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Abstract— Pushing is a common task in robotic scenarios.
In real-world environments, robots need to manipulate various
unknown objects without previous experience. We propose a
data-driven approach for learning local inverse models of robot-
object interaction for push manipulation. The robot makes
observations of the object behaviour on the fly and adapts its
movement direction. The proposed model is probabilistic, and
we update it using maximum a posteriori (MAP) estimation.
We test our method by pushing objects with a holonomic
mobile robot base. Validation of results over a diverse object
set demonstrates a high degree of robustness and a high success
rate in pushing objects towards a fixed target and along a path
compared to previous methods. Moreover, based on learned
inverse models, the robot can learn object properties and
distinguish between different object behaviours when they are
pushed from different sides.

I. INTRODUCTION

The pushing skill for a robot base can be of great utility in
many real-world environments. A robot can deliver objects,
or move them out of the way. Also, pushing motions can be
used to inspect object properties, or as preparation for some
other manipulation. Many researchers have studied nonpre-
hensile manipulation by pushing with robotic manipulators or
the robot base. This topic raised interest in different research
areas which resulted in a variety of approaches and studies
related to push-manipulation [1], [2], [3], [4].

In real-world environments, a robot has to manipulate vari-
ous objects. Physical models of the environment and objects
are usually not available to the robot. In complex robotic
scenarios, such as tidying up a kindergarten room, there is a
large number of objects (Fig. 1). Different object properties
and behaviours manifest for different dynamics of pushing
and environment conditions. For example, objects can rotate,
slide or slip. Moreover, mass and friction distributions of
objects are usually non-uniform. Thus, a robot should be able
to adapt to different robot-object-environment dynamics. In
this paper, we address the problem of pushing objects with a
robot base when properties of the object and the environment
are unknown and uncertain.

Physical models of object behaviour under pushing usually
require identification of the object and the environment
properties, such as friction and mass distributions. These
properties can be unobservable directly and exhaustive exper-
iments can be necessary to estimate them [5]. Also, designing
an analytical model for push control can be very difficult
[1]. Thus, we propose a data-driven approach for learning
the inverse model of object-robot push-interaction online.
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Fig. 1. A Robotino robot tries to push a can since the hand is occupied.
Objects in real-world environments, such as a kindergarten room, are diverse
making the pushing a challenging task.

Inverse models can calculate necessary feedforward motor
commands from the desired trajectory information. Kawato
et al. [6] studied models of human motor learning. They
proposed that the brain acquires an inverse dynamics model
of the object to be controlled through motor learning, after
which motor control can be executed in a pure feedforward
manner. Similarly, we propose an adaptive scheme which
controls the object movement direction based on the obser-
vations. The inverse model produces the reference movement
for the holonomic robot to achieve the desired motion of the
object towards the target.

The proposed pushing controller produces input for a robot
based on current poses of the robot, the object and the
target. We define the inverse model of a robot-object push
interaction by blending two motions, pushing and relocating
around the object. We let the robot learn activation functions
for pushing at a specific contact location based on the
evidence of successful pushes at nearby contact locations.
In this way, local models are assigned locally to particular
object orientations, characterising different behaviours of a
single object. Nearby contact locations can produce similar
behaviours. Therefore, to predict the direction from which
an object can be successfully pushed for a specific contact
location, the model takes into account observations from
nearby contact locations.

Data-driven approaches were part of several studies, which
mostly focus on learning accurate models from exhaustive
experience based on visual features [7], [8]. In contrast
to that, we develop a model that captures local object
behaviours under pushing. The acquired model is not an
accurate and complete representation of the robot-object dy-
namics, but it is an estimate that enables successful pushes. In
this way, the robot movement adapts based on a small amount



of observed data. As soon as there are some changes in
the robot-object-environment interaction, the system adjusts
itself.

Our contributions are as follows:
• We propose an inverse model of a push-interaction

which captures local behaviours of the object.
• We also introduce an adaptive scheme for learning

the inverse model on the fly, which enables pushing
unknown objects without previous experience.

• The proposed approach enables spatial classification
of object properties based on the object motion data
gathered while pushing.

II. RELATED WORK

Many researchers have studied push manipulation over
the recent decades. This topic raised interest in different
research areas which resulted in a variety of approaches
and problem statements related to pushing. First attempts to
solve the problem of pushing led to analysis of the dynamics
of pushing. Mason and Lynch [2] presented an analytical
model of the dynamics of pushing with a robotic manipulator.
However, in practice, analytical models are very sensitive to
changes of parameters that describe the geometry or friction.
Salganicoff et al. [3] created one of the first systems that built
a forward model of a planar object from acquired vision data.

Pushing was often used for learning object specific proper-
ties, dynamic models and behaviours by observing the results
of a push [9], [10]. Several methods treated the problem
of learning contact locations for successful pushes such as
presented by Hermans et al. [8] or Kopicki et al. [7]. Most of
the data-driven approaches focused on extracting the shape
of an object and building a direct model for prediction of
the object movement based on the contact point. Lau et al.
[11] created mappings between pushing actions and their
effects using a non-parametric regression method. Similarly,
Walker et al. [12] modelled a map of the support friction
using local regression. Agrawal et al. [13] proposed learning
physics models with deep neural networks from experience
for vision-based control. Meriçli et al. [14] created inverse
models for pushing massive objects on caster wheels based
on experience from self-exploration or demonstration via
joy-sticking. In contrast to these methods, we do not take
any shape features of the object and previously acquired
experience into account. We estimate the model of push-
interaction on the fly by observing the pose of the object.

Igarashi et al. [15] presented a dipole-field pushing con-
troller that generates object motion by two primitive robot
motions: pushing the object, and orbiting around it. Similarly,
we introduced an adaptive feedback controller [16], as well
based on the displacement angle of the robot from the desired
object movement direction. We extend this work by defining
an adaptive inverse model of local object behaviours while
taking robot-object configurations into account.

III. PROBLEM FORMULATION

Push manipulation is part of a modular complex system
that enables operation of a mobile robot in real-world sce-

narios. The robot’s task is to push an object towards a fixed
or movable target along a path. We assume that the global
pose r =

[
xr yr θr

]T
of the robot and the global pose

o =
[
xo yo θo

]T
of an object are available at each

time step k (Fig. 2).
The robot needs to push unknown objects in different

environments without previous experience. Let us assume
that the dynamics of the object motion can be described with
a nonlinear equation ȯ = fo(o, r, ṙ).

The model of the object motion fo and its inverse are
unknown to the robot, but it is assumed that they can
be described by a probabilistic model. We formulate the
problem as estimating an inverse model ṙ = f̂−1o (o, r, ȯd) of
the robot-object pushing interaction on the fly by observing
the motion of the robot and the object. ȯd denotes a desired
object movement defined by the current object pose o and the
current target pose t. The adaptive model is used to produce
a reference signal for the robot.

IV. LEARNING INVERSE MODELS OF
PUSH-INTERACTIONS

In this section, we describe the proposed approach which
enables online adaptation of robot movement to object push-
ing behaviours. First, we introduce a motion controller that
enables adaptive pushing based on inverse models of push-
interaction (IV-A). Objects often have irregular shapes, mass
and friction distributions. Different orientations of the object
entail different contact locations while pushing, and can
cause different object behaviours. Thus, the object orientation
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Fig. 2. The robot’s task it to push an object towards a fixed target or a
movable target on a path.
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Fig. 3. Different configurations of the robot and the object while pushing.
Blue marks denote the corresponding orientations of the object in the robot
frame R.



θRo should be taken into account. R denotes a local frame
assigned to the robot’s current pose r. Examples of various
configurations of an object are shown in Fig. 3.

Models (Sec. IV-B) are assigned locally to different con-
tact locations. Then, we describe online learning of local
models (Sec. IV-C). For each contact location, the behaviour
of the object when pushed at nearby contact locations is used
to update a local model. At the end of this section (IV-D),
we describe how nearby contact locations are chosen.

A. Learning scheme

To be able to push an object in the desired direction,
we propose an adaptive movement scheme as shown in
Fig. 4, which produces the control input u for the robot. It
consists of an adaptive feedforward component for learning
the inverse model of the robot-object push interaction f̂−1o

which produces the reference signal for the robot, and the
feedback component altering it.

The proposed scheme controls the object movement di-
rection θȯ, while the velocity of the robot movement is kept
constant. The error of the object movement direction is

γ = θdȯ − θȯ

where θdȯ is the desired direction of the object movement
−→
ot,

as shown in Fig. 5(a).
The robot control signal u =

[
ru θu

]T
is defined in

polar coordinates as

ru = V

θu = θfeedforward + θfeedback (1)

where V is the constant magnitude of the desired robot
velocity, θfeedforward is the movement direction defined by
the inverse model f̂−1o , and θfeedback is the output of a
proportional-integral (PI) controller with saturated I compo-
nent, also known as integral anti-windup.

At the beginning of the push, the robot has no knowledge
about the object. The feedforward component will produce
a reference signal corresponding to the pushing of a circular
object with uniform mass and friction distribution. The feed-
back term reacts to the current error of the object movement
direction, and provides a slow but reliable control input for
the system as the adaptive feedforward component learns the
inverse model of the current robot-object interaction.

B. Inverse Model of Push-Interaction

To simplify the description, let us assign a local pushing
frame P to the robot r such that the xP axis coincides with
−→ro. The success of a push depends on the robot-object-target
configuration, which is characterized by the angle α, defined
as in Fig. 5(b), and the current object orientation θRo . Thus,
the inverse model of push-interaction determines the robot
movement direction based on the current α and θRo .

While interacting with an object, the robot has to push
the object towards the target but also relocate to a position
from where pushing is possible. To introduce the inverse
model, we define two primitive movements, pushing and
relocating. The direction of pushing d̂push equals −→ro, and the

primitive relocate direction d̂push is perpendicular to it. We
define the inverse model of robot-object pushing interaction
by blending two primitive movements in the feedforward
controller component, as shown in Fig. 5(c). The output
of the inverse model defines the desired direction of robot
movement and is given by

uPfeedforward = ψpush(α, θ
R
o )d̂

P
push+ψrelocate(α, θ

R
o )d̂

P
relocate (2)

where ψpush and ψrelocate are activation functions which
system adapts based on the observed object movement. This
results in smooth transitions between pushing and relocating.

Push and relocate directions are defined in the local
pushing frame as

d̂
P
push = sgn(cosα)̂ıP (3)

d̂
P
relocate = sgn(sin(αp(θ

R
o )− α))̂P (4)

where ı̂P and ̂P are unit vectors in the direction of the
xP and yP axes respectively, and αp(θRo ) is the value of α
that enables pushing of the object directly towards the target
for the current object orientation by moving the robot only
into the direction d̂

P
push. This value depends on the robot-

object contact location which is characterized by the object
orientation θRo . For a circular object with uniform mass
and friction distribution this value is αp = 0. The system
estimates values of αp(θRo ) for a particular object on the fly.
Non-zero values of αp indicate misalignment of the center
of mass from the center of geometry.

The sign function in Eq. (3) enables the robot relocation to
the position from where it is possible to push in the case that
|α| > π/2. Blending the two movement directions drives the
robot around the object such that α→ αp.

We let the robot learn which angles α are good for
pushing and estimate the push activation function ψpush.
Since primitive movements are perpendicular, we define the
relocation activation function as

ψrelocate(α, θ
R
o ) =

√
1− ψ2

push(α, θ
R
o ). (5)

C. Online Adaptation of Inverse Models

To estimate the push activation function ψpush, we let the
robot learn which angles α are suitable for pushing. We
characterize them as angles which lead to a decrease of the
error of the object movement ˙|γ| < 0. We assume these
angles are distributed according to a von Mises distribution

p(α|µ, κ) = eκ cos(α−µ)

2πI0(κ)
, (6)

a circular analogue of the normal distribution, where −π <
µ ≤ π, 0 ≤ κ ≤ ∞, and I0(κ) is the modified Bessel
function of order zero. The mean direction of the distribution
is given by µ, and κ is a concentration parameter with κ = 0
corresponding to a circular uniform distribution and κ→∞
to a point distribution.

Given evidence of angles Dα = {α1, α2, ..., αn} that
resulted in ˙|γ| < 0 coupled with evidence of corresponding
object orientations Dθ = {θRo 1, θ

R
o 2, ..., θ

R
o n}, we estimate
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Fig. 4. The proposed control scheme for learning inverse models of the object-robot pushing interaction. The feedforward component, the inverse model,
and the feedback component determine the robot movement direction θu.
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Fig. 5. (a) The error of the object movement γ. (b) The local push frame is determined by the current robot-object position. The current robot-object-target
configuration is characterized by the angle α. (c) The robot movement direction is determined by blending push and relocate vectors.

the model parameters µ and κ using maximum a posteriori
(MAP) estimation. The posterior distribution p(µ, κ|Dδ̂α)
is obtained by combining the prior knowledge about the
distribution p(α) and the knowledge about observed data Dδ̂α
summarized by the likelihood function p(Dδ̂α|µ, κ), where
Dδ̂α ⊂ Dα represents the set of samples of α that corre-
spond to orientations θRo around the current one within the
neighbourhood defined by δ̂ as shown in Fig. 6.

We can estimate the posterior using Bayes’ theorem

p(µ, κ|Dδ̂α) =
p(Dδ̂α|µ, κ)p(µ, κ)

p(Dδ̂α)
. (7)

This is done using a bivariate conjugate prior for the von
Mises distribution with unknown concentration and direction,
originally developed by Guttorp and Lockhart [17] and
revised by Fink [18]. The conjugate prior for the von Mises
distribution is defined with hyperparameters R0, c and φ as

p(µ, κ|R0, c, φ) =
1

K

eR0κ cos(φ−µ)

2πI0(κ)c

where K =
∫∞
0

I0(R0κ)
I0(κ)c

dκ is a normalizing constant.
The prior hyperparameters are set to R0 = 5.84, c = 7.0

and φ = 0.0. We fitted these values such that they correspond
to an object of circular shape and uniform mass and friction
distributions.

With a model that describes which angles α result in ˙|γ| <
0 for a particular object orientation θRo , we define the push
activation function as

ψpush(α, θ
R
o ) ∝ p(α|µ̂, κ̂) (8)

where µ̂, κ̂ are MAP estimates of the model (6). This is a
parametrization that maximizes the posterior probability (7)
for the observed data:

(µ̂, κ̂) = argmax
µ̂,κ̂

p(µ̂, κ̂|Dδ̂α)

Parameters µ̂, κ̂ are mode values of the posterior distributions
obtained in (7).

With the estimated distribution (6), which describes angles
α suitable for pushing for the current θRo , we can determine
αp(θ

R
o ) = µ̂ as its expected value.

D. Determination of the Contact Location Neighbourhood

With the assumption that pushing at nearby contact lo-
cations will result in similar pushing behaviour, we select
samples of α ∈ Dδα which correspond to the samples of
θRo ∈ Dδθ such that

θRo k − δ < θ < θRo k + δ, θ ∈ Dθ,

where θRo k is the object orientation at time step k.
To find the probability distribution which best represents

the activation function ψpush, we choose the set of samples
that maximizes the certainty of the model. Therefore, the set
of samples Dδ̂α is chosen such that it minimizes the entropy
of Dδ̂α ⊂ Dα for the model (6), and is defined as

δ̂ = arg min
δ∈0,2π

H(Dδα) (9)

where H(Dδα) = ln(2πI0(κ)) − κ I1(κ)I0(κ)
is the information

entropy of the angles α ∈ Dδα. In this way, only configura-
tions of the object which are similar to the current one are
taken into account. An example of a chosen subset is shown
in Fig. 6.
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Fig. 6. (a) An example of samples which resulted in ˙|γ| < 0 collected
for the object ‘plane’ in pushing experiments. We illustrate the subset of
samples (yellow) that result in a pushing behaviour similar to the current
object orientation (red). δ̂ denotes the neighbourhood width. (b) Distribution
of collected samples of α corresponding to the collected samples of θRo .

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We used a holonomic robot with a circular base, Robotino1

by Festo, to evaluate the proposed approach. We use the
additional degree of freedom to control the robot’s orien-
tation for object tracking since the camera is placed in a
fixed position on the robot. AR tags were used for more
accurate object tracking. For this purpose, we used the
ARToolKitPlus2 software library for the Robot Operating
System (ROS). At each time step, the pose of the object and
the robot were collected using odometry and the tracking
system. The parameters of the PI controller were set to
KP = 0.1, KI = 0.05 and integral term limits to [−0.1, 0.1].
The desired robot velocity was set to V = 0.1m/s in all
experiments.

We examine the success of pushing various objects and
adaptation to different object behaviours. For this purpose,
we performed tests of pushing to a fixed target, as well
as pushing along a path. We implemented the strategy of
path tracking as pushing with a fixed lookahead distance.
At each time step k a new pushing target on the path is
chosen at a distance of 0.1m from the point on the path
that is the closest to the current object position. To test the

1http://www.festo-didactic.com/int-en/services/robotino
2http://wiki.ros.org/v4r artoolkitplus

effectiveness of the method for various object behaviours, we
chose the set of objects shown in Fig. 7. The set contains
objects of various shapes, sizes, friction properties, and mass
distributions. However, we did not include objects that roll
because of the pose tracking difficulties.

B. Effectiveness

In the first set of experiments, we demonstrate the superior
capabilities of our proposed controller by comparing its per-
formance with two other controllers. For this comparison, we
designed two paths for pushing: a straight-line path of length
2.5 m, and a sine-wave path defined as y = 0.3 sin(πx).

We compare our controller with the dipole-field controller
by Igarashi [15]. The robot command for this controller is
defined by uP = [ cosα

− sinα ]V where α is defined the same
as for our controller, as in Fig. 5(b), and V is the velocity
amplitude. This controller was designed to push a circular
object with a circular robot. Without any observations of the
object error, using only the prior, our reference model (2)
will produce values identical to this controller.

We also compare our controller with the centroid align-
ment controller proposed by Hermans et al.[19]. This is a
proportional controller with two components, correcting the
robot displacement error and the object position error. The
robot command is defined as u = Kgeg +Kcec where eg is
the distance of the object to the target, and ec is the robot
displacement from the push line. Kg = 0.2 and Kc = 0.4
were used in all experiments, with a velocity amplitude
saturation of 0.2m/s. This controller does not take the object
orientation into account.

We performed three pushes with each method for all
objects in the used object set. The starting object orientation
is randomly chosen in each test. We define a push to be
successful if the object reached the end of the path to within
0.05m. A test is considered a failure if an object deviates
more than 0.4m from the path.

Examples of pushing paths and executed trajectories of the
robot and the object are shown in Fig. 8. The success rate is
summarized in Tab. I, where the proposed method is labelled
as adaptive. Examples from this experiment, are also given
in the the accompanying video.

Another useful metric to measure the performance is the
tracking accuracy. We define the tracking error at each time
step k as the shortest Euclidean distance of the object to
the path. In Fig. 9, we compare box plots of errors over
all successful pushes. Note that the set of samples for the
adaptive method is much larger than for the others due to
larger proportion of successful pushes. For the proposed
method we also compare errors for each object in Fig. 10.

It can be seen that the proposed method demonstrates
a high success rate (Tab. I) as well as a higher tracking
accuracy (Fig. 9), compared to the other two methods.
Objects ‘plane’ and ‘cloud’ appear to be harder to push
compared to other objects as can be seen in Tab. I. The
object ‘plane’ manifests more complex behaviours, while the
object ‘cloud’ is significantly larger than the others, making
it easier to reach the error limit of 0.4m. The sine-wave



‘dino’ ‘plane’ ‘cloud’ ‘drill’ ‘frenchs’

Fig. 7. The set of objects used in the experiments.
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Fig. 8. Examples of pushes in path tracking tests.
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TABLE I
COMPARISON OF PUSHING SUCCESS FOR EACH OBJECT OUT OF 3 TRIALS

Controller Adaptive Centroid Dipole

Path: Line

‘dino’ 3 2 2
‘plane’ 2 1 0
‘cloud’ 3 1 1
‘drill’ 3 1 1
‘frenchs’ 3 2 2

Path: Sine

‘dino’ 3 1 1
‘plane’ 2 1 0
‘cloud’ 2 0 0
‘drill’ 2 1 1
‘frenchs’ 3 2 1

pushing path is more difficult for the Centroid controller
because of the changes in the desired object displacement
directions. Looking at the success rates in Tab. I and box
plots in Fig. 9, we can see that Dipole controller performs the
poorest. This is a consequence of the fact that this controller
is designed in a pure feedforward manner. The single failure
for pushing the object ‘drill’ with the Adaptive method was
due to the start pose, where the drill chuck was the first
contact location. This was caused by a lack of evidence



about object behaviour since the push failed already at the
beginning of the path. Experimental tests over the object set
shows high robustness of the proposed method. However,
the prior which corresponds to a circular object can be
misleading in cases such as the robot starting to push at
the drill chuck. For this reason, the controller will not be
suitable for objects that differ from the prior extremely in
shape and mass distribution, e.g. a long, thin stick.

C. Adaptation

In a second set of experiments, we examine the adaptation
effects and the benefits of using local models. Here, we
compare two strategies: the proposed one, where the object
orientation is taken into account by choosing subsets Dδ , and
one where a single model (7) is estimated over the whole set
D. We let the robot push an object towards a fixed target at
an initial distance of 2.5m (Fig. 11). For each strategy, we
performed five pushes.

To evaluate these results we calculated the pushing effort
as the arc length Lo =

∑N
i=1 |o(ti) − o(ti−1)| of the

object trajectory. We compare the pushing effort for each
object in Fig. 12. The proposed method demonstrated better
pushing performance than the approach where the likelihood
was calculated from the whole set D. It is evident that the
proposed controller with local models gives better results in
the case of objects with more complex properties such as
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Fig. 11. Examples of trajectories in tests of pushing towards a fixed target.
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Fig. 12. Arc lengths of object trajectories are compared for the proposed
inverse model of the robot-object pushing interactions taking into account
orientations of the object and the inverse model ignoring the orientation of
the object.

‘plane’, ‘dino’ and ‘drill’. Contrary to that, in the case of
the ‘cloud’ object with its fairly uniform mass and friction
distribution, the performance is slightly worse than for the
controller that uses a single model.

D. Control effort

We demonstrate an example of control signals produced by
feedforward and feedback components together with object
and robot trajectories in Fig. 13. Together, they define the
robot’s control signal θu (1), As previously stated, at the
beginning of a push the object is unknown, the feedforward
component produces control signals suitable for a circular
object, and the feedback component intervenes to correct the
error. As the feedforward component adapts, it can be seen
that the effect of the feedback component is reduced and the
feedforward component takes over (e.g. at 5–15s).

E. Object properties

To shed further light on the effectiveness of the proposed
controller for each object (Figs. 10 and 12), we examined
how informative the local models obtained in the experiments
were. For this purpose, we analysed offline inverse models
with the complete evidence collected during all experiments.
We clustered orientations based on subsets Dδ̂ and their
overlapping areas. This enables us to create object property
maps consisting of clustered contact orientations as shown in
Fig. 14. For the object ‘cloud’, it appears that the model was
estimated from all or most of the collected samples. This can
be justified by the nature of the object since it is lightweight
with fairly uniform properties. It appears that the number
of clusters indicates the complexity of the mass and friction
distributions of an object, or its shape, such as for ‘plane’.
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Fig. 13. Example of pushing object ‘dino’ along a straight-line path.
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Fig. 14. Clustered object peripheral points based on the common subsets Dδ . Different colours belong to different observed object orientations for which
the robot was able to push the object towards the target.

VI. CONCLUSION AND FUTURE WORK

We presented a data-driven approach for online learning
of inverse models of robot-object interactions for pushing
unknown objects. The model is learned based on observed
robot and object movements. We demonstrated the high
success rate and tracking accuracy of the proposed controller,
providing comparisons with other controllers in the literature.
Also, results demonstrate that the robot can acquire knowl-
edge of object behaviours when pushed at different contact
points.

While performing exhaustive experiments, we did not
observe any behaviour that lead to instability. A rigorous
theoretical study of stability of the proposed control loop is
part of planned future work.

Our method does not rely on any visual features of an
object, but only on the observed motion of it. Thus, it
would be interesting to combine our results with vision-based
approaches for pushing, such as that by Hermans et al. [8],
or with approaches for learning models of push affordances,
e.g. Ridge et al. [20]. Also, the future will involve analysis
of object rotations.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement no. 610532,
SQUIRREL, and a scholarship granted to S.K. by the Uni-
versity of Innsbruck, Vice Rectorate for Research.

REFERENCES

[1] M. T. Mason, “Mechanics and planning of manipulator
pushing operations,” The International Journal of Robotics
Research, vol. 5, no. 3, pp. 53–71, 1986. [Online]. Available:
http://ijr.sagepub.com/content/5/3/53.abstract

[2] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics,
controllability, and planning,” The International Journal of Robotics
Research, vol. 15, no. 6, pp. 533–556, 1996. [Online]. Available:
http://ijr.sagepub.com/content/15/6/533.abstract

[3] M. Salganicoff, G. Metta, A. Oddera, G. Sandini, M. Salganico,
G. Metta, A. Oddera, and G. Sandini, “A vision-based learning
method for pushing manipulation,” in In AAAI Fall Symposium Series:
Machine Learning in Vision: What Why and, 1993.

[4] Q. Li and S. Payandeh, “Manipulation of convex objects
via two-agent point-contact push,” Int. J. Rob. Res.,
vol. 26, no. 4, pp. 377–403, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1177/0278364907076819

[5] K. T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million
ways to be pushed. a high-fidelity experimental dataset of planar
pushing,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 30–37.

[6] M. Kawato, “Internal models for motor control and trajectory plan-
ning,” Current opinion in neurobiology, vol. 9, no. 6, pp. 718–727,
1999.

[7] M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011, pp. 5722–5729.

[8] T. Hermans, F. Li, J. Rehg, and A. Bobick, “Learning contact locations
for pushing and orienting unknown objects,” in Humanoid Robots
(Humanoids), 2013 13th IEEE-RAS International Conference on, Oct
2013, pp. 435–442.

[9] D. Katz and O. Brock, “Manipulating articulated objects with interac-
tive perception,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, May 2008, pp. 272–277.

[10] F. Ruiz-Ugalde, G. Cheng, and M. Beetz, “Fast adaptation for effect-
aware pushing,” in Humanoid Robots (Humanoids), 2011 11th IEEE-
RAS International Conference on, Oct 2011, pp. 614–621.

[11] M. Lau, J. Mitani, and T. Igarashi, “Automatic learning of pushing
strategy for delivery of irregular-shaped objects,” in 2011 IEEE
International Conference on Robotics and Automation, May 2011, pp.
3733–3738.

[12] S. Walker and J. Salisbury, “Pushing using learned manipulation
maps,” in Robotics and Automation, 2008. ICRA 2008. IEEE Inter-
national Conference on, May 2008, pp. 3808–3813.

[13] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine,
“Learning to poke by poking: Experiential learning of intuitive
physics,” CoRR, vol. abs/1606.07419, 2016. [Online]. Available:
http://arxiv.org/abs/1606.07419
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