
of learning contact locations for successful pushes [6],
[7]. Most of them focus on extracting the shape of the
object and determining contact locations that are good
for pushing.

Existing algorithms have several limitations which
include the following. (i) Restriction to objects and
environments which possess specific properties such
as quasi-statically sliding on a high-friction surface.
(ii) Pushing planners are usually based on geometric
properties of objects and designed for specific sce-
narios. (iii) Pushing to the goal position is done in
clutter-free environments. (iv) Many methods require a
time-expensive learning phase depending on the object
shape.

III. PROPOSED APPROACH
Objects may have diverse properties under pushing

in complex scenarios. If you imagine a task, such as
cleaning a child’s room, a robot has to be able to
maneuver diverse objects with different masses and
friction distributions. In tests of simple, straight-line



pushes which were done for a set of various objects
(see Fig. 1), we observed that object loss is mostly de-
pendent on the friction force and the object behaviour
dynamics. Different object properties are manifested
under different pushing dynamics and environment
conditions. For example, objects can flip due to high
friction or fast movements. In our pushing task, the
robot is assumed to have no previous knowledge of
the object. By pushing the object, it is possible to build
an object behaviour model on the fly based on obser-
vations of object-environment dynamics. This model is
then used to adjust the robot motion controller. The
proposed framework is shown in Fig. 2..

A. Adjusting DMPs

Choosing suitable control parameter values for push-
ing is frequently object-dependent. Instead of tuning
control parameters with respect to the object class or
the shape, we propose identifying the object behaviour
by sensing and introducing corrective actions in a push-
ing task. At the onset of a manipulation, the object is
assumed to have ideal properties for pushing, moving
only together with the robot. During the execution
these assumptions are updated based on the object
displacement or end-effector force values with respect
to the dynamics of the robot movements. Control pa-
rameters are adapted based on the pushing experience
to provide desired object movements. Online modu-
lation of dynamic movement primitives is done by
adding coupling terms. These terms alter a primitive
based on intermediate success of object behavior and
experienced forces:

τ ż = αz(βz(g − y)− z) + f(x) + IO (1)

τ ẏ = zτ, ẋ =
−αx

1 + αeJe

where:

IO = Ktpp(E [xO]− xO) +KtF f(E [F |emin]− F )

Je =

∫ tc

t0

d (pd (γ) , xO) dt

Ktp = f(var(xO), E(xO)) and KtF = f(∇F, F ) are time-
varying task sensitivities with respect to object pose xO
and force F .

B. Optimal Control

As an alternative method, we propose an optimal
control strategy with respect to the pushing objectives.
Objectives which define the cost function are as fol-
lows: (i) The object should be delivered to the target
pose as fast as possible within given tracking-accuracy
constraints; (ii) Non-smooth and jerky movements of
the robot should be minimized:

J = ct
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Fig. 2. The proposed model behaviour identification adaptive
control approach for push-manipulation

Here, tf is a free variable representing the final point
in time, and jerk is defined in Cartesian coordinates xi.
The weights ct and cj are coupled coefficients depend-
ing on the trade-off between the time limit and desired
smoothness of the robot movement. The constraints for
pushing are first-order robot and object-environment
dynamic constraints together with initial conditions.
In cluttered environments an additional constraint is
given by minγ d(E [PO(t+ δt)] , pd(γ)) < ρ where d(·) is
the perpendicular distance of an object to the desired
collision-free path pd(γ), E[·] is the expected value
over object movements, and ρ is the tolerance for path
tracking.

IV. CONCLUSION
Exploiting object manipulability in complex scenar-

ios enables new capabilities and increases adaptiveness
of a robot. A robot has to recognize specific object
behaviours entailing strategies and the adaptation of
pushing control. At the same time, movement primi-
tives should be adapted using available sensor infor-
mation. Such an adaptive control approach for push-
manipulation is presented in this paper.
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