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Abstract— Nonprehensile manipulation can play a sig-
nificant role in complex robotic scenarios, especially for
maneuvering non-graspable objects. A big challenge is to
construct a robust skill for pushing highly-diverse objects.
We present a strategy for pushing unknown objects that
differ widely in their properties. For this purpose we
introduce the concept of a pushing corridor for cluttered
environments that leaves the robot sufficient space for
corrective motions. We propose a reactive manipulation
skill for pushing objects along this collision-free corridor.
The motion of the robot is generated and adapted on the fly
based on the observed reactions of the object in response
to pushing actions. Our results show that the robot is able
to successfully push objects in various complex scenarios.

I. INTRODUCTION

Pushing is a commonly used activity by humans
in different everyday activities. We push things out
of the way, close doors, bring and relocate objects by
pushing them. Introducing a similar skill for robots
would enable new capabilities and increase dexterity
of a mobile robot in complex scenarios. For example, if
a mobile robot is not equipped with an arm, or already
holding an object, the ability to push with the base can
be used for clearing paths or conveying objects. In this
paper we address the problem of delivering an object
to a goal position in cluttered environments.

In various robotic scenarios a robot has to operate in
environments with scattered objects and tangled heaps
on the floor, limiting the robot’s freedom to move.
Therefore, we introduce a collision-free corridor which
is defined by a path and its surrounding area with a
fixed width as shown in Fig. 1. To push along such a
corridor, we also introduce the concept of a target point
towards which the robot pushes the object at every
instant. This point is determined by a cost function
which we define in Section IV. This allows cutting
corners as long as the corridor is not violated by the
robot or by the object.

In complex scenarios objects may have diverse, even
anisotropic properties under pushing. For example,
while some objects slide freely, other may even flip
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Fig. 1. Pushing in a complex environment. The collision-free path
(red line) is obtained from a path planner, and defines the corridor
(yellow). The current target point is marked with green dot on the
path. (This and other figures are best viewed in color).

over. Generally, it is not straightforward to design a
physical model describing the behavior of an object [1],
[2]. Visual features can be non-informative, or even mis-
leading, for the description of object behaviors while
pushing [2]. Thus, a robot should react adaptively to
different robot-object-environment dynamics. Humans
are able to push various objects in a desired way by
moving them approximately into designated directions
and changing the hand motion based on the observed
behavior of the object. We aim to incorporate a similar
concept into the push-manipulation skill by adapting
robot motion based on observations of the behavior of
the object.

Most of the time, particularly along smooth trajecto-
ries, the robot should be able to push the object using
smooth corrective motions while keeping contact with
the object. Sometimes, however, especially at sharp
turns, the robot will need to relocate by leaving the
object and moving towards a new angle of attack.
Thus, at every time step, we define robot movement
directions both for smooth pushing and for relocating.
The final motion of the robot is a result of blending
these two motion vectors weighted by their respective
activation functions. These functions are adapted over
time based on observations from the robot-object inter-
action. At onset of the pushing manipulation, the robot
assumes it can push the object if it is behind it with
respect to the target point. Since properties of the object
and its behaviour are unknown, we also introduce an
additional feedback component to react to unexpected
movements of the object.



II. RELATED WORK

Nonprehensile manipulation raised interest in vari-
ous scientific areas. Early work on pushing by Mason
and Lynch [3] presented a theoretical model of the
dynamics of pushing with a robotic manipulator. One
of the first systems that took into account vision feed-
back for building a forward model of a planar object
was created by Salganicoff et al. [4]. In later work, the
action of pushing was often used for learning dynamic
models, behaviors and object specific properties by
observing results of the push [5], [2].

Ruiz-Ugalde et al. [2], [6] built a mathematical model
for planar sliding motion. They executed a pushing
behavior by determining the static and kinetic friction
coefficients between the robot hand, the table and
a rectangular object. Scholz and Stilman [7] learned
object-specific dynamic models for a set of objects
through experience. A robot learns Gaussian models of
the pose displacement which are then used for the push
selection. In a similar tabletop scenario Omrcen et al. [8]
used a neural network to learn the pushing dynamics
for flat objects. The learned models were specific to
individual objects, and generalization to similar objects
was not examined.

Several methods considered the problem of learning
contact locations for successful pushes [9]. Most of
them focus on extracting the shape of the object and
determining contact locations that are good for push-
ing. Early work by Salganicoff et al. [4] presents an un-
supervised online method for pushing in an obstacle-
free environment by controlling only one degree of
freedom. Their method selects each pushing direction
using a nearest-neighbor approach. The point of contact
is restricted to a single rotational contact point. With a
similar approach, Walker and Salisbury [10] learn the
support friction by mapping pushes to motion. They
perform experiments by pushing the object from sev-
eral contact points. Using local regression they model
the support friction within a two-dimensional envi-
ronment. Hermans et al. [11] develop an offline, data-
driven method for predicting effective contact locations
for pushing previously-unseen objects. They also de-
velop a method for extracting the 2D shape of an object
and generate points for performing pushing tests.

For the problem of delivery of the object from one
position to another some scientists [12] focused on
determining appropriate pushing actions and devel-
oping a push planner which will complete the task
using these actions. Hermans at al. [11] were pushing
towards the centroid of the object from a given point
using the feedback controller. Input signals included
the object-target displacement and the displacement
of the robot from the pushing direction through the
object’s centroid.

Igarashi et al. [13] presented a novel pushing al-
gorithm for circularly-shaped objects. Their controller

consists of components for pushing and orbiting. They
assigned two weighting functions to these movements
where the vector of the robot movement resembles a
dipole field (in analogy to physics). Although this is an
elegant solution, it has many disadvantages in practice
such as long trajectories while moving to correct po-
sitions, and excessive orbiting caused by even small
displacements of the robot from the pushing direction.

Inspired by this approach, we create a feedback con-
troller that is also based on the displacement angle of
the robot from the desired object movement direction.
However, in our approach, the robot learns when to
relocate and when to push. In addition, we introduce a
component to react to the changes in object movement
behavior to overcome the strong assumptions about
ideal properties of the object.

The state-of-the-art method presented by Mericli et
al. [14] addresses the problem of pushing complex,
massive objects on caster wheels with a mobile base in
cluttered environments. Based on experience from self-
exploration or demonstration via joy-sticking, they cre-
ate experimental models used for planning the pushing
action using an RRT-based method.

Among the many existing approaches and problems
for push-manipulation in the literature, ours differs in
several aspects:
• We address single-contact pushing of objects of

various sizes, weight, mass and friction distribu-
tions.

• We introduce the notion of a pushing corridor
within which the robot can interact with objects
without having to take care of obstacle avoidance.

• The presented method is reactive and requires
neither time-expensive learning phases nor prior
knowledge.

• Our strategy does not make strong assumptions
about the way the object reacts to pushes; it adapts
the pushing motion based on current observations
on the fly.

III. PROBLEM DESCRIPTION

Our case study involves an untidy room of a child
which has to be tidied up. A robot needs to be able
to push various objects like toys, boxes and small
pieces of furniture to designated locations. In order
to create a robust skill that can be applied directly
in different scenarios, we decompose the problem into
two subproblems:
• Define a pushing corridor and choose a target

point for pushing the object at each time step
allowing collision-free pushes.

• Determine a robust method for pushing objects
towards a target point.

We assign a two-dimensional static frame g to the
environment and a local frame r to the robot. We
assume that the global position R of the robot and



the global position O of an object are available at each
time step t and are given by R(t) =

[
xgR(t) ygR(t)

]ᵀ
and O(t) =

[
xgO(t) ygO(t)

]ᵀ, respectively. In addition,
we assume that a map of the environment is available
for path planing. The size of the robot is determined
by its radius rR, and the system is able to approximate
the radius rO of the bounding circle around the pushed
object.

IV. PUSHING CORRIDOR

We define a pushing corridor C (Q, w) as an area
around the collision-free path Q from the start to the
goal object pose given by a set of waypoints

Q = {Q1, Q2, Q3, ..., QN},

with the width w of the corridor which is defined as
twice the distance from the path to the closest obstacle.
A robot is allowed to move and push objects within
this corridor ensuring collision avoidance.

At each time step, the robot pushes along the cor-
ridor by choosing the next target point. This allows
straight-line pushes while constraints of the corridor
are not violated. This procedure can be compared to
the concept of the lookahead distance in navigation
[15] which tells the robot how far along the path
it should look from the current location to compute
the velocity commands. In a pushing scenario, short
lookahead distance ensures better path tracking but
might lead to oscillations in object movements, and
to long robot trajectories. By contrast, large lookahead
distances enable short object trajectories but raise the
possibility of corridor violations. Thus, to determine a
target point we define a cost function that ensures long
lookahead distances for pushing but also penalizes
approaching corridor margins.

Let J(O,Q) be a cost function defined as

J(O(t), Q) =
1

d(O(t), Q)
+ ζdmax

where (as shown in the Fig. 3):
• O(t) is the current object position, Q is the way-

point and t is the time.
• d(·, ·) denotes the Euclidean distance between two

points,
• dmax is the maximum distance between the path

Q and the current push-line OT , and

yg
wTxg

O
R

dmax
push-lineP

Q

Fig. 3. Determining the next target point for pushing. R and O
correspond to robot and object positions, the red line is the path, T
is the current target point, and P denotes the desired position of the
robot. Q is the path given by set of waypoints.

• ζ is the inflexibility factor of a pushing corridor
given by the ratio of the corridor width and the
minimum width needed for both robot and object
to fit between the path Q and the closest obstacle:

ζ =

{
w

4(rR+rO) , if w
4(rR+rO) ≤ 1

1, otherwise.

Then a target point T (t) can be determined at each time
step as

T (t) = argmin
Q∈Q

J(O(t), Q) (1)

s.t . w
2 − ζ (dmax + 2rR) ≥ 0 (2)
w
2 − ζ(dmin + rR) ≥ 0

where dmin is the minimal distance between the path
Q and an ideal position of the robot for the current
pushing direction denoted by P . This is a point on the
push-line with distance rR + rO to the object.

The conditions (2) ensure that neither the robot nor
the object violate the corridor in case of high path cur-
vatures or the relocation of the robot. It can be noticed
that ζ < 1 defines a corridor with less flexibility for the
robot movement since the robot cannot fit between the
corridor edge and the object. This factor allows mild
shortcuts even in case of corridors so narrow that its
non-violation cannot be guaranteed (Fig. 2).

Observe that our method can be extended to environ-
ments with moving obstacles by checking the validity
of a corridor at each time step and recalculating it if
required. Such a dynamic change of the corridor does
not affect the pushing procedure since the target point
is continually updated.

ζ= 1.0

w

w = 1.6 ζ= 0.9091w = 1.2 ζ= 0.7576w = 1.0 ζ= 1.0w = 1.0
Fig. 2. Examples of the procedure for determining target points. Parameters were set as following: rR = 0.23, rO = 0.10. The path is
defined as y = sin (x) for x = [0, 2π]. Two examples on the right side are given for the same corridor with and without effect of ζ.
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Fig. 4. The angle α between the robot, the object and the current
push-target is used to determine the robot’s movement direction
(left). The angle of object movement displacement γ (right).

V. REACTIVE PUSHING

In this section we introduce a reactive controller
for pushing the object towards a target point. The
target point is calculated at each time step based on
the optimization routine introduced in the previous
section. Therefore it is necessary that the robot adapts
its movements to new pushing directions as well as to
the behavior of an object. Thus two robot behaviors are
needed: pushing and relocating.

Inspired by the dipole field method by Igarashi et
al. [13] we define directions of the robot movement for
both behaviors. The final robot movement direction is
determined by blending these two. They are defined
by the angle of robot displacement from the desired
object movement direction denoted by α = ]TOR in
Fig. 4. To simplify the description, let us assign a local
frame to the object o where the x axis coincides with the
desired object motion defined by line OT . The pushing
direction is determined in the object local frame as

vopush = sgn(cosα)

[
cosα
sinα

]
(3)

If the robot is in a position from which it cannot di-
rectly push the object, it should relocate to the position
from which the push can be achieved. This relocation
direction is given by

vorelocate = sgn(sinα)

[
− sinα
cosα

]
(4)

Examples for such movement directions are shown in
the Fig. 5.

A. Activating the movement actions
To achieve smooth movements of the robot we

blend these two behaviors. However, they have to be
weighted to achieve successful object deliveries. If the
robot is behind the object (α ≈ π), it should be able
to push it towards the target. Thus, we build in this
assumption by assigning the activation function ψpush

as a weight for the pushing behavior. The robot needs
to learn which values of α are suitable for pushing. For
that purpose, we define the push activation function
as a Gaussian kernel over the angles α from which
pushing towards the target point is achievable,

ψpush(α) = exp

(
− (α− µα)

2

2σ2
α

)
,

vpush
vrelocate

vrelocatevrelocate
vpush

vpush
Fig. 5. Examples of push and relocate non-weighted directions
defined in (3) and (4) for different locations of the robot, the object
and the target point.

where µα is the expected value of the robot displace-
ment α for which the object moves towards the target,
and σα is its variance. At the onset of a pushing action,
the initial values are set to µα = π and σα = π

3 .
These values are then incrementally updated during
the execution of pushing based on observations of the
object behavior.

Desired values of the α for the pushing behavior
are those that result in the object moving along the
push-line OT . Thus, we define the error of the object
movement

γ (t) = ]T (t−∆t)O (t−∆t)O (t) (5)

as the angle between the desired push-line and the re-
sulting position of the object. Therefore the distribution
of robot displacements α resulting in successful pushes
can be described by the conditional probability density
p(α|γ̇ < 0) ∝ ψpush(α), where γ̇ is the change of the
error.

The relocation activation function is simply de-
fined in terms of the push activation function,
ψrelocate(α) = 1− ψpush(α). While relocation is active,
the pushing component attracts the robot to the object,
not allowing large distances between them.

B. Compensating displacements of the object movement
When the robot is pushing an object, it assumes

the object moves on the push-line (γ ≈ 0). However,
this is not necessarily the case due to different mass
distribution and the dynamics of objects. Thus, the
robot tries to capture the model of the object behaviour
by learning the expected value of the object movement
error γ. We introduce an additional feedback term to
compensate for constant deviations of the observed
from the expected object movement:

vocompensate =

[
− sin γ
− cos γ

]
(µγ − γ) , (6)

where µγ is the mean value of experienced displace-
ments, and all angles are expressed in radians. Larger
values of µγ may indicate objects which do not have
quasi-static properties or uniform mass/friction distri-
butions. To produce more cautious movements of the
robot in such cases, we modulate the velocity of the
robot movement by this value:

V =
Vmax

1 + |µγ |
. (7)



Fig. 6. A pushing trial in the real environment. Parameters were rR = 0.23, rO = 0.12, w = 1.6. The path was given as y = sinx for
x ∈ [0, 2π]. The values are given in [m]. Time of delivery 58.70s

C. Robot motion
The direction of the robot motion is now defined as

vomotion = ψpush

(
vopush + vocompensate

)
+ ψrelocatev

o
relocate

The control signal urR is defined by a scalar term V (7)
representing the desired velocity magnitude, and a unit
vector in the desired robot movement direction vomotion:

urR = RorV
vomotion

‖vomotion‖
where Ror is the rotation matrix from the object local
frame o to the frame r of the robot.

VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed method,
several tests were done both in simulation and in
a real environment. The tests were performed with
synthetic corridors of straight-line and sine-wave shape
(5 times with each object for a particular path), as
well as with corridors obtained automatically from a
navigation system to demonstrate the robustness of the
strategy. We used a holonomic robot with a circular
base, the Robotino1 by Festo, both in simulation and
real environments. The simulator used is Gazebo, and
the scenario is the one shown in Fig. 1. We performed
tests with objects of different properties as shown in
Fig. 7, and in environments with surfaces of different
friction properties (carpet as in Fig. 6 and tiles as in
Fig. 7).

Table I shows success rates of pushing tests per-
formed by the real robot. The results show that method
is robust to the width change of the corridor and the
object shape and size. However, in most cases recorded
as failures for violating the corridor, the robot still
delivered the object to the target. In straight-line tests
most of the failures occurred at the end of pushing
procedures where pushing actions were biased towards
presented initial values which did not change much
due to a simple path. In sine-wave shape tests, robot
was loosing the object the most at the places of high

1http://www.festo-didactic.com/int-en/services/robotino
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Fig. 7. Left: The set of objects used for pushing experiments contains
objects of various shapes, sizes, friction properties, mass distributions
and quasi-static properties. Right: Example of the change of the push
activation function over time (t1 < t2 < t3 < t4). It can be noticed
that the variance of α was decreasing and increasing again.

TABLE I
SUCCESS RATES OF PUSHING TESTS IN REAL ENVIRONMENT

path w = 1.8 [m] w = 1.6 [m] w = 1.4 [m]
straight line

length: 3.14 [m] 100% 92% 88%
sine wave

length: 6.28 [m] 96% 84% 76%

curvatures where it was not able to push object towards
the push line due to unexpected object behavior. Line
pushes lasted between 16 [s] and 22 [s], and sine pushes
between 41 [s] and 67 [s] where the maximum speed of
the robot was set to 0.2 [m/s].

Examination of the robot trajectories reveals that the
robot simplifies the pushing task by cutting corners as
allowed by the corridor. One such sample execution is
provided in Fig. 6. We analysed this effect with differ-
ent corridor widths w. In the case of wide corridors,
the robot tries to push towards the final goal at onset
(illustrated in Fig. 8) but becomes more conservative as
soon as deviations from desired direction are observed.
When pushing towards the final goal is possible again,
the robot relocates.

In the case of narrow corridors, the ζ parameter
relaxes the corridor non-violation condition of the
pushing strategy (2). The robot is allowed to violate the
corridor at most for the distance (1−ζ)

ζ

w

2
(see Eq.(2)).

We did multiple tests also with narrow corridors with
w = 1.0. The object delivery was achieved with 68%
success.An example is shown in Fig. 8.



0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 8. Left: Result of pushing a small object of radius rO = 0.06 in
a very wide corridor of width w = 3.4. Right: Result of pushing the
same object of in a very narrow corridor of width w = 1.0, ζ = 0.862.
Both results were produced by the real robot.
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Fig. 9. Results of pushing with (top left) and without (top right) the
compensation term (6). The bottom graph demonstrates the change
of velocity (7); Vmax = 0.15[m/s].

The details of the pushing behavior depend on the
observations of the object behavior, especially at the
beginning of a push. The parameters µα, σα and µγ can
be updated with incorrect/noisy perception or insuffi-
cient experience, which is the principal cause of the
failures observed. During the pushing procedure the
robot might become increasingly conservative (smaller
values of σα) which causes increased relocating behav-
ior, but due to new experience it increases the variance
of α, generally settling at smooth and robust pushing
behavior over time as can be seen in Fig. 7 (right).

We analyzed the effect of the compensation term
and velocity modulation by performing tests with and
without them. The results are shown in Fig. 9. It can
be noticed that as soon as deviation of the object
movement direction occurs, the robot slows down and
corrects its movement direction by the compensation
term.

VII. CONCLUSION

We proposed a strategy for object delivery by single-
contact pushing with a robot base in cluttered environ-
ments. For this purpose we introduced the notion of a
pushing corridor which enables following a collision-
free path with constraints but in a flexible way. Instead
of tuning control parameters with respect to the ob-
ject class or the shape, we proposed identifying the
object behavior by learning. The presented algorithm
is computationally cheap and enables real-time push
manipulation. It is purely reactive and does not require
prior models or a training phase. Our results show it
is robust for our set of objects of various shapes in
different environments.
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