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Abstract

Grasping an object is a task that inherently needs to be treated in a hybrid fashion. The system
must decide both where and how to grasp the object. While selecting where to grasp requires
learning about the object as a whole, the execution only needs to reactively adapt to the context
close to the grasp's location. We propose a hierarchical controller that re�ects the structure of
these two sub-problems, and attempts to learn solutions that work for both. A hybrid architecture
is employed by the controller to make use of various machine learning methods that can cope with
the large amount of uncertainty inherent to the task. The controller's upper level selects where to
grasp the object using a reinforcement learner, while the lower level comprises an imitation learner
and a vision-based reactive controller to determine appropriate grasping motions. The resulting
system is able to quickly learn good grasps of a novel object in an unstructured environment, by
executing smooth reaching motions and preshaping the hand depending on the object's geometry.
The system was evaluated both in simulation and on a real robot.
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1. Introduction

Robots possess great potential for being employed in domestic environments, where they could
perform various tasks such as tidying up rooms, taking out the garbage, or serving dinner. Although
these chores are variations of a basic pick-and-place task, robots still struggle with them.

One of the key challenges for roboticists is the large variability inherent in the tasks and en-
vironments that a robot may encounter. Preparing a robot completely beforehand for all possible
situations is probably impossible as it is prohibitively di�cult to foresee all scenarios. Such a prepa-
ration is also ine�cient, as only a few of the situations will be required by the robot. Due to these
limitations, it is important to design robots that can adapt and learn from their own experiences.

Grasping an unknown object is an example of a task that is made particularly di�cult by the
large variety of objects (see Figure 2). Many approaches have been proposed for robot grasping.
Early work [6, 24] found analytical solutions to the problem, but these approaches require precise
information about the environment (e.g., external forces, surface properties) that may not be acces-
sible. Supervised learning can be used to train robots how to recognize good grasping points [36],
but requires a considerable initial input from a human supervisor. Active and reinforcement learn-
ing methods have focused on exploring the object to acquire complete a�ordance model [35, 27],
but not on optimizing grasps. However, �nding good grasp locations is only a part of the problem.

The robot grasping task can be decomposed into two problems: (i) deciding where to grasp the
object, and (ii) determining how to perform the grasping movement. These two sub-problems are
closely related and must be addressed together in order to perform a successful grasp. The choice of
where to grasp an object sets the context for determining how to grasp it. However, the execution
of the grasp ultimately determines whether the grasp location was well-chosen.

In this paper, we propose a hierarchical controller that re�ects the structure of these two task
components, as shown in Figure 1. The upper level decides where to grasp the object, and the
lower level determines how to perform the grasping movements given the context of these grasp
parameters and the scene. The upper level subsequently receives a reward based on the grasp
execution, and takes this into consideration when selecting future grasps.
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Active and Reactive Controller Architecture

Figure 1: The controller architecture consists of a upper level based on reinforcement learning and a bottom level
based on reactive control. Both levels are supported by supervised/imitation learning. The World and Supervisor
are external elements of the system.

The system employs a hybrid architecture that uses reinforcement learning, imitation learning,
and reactive control. The core of the upper level is a reinforcement learning approach that uses
the successfulness of evaluated grasps to determine future grasps. It is crucial that its state-action
space is low dimensional for faster convergence [42, 4], and that information from other sources (e.g.,
demonstrated grasps) can easily be incorporated. To reduce the action space, the reinforcement
learner speci�es a grasp as a six dimensional hand pose in the object's reference frame, and all
remaining variables inherent to the grasping movements are handled by a lower level controller.

The lower level controller is responsible for action execution. A straightforward method of
acquiring an arbitrary motion policy is by imitation learning. One approach to imitation learning
is to transform a demonstrated trajectory into a standard dynamical systems motor primitive
(DMP) [14, 37]. This policy is adapted, in a task speci�c manner, to the grasp parameters speci�ed
by the reinforcement learner. The resulting DMP is augmented by a reactive controller that takes
the geometry of the object and scene into consideration. The resulting action is executed by the
robot, which returns a corresponding reward to the upper level of the controller.

The complete hybrid controller is illustrated in Figure 1. It uses its own experiences to quickly
converge on good grasping locations. The grasping motions are taught by demonstration and
adapted to di�erent grasp locations and the surrounding geometry. A key feature of this hybrid
approach is that the reactive controller is incorporated in the reinforcement learner's action-reward
feedback loop. Thus, the hybrid system will learn an appropriate grasping action together with a
corresponding grasp location, and solve both of the sub-problems.

In the following sections, we discuss the proposed controller in a top-down manner. The active
learner and the reactive bottom level of the controller are detailed in Sections 2 and 3 respectively.
In Section 4, the system is evaluated both in simulation and on the robot platform shown in Figure 2.

2. High Level Active Learner

The high level controller chooses where on the object to apply the next grasp, and improves
the grasp locations using the acquired data. The reinforcement learning approach is inspired by
the grasp learning exhibited by infants [28, 29, 33], requiring relatively little prior knowledge and
making few assumptions. Young infants have a grasp re�ex that allows them to crudely grasp
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objects [28]. They learn to improve their grasps through trial and error, allowing them to later be
able to perform precision grips. The reactive controller of the hybrid system represents a vision-
based grasp re�ex. The initial grasps may be crude, but the learning system will adapt to the
object and can learn to perform precision grasps.

To keep the number of assumptions low, we de�ne the state as the object being grasped, and
learn a model for each object. The robot's grasps are learned in the object's reference frame,
allowing the object to be repositioned in the workspace. Similar to a young infant [28], learning
to grasp an object is treated as context independent and only based on the task constraints it has
encountered. Thus, if an object has always been presented as hanging on a string, both the robot
and infant would initially not know that grasping it from below does not work when the object is
on a table [28]. The robot will assign an expected reward to the grasp that re�ects both situations
and how often it has encountered each.

Figure 2: The robot used in our experiments and an ex-
ample of a grasping task in a cluttered environment.

Another infant-like feature is that the robot
has no vision-grasp mapping. Infants under
nine months do not orientate their hands to the
orientation of object parts [33]. The robot also
does not assume that the geometry of a cup's
handle will imply a certain orientation of the
hand as appropriate. Instead, it will try di�er-
ent orientations and �nd one that is well-suited
for it. Hence, several object properties do not
need to be modeled explicitly, e.g., friction. Ul-
timately, the reinforcement learning approach
is highly adaptive and is applicable to a wide
range of situations.

In contrast, supervised learning of grasps
has focused on methods using internal models of the world [26, 20], or mappings between vi-
sual features of objects and grasps [36]. These approaches are more characteristic of adult human
grasping, and thus require large amounts of prior information.

To converge quickly to high rewarding grasp locations, the system must balance the exploitation
of good grasping points and the exploration of new, possibly better, ones. From a machine learning
perspective, this selecting of grasps can be interpreted as a continuum-armed bandits problem [1].

The continuum-armed bandit problem is a generalization of the traditional n-armed bandit
problem [42] where the agent must choose from a continuous range of locally dependent actions,
instead of a �nite number. Under this interpretation, the action is given by the grasp applied and
the reward is a measure of the success of this grasp.

To date, most methods [3, 18] that solve the continuum-armed bandit problem are based
on discretizing the space. For high-dimensional domains, such as robot grasping, any discrete
segmenting will scale badly due to the �curse of dimensionality� [4]. The hard segmentation will
result in unnatural borders and make the use of prior knowledge complicated. We propose a sample-
based reinforcement learner that models the distribution of expected rewards over the continuous
space of actions using Gaussian process regression (GPR) [32]. The proposed learner then searches
for the most promising grasp to evaluate next, using a method inspired by Mean-shift [9]. The
resulting policy is called Continuum Gaussian Bandits (CGB), and is outlined in Algorithm 1.

The following four sections detail the active learner and present the employed policy (Sec-
tion 2.1), the modeling of the expected rewards (Section 2.2), how the learner selects the next
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grasp (Sections 2.3), and then the method for implementing this selection on the reward model
(Sections 2.4 and 2.5). Finally, Section 2.6 explains how supervised data can be incorporated into
the active learner as prior knowledge.

2.1. Upper Con�dence Bound Policy

Choosing where to grasp a novel object su�ers from an exploration-exploitation problem. The
traditional machine learning framework for studying this dilemma is the n-armed bandits problem,
wherein an agent must repeatedly choose from a �nite set of n possible actions to maximize the
accumulated reward.

Among the more successful strategies [42] are upper con�dence bound (UCB) policies. While
there are di�erent versions of UCB policies [42, 2], the principle idea is to assign each action two
variables, i.e., the expected reward µ for taking that action, and a con�dence bound ±σ indicating
the range in which the actual mean reward is. Both µ and σ indicate how desirable executing the
action is. A high expected reward µ is valuable in the sense of exploitation and receiving rewards,
while a large con�dence bound σ indicates an informative action that is good for exploration. Using
the exploration variable σ leads to a more structured exploration than regular randomized policies
(e.g., ε-greedy [42]). UCB policies also provide performance guarantees, and have an upperbound
on the expected regret that scales only logarithmically with the number of trials [2].

The sum of the expected reward µ and the standard deviation σ indicates how desirable executing
the action is overall. We call the value µ+ σ the merit of an action. A UCB policy always selects
the action for which this merit value is the greatest [2]. Intuitively, a UCB policy optimistically
chooses the action which could be the best, and will thus only converge to an action when it knows
that no other action could be better.

Adapting a UCB policy to the continuum-armed bandits requires a new approach that scales to
the high dimensional spaces of grasping tasks. The �rst step towards realizing this approach is to
create a sample-based model of the exploration σ and exploitation µ variables.

2.2. Expected Reward and Con�dence Modeling with Gaussian Process Regression

Modeling the upper con�dence bound for continuous actions requires the expected reward func-
tion and its standard deviation to be approximated. A well-suited approach that satis�es these
requirements is Gaussian process regression (GPR) [32].

Rather than mapping inputs to speci�c output values, GPR returns a Gaussian distribution of
the expected rewards. This Gaussian distribution is characterized by its mean µ(x) and standard
deviation σ(x), where the standard deviation is a con�dence bound on the expected reward. This
technique is non-parametric, which implies that µ(x) and σ(x) are functions that directly incorpo-
rate all previous samples. Non-parametric methods are very adaptable, and apply few constraints
on the model. The GPR approach incorporates a prior that keeps the mean and variance bounded
in regions without data. Unexplored regions will thus have a large con�dence bound σ(x) and small
expected rewards µ(x). Sampling from these regions will shift µ(x) towards the actual expected
reward at x, but decrease the con�dence bound σ(x).

We employ the standard Gaussian kernels k (x,y) = σ2
a exp(−0.5(x− y)TW(x− y)) where W

is a diagonal matrix of kernel widths. The parameter σa a�ects the convergence rate of the policy,
as explained in Section 2.6.

For grasping, the vectors x ∈ R6 and y ∈ R6 each contain three position and three orientation
parameters of grasps, which describe the �nal position of the hand in the object's reference frame.
Working in the object's reference frame allows the object to be repositioned and reorientated in
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the workspace without altering the grasp parameters. Additional grasp parameters are excluded
to keep the number of parameters minimal, and thus allow for rapid learning. All of the other
motion parameters are handled by the reactive low level controller, which modi�es these parameters
depending on the object and the scene, as well as the parameters in x.

The proposed UCB policy will base its decisions on the merit function M (x) = µ(x) + σ(x),
where µ (x) and σ (x) are the expected reward and standard deviation at grasp x respectively. The
standard GPR model [32] for the mean µ, variance σ2, and standard deviation σ, are

µ (x) = k (x,Y)T
(
K + σ2

sI
)−1

t,

σ (x) =
√
σ2 (x) =

√
k (x,x)− k (x,Y)T (K + σ2

sI)
−1 k (x,Y),

where [K]i,j = k(yi,yj) is the Gram matrix, the kernel vector k decomposes as [k(x,Y)]j =
k(x,yj), the hyperparameter σ2

s indicate the noise variance, and the N previous data points are
stored in Y = [y1, . . . ,yn] with corresponding rewards t = [t1, . . . , tn].

Both the mean and variance equations can be rewritten as the weighted sum of Gaussians, giving

µ (x) =
∑N
j=1k

(
x,yj

)
αj ,

σ2 (x) = k (x,x)−
∑N
i=1

∑N
j=1k

′ (x, 0.5 (yi + yj
))
γij ,

where k′ (x,y) = σ2
a exp(−(x−y)TW(x−y)), and the constants are de�ned as αj = [(K+σ2

sI)
−1t]j

and γij = [(K + σ2
sI)
−1]i,j exp(−0.25(yi − yj)TW(yi − yj)). Di�erent upper con�dence intervals

σ have been used in UCB policies [44], and can be used by modeling them with a second GPR [7].
The previous rewards t occur in the exploitation term µ (x), but not in the standard deviation

σ (x) as it represents the exploration, which is independent of the rewards. A similar merit function
has previously been employed for multi-armed bandits in metric spaces, wherein GPR was used to
share knowledge between discrete bandits [40].

Having chosen a UCB policy framework and a GPR merit model, the implementation of the
policy has to be adapted to the merit function.

2.3. UCB Policy for GPR Model

Given a model of the UCB merit function, the system requires a suitable method for deter-
mining the action with the highest merit. Executing this grasping action will acquire the greatest
combination of reward and information.

The merit function will most likely not be concave and will contain an unknown number of
maxima with varying magnitudes [32]. Determining the global maximum of the merit function
analytically is therefore usually intractable [32]. However, numerically, we can determine a set
of locally optimal grasps. Such sets of grasps will contain many maxima of the merit function,
especially near the previous data points. Given a set of local maxima, the merit of each candidate
grasp is evaluated and the robot executes the grasp with the highest merit.

The method for �nding the local maxima was inspired by mean-shift [9], which is commonly
used for both mode detection of kernel densities and clustering. Mean-shift converges onto the local
maxima of a given point by iteratively applying

xn+1 =

∑N
j=1 yjk

(
xn,yj

)∑N
j=1 k

(
xn,yj

) , (1)
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where k(xn,yj) is the kernel function, and yj are the N previously tested maxima candidates as
before. The monotonic convergence via a smooth trajectory can be proven for mean-shift [9]. To
�nd all of the local maxima, mean-shift initializes the update sequence with all previous data point.
The global maximum is then determined from the set of local maxima, which is guaranteed to
include the global maximum [23].

Algorithm 1:

Continuum Gaussian Bandits (CGB)
Initialize:

Store N initial points in Y and t
Loop:

Calculate α and γ
Mbest = 0
for j = 1 to N

xo = yj
while not converged

Calculate update step s
xn+1 = s + xn

end

if M(x) > Mbest

xbest = xn
Mbest = M(xbest)

end

end

Attempt and evaluate xbest

Store results in yN+1 and tN+1

N = N + 1

Figure 3: The algorithm models the merit
function with GPR, and �nds a set of local
maxima using a parallel search. The candidate
action with the greatest merit is evaluated and
the results are stored.

The intuition behind this approach for grasping is that
all of the previous grasp attempts are locally re-optimized
based on the current empirical knowledge, as modeled by
the merit function. Subsequently, we choose the best of
these optimized grasps to execute and evaluate.

Mean-shift is however limited to kernel densities and
does not work directly in cases of regression, because the
αj and γi,j weights are not always positive [9]. In particu-
lar, the standard update rule (1) can not be used, nor can
we guarantee that the global maximum will be one of the
detected maxima. However, the global maximum is only
excluded from the set of found maxima if it is isolated
from all previous samples by regions of low merit.

As Equation (1) is not applicable in our regression
framework, a new update step had to be developed, which
monotonically converges upon the local maximum of our
merit function.

2.4. Local Maxima Detection for GPR

Given the model in Section 2.2, the merit func-
tion takes the form M (x) =

∑N
j=1k(x,yj)αj +√

k (x,x)−
∑N
i=1

∑N
j=1k

′
(
x, 0.5

(
yi + yj

))
γij . To use

the policy described in Section 2.3 with this merit func-
tion, a monotonically converging update rule is required
that can determine local maxima. We propose an update
rule consisting of the current gradient of the merit func-
tion, divided by a local upper bound of the merit's second derivative; Speci�cally, we propose

xn+1 =
∂xµ+ ∂xσ

q (µ) + q(σ2)√
p(σ2)

+ xn = s + xn, (2)

where ∂xµ =
∑N
j=1 W

(
yj − xn

)
k
(
xn,yj

)
αj and

∂xσ =
N∑
i=1

N∑
j=1

2
σ
γijW

(
yi + yj

2
− xn

)
k′
(
x,

yi + yj
2

)
.

The function q(·) returns a local upper bound on the absolute second derivative of the input within
the xn to xn+1 range. Similarly, p(·) returns a local lower bound on the absolute value of the input.

This form of update rule displays the desired convergence qualities, as explained in Section 2.5.
The rule is only applicable because the Gaussian kernels have bounded derivatives resulting in �nite
q (µ) and q (v), and any real system will have a positive variance giving a real non-zero

√
p (v).



2.5 Mode Detection Convergence Analysis 8

To calculate the local upper and lower bounds, we �rst de�ne a region of possible xn+1 values to
consider. Therefore, we introduce a maximum step size m > 0, where steps with larger magnitudes
must be truncated; i.e., ‖xn+1 − xn‖ ≤ m. Having de�ned a local neighborhood, q (µ), q (v), and
p (v) need to be evaluated.

In Section 2.2, µ and v were represented as the linear weighted sums of Gaussians. Given a
linear sum, the rules of superposition can be applied to evaluate q (µ), q (v), and p (v). Thus, the
upper bound of a function in the region is given by the sum of the local upper bounds of each
Gaussian, i.e.,

qm

(∑
N
j=1k

(
x,yj

)
αj

)
≤
∑

N
j=1qm

(
k
(
x,yj

)
αj
)
.

As Gaussians monotonically tend to zero with increasing distance from their mean, determining an
upper bound value for them individually is trivial. In the cases of q (µ) and q (v), the magnitudes
of the second derivatives can be bounded by a Gaussian; i.e.,

‖∂2
xk
(
x,yj

)
‖ < σ2

a exp
(
−(x− yj)

TW(x− yj)/6
)
,

which can then be used to determine the local upper bound.
We have thus de�ned an update step and its implementation, which can be used to detect the

modes of a Gaussian process in a regression framework. The �nal algorithm has a time complexity
of O(N3), similar to all other exact GPR methods [7]. However, this complexity scales linearly with
the number of dimensions, while discretization methods scale exponentially, making the proposed
GPR method advantageous when the problem dimensionality is greater than three. The mode
detection algorithm can be easily parallelized for e�cient implementations on multiple computers
or GPUs as an anytime algorithm.

This section concludes the details of the proposed reinforcement learner, which is outlined in
Algorithm 1. As shown, the �nal algorithm is quite compact and straightforward. It consists of
modeling the expected rewards using GPR, and applying a parallel search to determine a maximum
to evaluate next. The mode detection behavior is analyzed in the next section. Incorporating
supervised data from other data sources is described in Section 2.6 which completes the upper level
of the controller design.

2.5. Mode Detection Convergence Analysis

Having speci�ed the method for determining maxima of a GPR in Section 2.4, Lyapunov's
direct method can be used to show that the method converges monotonically to stationary points.
The underlying principle is that an increased lower bound on the merit reduces the set of possible
system states and, therefore, a continually increasing merit leads to convergence. The following one
dimensional analysis will show that only an upper bound on the magnitude of the second derivative
is required for a converging update rule.

The increase in merit is given by M(xn+1) −M(xn). Given an upper bound u of the second
derivative between xn and xn+1, and the gradient g = ∂xM (xn), the gradient in the region can be
linearly bounded as

g − ‖x− xn‖u ≤ ∂xM (x) ≤ g + ‖x− xn‖u.

Considering the case g ≥ 0 and therefore xn+1 ≥ xn, the change in merit is lower bounded by

M (xn+1)−M (xn) =
´ xn+1

xn
∂xM (x) dx ≥

´ xn+1

xn
g − (x− xn)u dx.
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This term is maximal when the linear integrand reaches zero; i.e, g− (xn+1 − xn)u = 0. This limit
results in a shift of the form s = xn+1 − xn = u−1g, as was proposed in Equation (2). The same
update rule can be found by using a negative gradient and updating x in the negative direction.
The merit thus always increases, unless the local gradient is zero or u is in�nite. A zero gradient
indicates that the local stationary point has been found, and variable u is �nite for any practical
Gaussian process. In some cases, the initial point may be within the region of attraction of a point
at in�nity, which can be tested for by determining the distance from the previous data points.

The intuition underlying the results of the analysis is that at each step, the system assumes the
gradient will shift towards zero at the maximum possible rate within the region. The estimate of
the maximum is then moved to the �rst point where a zero gradient is possible. This concept can
easily be generalized to higher dimensional problems. The update rule guarantees that the gradient
cannot shift sign within the update step, and thus ensures that the system will not overshoot nor
oscillate about the stationary point. The update rule xn+1 = u−1g + xn therefore guarantees that
the algorithm monotonically converges on the local stationary point.

2.6. Incorporating Supervised data

Having fully designed the central reinforcement learner, the upper level controller still requires
a method for allowing prior task information to be incorporated into the merit function to help
reduce the search space.

Similar to how a child learns a new task by observing a parent before trying it themselves [28],
a robot can use human demonstrations of good grasps to de�ne its starting search region. However,
whether these grasps are suitable for the robot is initially unknown.

GPR makes incorporating prior information fairly straightforward. If the supervised data has
a reward associated to it, the data can be directly added to the data set. If the region suggested
by the demonstration returns only low rewards, the system will begin searching neighboring areas
where the merit is still high due to uncertainty. Thus, it de�nes an initial search region with soft
boundaries that can move during the learning process.

The parameter σa of the merit function speci�es how conservative the policy is in expanding
these boundaries; i.e., a higher value will encourage more exploration, while a lower value will
converge faster. Hence, it can be seen as a learning rate. With the rewards in the grasping task set
to be within the range 0 to 1, the parameter is set to 0.75 to encourage exploration but also allow
for a reasonable rate of convergence.

The robot experiment was initialized with search regions de�ned by 7, 10, and 25 demonstrated
grasps for the box, watering can, and paddle respectively. The width parameters W of the Gaussian
kernel were also optimized on these initial parameters.

This section concludes the discussion of the upper level controller. It takes the rewards of grasps,
the pose of the object, and, optionally, demonstrated data as inputs, and returns the next grasp
location to attempt. This grasp location is passed to the robot via a lower level controller, which
generates the complete grasping motions based on these parameters.

3. Low Level Reactive Imitation Controller

While the upper level of the controller selected grasp locations, the lower level is responsible for
the execution of the grasp, including the reaching and �ngers' motions. It is important that the
system is adaptive at this level, as the success of the grasps depend on the execution. The �nger
motions should particularly adapt to the geometry of the object, a process known as preshaping. The
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robot's motions are learned from human demonstrations, and subsequently modi�ed to incorporate
the grasp information from the active learner and the scene geometry from the vision system.

A common approach to the grasp execution problem is to rely on specially designed sensors
(e.g., laser scanner, ERFID) to get accurate and complete representations of the object and envi-
ronment [26, 45], followed by lengthy planning phases in simulation [5]. We restrict the robot to
only using stereo cameras, and a fast reactive sensor-based controller [39].

Although densely sampling sensors such as time-of-�ight cameras and laser range �nders are
favored for reactive obstacle avoidance [17], the sparser information of stereo vision systems has
also been used for these purposes [34, 22]. Robot grasping research has focused on coarse object
representations of novel objects [43, 25, 30, 8], and using additional sensor arrays when in close
proximity to the object [12, 41]. Learning to grasp objects is also often done in simulation [43,
20] which allows for many virtual grasp attempts on a model of the object. In contrast, the
proposed hybrid system relies on relatively few real-world grasps and does not rely on having
accurate dynamics and contact models.

For the lower level system, we propose a sensor-based robot controller that can perform human
inspired motions, including preshaping of the hand, smooth and adaptive motion trajectories, and
obstacle avoidance, using only stereo vision to detect the environment. Unlike previous approaches,
we work with a sparse visual representation of objects, which maintains a high level of geometric
details. The controller uses potential �eld methods [39], which treat the robot's state as a particle
in a force �eld; i.e. the robot is attracted to a goal state, and repelled from obstacles.

The attractor �eld needs to be capable of encoding complex trajectories and adapting to di�erent
grasp locations. We therefore use the dynamical system motor primitive (DMP) [13, 37] framework.
The DMPs are implemented as passive dynamical systems superimposed with external forces; i.e.,

ÿ = αz(βzτ−2(g − y)− τ−1ẏ) + aτ−2f(x), (3)

where αz and βz are constants, τ controls the duration of the primitive, a is an amplitude, f(x) is
a nonlinear function, and g is the goal for the state variable y. The variable x ∈ [0, 1] is the state of
a canonical system ẋ = −τx, which acts as a shared clock amongst di�erent DMPs; i.e. it ensures
that the �nger and arm motions are synchronized. The function f(x) encodes the trajectory for
reaching the goal state, and takes the form

f (x) =

∑M
j=1 ψj (x)wjx∑M
i=1 ψi (x)

,

where ψ(x) are M Gaussian basis functions, and w are weights. The weights w are acquired by
imitation learning, using locally weighted regression [13, 14]. The DMPs treat the goal state g
as an adjustable variable and ensure that this state is always reached. However, their capability
to generalize can be further improved by using a task-speci�c reference frame based on the active
learner's grasp parameters, as detailed in Section 3.2. This adaptation of the action to di�erent
goals allows the object to be repositioned and reorientated in the robot's workspace.

More important is the choice of the scene's visual representation, which is used to augment
the attractor �eld and forms the basis of the detractor �eld. The scene description needs to be
in 3D, work at a �ne scale to maintain geometric details, and represent the scenes sparsely to
reduce the number of calculations required per time step. The Early Cognitive Vision system of
Pugeault et al. [31, 11] (see Figure 4) ful�lls these requirements by extracting edge features from
the observed scene. The system subsequently localizes and orientates these edges in 3D space [21],
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ECVD Representation of Scene

ECV Descriptors Scene and Hand

Figure 4: The left image shows the ECVD representation of the scene on the right. The paddle is the object to be
grasped, while the surrounding objects clutter. The coordinate frame of the third �nger of the lower �nger in the
image and the variables used in Section 3 are shown. The x-y-z coordinate system is located at the base of the �nger,
with z orthogonal to the palm, and y in the direction of the �nger. The marked ECVD on the left signi�es the jth

descriptor, with its position at vj = (vjx, vjy , vjz)T , and edge direction ej = (ejx, ejy , ejz)T of unit length. The
position of the �nger tip is given by p = (px, py , pz)T .

with the resulting features known as early cognitive vision descriptors (ECVD) [31]. By using a
large amount of small ECVDs, any arbitrary object/scene can be represented. Given an ECVD
model of an object, the object's position and orientation can be determined [10] and the ECVDs of
the object model can be superimposed into the scene representation.

As a hybrid system, the lower level controller supplies a complex adaptive action policy that
the upperlevel can indirectly modify. The top level controller only needs to modify the action for a
given object, which can be done more e�ciently than having to learn the entire action. To allow for
quick learning, the actions given by the reactive controller should be repeatable, while still adaptive.
By making the rewards for grasps depend on the reactive controller, the reinforcement learner �nds
both good grasp locations as well as matching grasp executions.

In Sections 3.1 and 3.2, we describe the DMPs for grasping, followed by their augmentation
using the ECVD based detractor �eld in Section 3.3.

3.1. Attractor Fields based on Dynamical Systems Motor Primitives (DMPs)

Generating the grasp execution begins with de�ning an attractor �eld as a DMP, which encodes
the desired movements given no obstacles. The principle features that need to be de�ned for these
DMPs are the goal positions, and the generic shape of the trajectories.

The high level grasp controller gives the goal location and orientation of the hand, but not the
�ngers. Using the ECVDs, the goal position of each �nger is approximated by �rst estimating a
locally linearized contact plane for the object in the �nger coordinate system (see Figure 4). The
purpose of this step is to get the �ngers close to the object's surface during preshaping to allow for
more control of the object during grasping. It is not intended to infer exact surface properties or
whether the grasp is suitable. If the selected surface is unsuitable for grasping, a low reward will
be received and the upper level controller will adapt its policy accordingly.

A contact plane is approximated for each �nger to allow for a range of object shapes. The
in�uence of the ith ECVD is weighted by wi = exp(−σ−2

x v2
ix − σ−2

y v2
iy − σ−2

z v2
iz), where σx, σy,

and σz are length constants that re�ect the �nger's length and width, and vi is the position of the
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Figure 5: The diagram shows the the change
in coordinate systems for the reaching DMPs.
The axes Xw-Yw-Zw are the world coordinate
system, and Xp-Yp-Zp is coordinate system in
which the DMP is speci�ed. The trajectory of
the DMP is shown by the curved line, starting
at point s, and ending at point g. Xp is
parallel to the approach direction of the hand,
the arrow a. The axis Yp is perpendicular to
Xp, and pointing from s towards g.

ECVD in the �nger reference frame. The hand orien-
tation is such that the Z direction of the �nger should
be approximately parallel to the contact plane, which re-
duces the problem to describing the plane as a line in the
2D X-Y space. The X-Y gradient of the plane is ap-
proximated by φ = (

∑N
i=1 wi)

−1
∑N
i=1 wi arctan(eiy/eix),

where N is the number of vision descriptors, and ei is the
direction of the ith edge. The desired Y position of the
�ngertip is then given by

p̃y =
∑N
i=1(wiviy − tan(φ)wivix)∑N

i=1 wi
,

which can be converted to joint angles using the inverse
kinematics of the hand. The proposed method selects the
goal postures of the �ngers in a deterministic manner,
which depends on the object's geometry as well as the
grasp parameters speci�ed by the active learner. Thus,
the hybrid system's active learner indirectly selects the
posture of the �ngers through a reactive mechanism based
on the visual model of the object.

The next step de�nes the reaching and grasping trajectories. Many bene�cial traits of human
movements, including smooth motions and small overshoots for obstacle avoidance [16, 15, 29], can
be transferred to the robot through imitation learning. To demonstrate grasping motions, we used
a VICON motion tracking system to record human movements during a grasping task. The grasped
object can be di�erent to the robot's. VICON markers were only required at the hand and �nger
tips. The tracking system samples the human's motions, generating position q, velocity q̇, and
acceleration q̈ data, as well as the samples' time stamps. The weights wi of the DMP are then
given by

wi =

(
T∑
k=1

ψi (xk)x2
k

)−1 T∑
j=1

ψi (xj)xj
(
τ2q̈j − αz(βz(g − qj)− τ1q̇j)

)
a−1,

where xj is the state of the canonical system corresponding to the jth time stamp. The solution is
closed form and easily calculated. Further information on imitation learning of DMPs can be found
in Ijspeert's paper [14]. As the reaching trajectories are encoded in task space the correspondence
problem of the arm was not a problem.

The DMPs are provably stable [37] and the goal state, as speci�ed by the upper level controller,
will always be achieved. Alterations added by the reactive controllers must stay within the bounds
of the framework to ensure that this stability is maintained.

3.2. Transformed Dynamical Motor Primitives for Grasping

While DMPs generalize to arbitrary goal positions, the grasps' approach direction can not be
arbitrarily de�ned, and the amplitude of the trajectory is unnecessarily sensitive to changes in
the start position y0 and the goal position g if y0 ≈ g during training. These limitations can be
overcome by including a preprocessor that modi�es the DMPs' hyperparameters.
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Figure 6: This is a demonstration of the e�ects of trans-
forming the amplitude variable a of DMPs. The hashed
black lines represent boundaries. The dotted black line
shows the trained trajectory of the DMP going to 0.05. If
goal is then placed at 0.1 and the workspace is limited to
±0.075 (top boundary), the dashed black line is the stan-
dard generalization to a larger goal, while the solid plot
uses the new amplitude. If the goal is −0.05, and needs
to be reached from above (lower right boundary), then the
dashed grey line is the standard generalization to a neg-
ative goal, and the solid grey trajectory uses the new
amplitude. Both of the new trajectories were generated
with η = 0.25.

The system can maintain the correct ap-
proach direction by using a task-speci�c coor-
dinate system. Due to the translation invari-
ance of DMPs, only a rotation R ∈ SO(3) be-
tween the two coordinate systems needs to be
determined. The majority of the reaching mo-
tions will lie in a plane de�ned by the start and
goal locations, and the �nal approach direction.
These components of the plane are supplied by
the high level controller, with the approach di-
rection de�ned by the �nal hand orientation.

The �rst new in-plane axis xp is set to
be along the approach direction of the grasp;
i.e., xp = −a as shown in Figure 5. The
approach direction is thus easily de�ned and
only requires that the Yp and Zp DMPs reach
their goal before the Xp primitive. The second
axis, yp, must be orthogonal to xp and also in
the plane, as shown in Figure 5. It is set to
yp = b−1((g− s)− xp(g− s)Txp), where b−1 is
a normalization term, and s and g are the mo-
tion's 3D start and goal positions respectively.
The third axis vector is given by zp = xp × yp.
The DMPs can thus be speci�ed by the pre-
processor in the Xp-Yp-Zp coordinate system,
and mapped to the Xw-Yw-Zw world reference
frame by multiplying by RT = [xp,yp, zp]T .

The change of coordinate system is a fundamental step for the hybrid system. It places the
reactive controller, together with all of its modi�cations, within the reinforcement learner's action-
reward feedback loop. Therefore, the system learns pairings of grasp locations and grasp executions
that lead to high rewards.

The second problem relates to the scaling of motions with ranges greater than ‖y0 − g‖, which
are required to move around the outside of objects. In the standard form a = g − y0 [13], which
leads to motions that are overly sensitive to changes in g and y0 if g ≈ y0 during training. The
preprocessor can reduce the sensitivity by using a more robust scaling term, for which we propose
the amplitude

a = ‖η(g − y0) + (1− η)(gT − y0T )‖ ,

where gT and y0T are the goal and start positions of the training data respectively, and η ∈ [0, 1]
is a weighting hyperparameter. This amplitude is always between the training amplitude and the
standard generalization value a = g − y0, and η controls how conservative the generalization is to
new goals (see Figure 6). By taking the absolute value of the amplitude, the approach direction is
never reversed (see Figure 6). The amplitude previously proposed by Park et al. [30] corresponds to
the special case of η = 0. Example generalizations of a reaching trajectory are shown in Figure 7.

The described transformations allow a single DMP to perform a larger range of grasps, which
implies that fewer DMPs ares required in total. Using di�erent DMPs for di�erent sections of
the object or workspace should be avoided as it creates unnecessary discontinuities in the rewards,
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which can slow down the hybrid system's learning process. Only one grasp had to be learned for
the entire robot experiment, which was then adapted to the various situations.

3.3. Detractor Fields based on ECVDs

Detractor �elds re�ne the motions generated by the DMPs to avoid obstacles during the reaching
motion and ensure that the �nger tips do not collide with the object during the hand's approach.

Figure 7: Workspace trajectories
where the x and y values are governed
by two synchronized DMPs. The semi-
circle indicates the goal positions, with
desired approach directions indicated
by the light gray straight lines. The
approach direction DMP was trained
on an amplitude of one, and η = 0.25.

The detractor �eld is based on ECVDs, which represent small
line segments of an object's edges localized in 3D, as shown in
Figure 4. The detractive forces of multiple ECVDs describing
a single line should not superimpose, nor should the �eld stop
DMPs from reaching their ultimate goals. The system therefore
uses a Nadaraya-Watson model [7] of the form

ua = −v(x)
∑N
i=1 ricai∑N
j=1 rj

,

to generate a suitable detractor �eld, where ri is a weight as-
signed to the ith ECVD, s is the strength of the overall �eld, x
is the state of the DMPs' canonical system, cai is the detracting
force for a single descriptor, and subscript a speci�es if the de-
tractor �eld is for the �nger motions or the reaching movements.

The weight of an ECVD for collision avoidance is given by
ri = exp(−(vi−p)Th(vi−p)), where vi is the position of the ith

ECVD in the local coordinate system, h is a vector of positive
length scale hyperparameters, and p is the �nger tip position,
as shown in Figure 4. The detractor puts more importance on
ECVDs in the vicinity of the �nger.

The reaching and �nger movements react di�erently to edges
and employ di�erent types of basis functions ci for their re-
spective potential �elds. For the �ngers, the individual po-
tential �elds are logistic sigmoid functions about the edge of
each ECVD of the form ρ(1 + exp(diσ−2

c ))−1, where di =∥∥(p− vi)− ei(p− vi)Tei
∥∥ is the distance from the �nger to the

edge, ρ ≥ 0 is a scaling parameter, and σc ≥ 0 is a length pa-
rameter. Di�erentiating the potential �eld results in a force of

cfi = ρ
(
1 + exp

(
diσ
−2
c

))−2 exp
(
diσ
−2
c

)
.

As the sigmoid is monotonically increasing, the detractor always forces the �ngers open further to
move their tips around the ECVDs and ensure that they approach the object from the outside. A
similar potential function can be employed to force the hand closed when near ECVDs pertaining
to the scene rather than the object.

The reaching motion uses the Gaussian basis functions of the form % exp(−0.5dT
i diσ−2

d ), where
di = (q − vi) − ei(q − vi)Tei is the distance from the end e�ector position, q, to the edge, and
% ≥ 0 and σd ≥ 0 are scale and length parameters respectively. Di�erentiating the potential with
respect to di gives a force term in the Y direction of

chi = %(di.Y)σ−2
d exp(−0.5dT

i diσ−2
d ),
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which thus apply a radial force from the edge with an exponentially decaying magnitude.
The strength factor s(x) controls the precision of the movements, ensuring that the detractor

forces tend to zero at the end of a movement and do not obstruct the DMPs from achieving its goal
state. Therefore, the strength of the detractors is coupled to the canonical system of the DMP.
Hence, v(x) = (

∑M
j=1 ψj)

−1
∑M
i=1 ψiwix, where x is the value of the canonical system, ψ are its

basis functions, and w specify the varying strength of the �eld during the trajectory.
Modelling the human tendency towards more precise movements during the last 30% of a mo-

tion [16], the strength function, v(x), was set to give the highest strengths during the �rst 70% of
the motion for the reaching trajectories, and the last 30% for the �nger movements. Setting the
strength in this manner is also bene�cial to the reinforcement learner. The reward of the learner
depends mainly on the �nal position of the hand, and the closing of the �ngers. If these parts of
the motion are more repeatable, then it is easier for the upper level controller to learn.

The detractor �elds of both the grasping and reaching components have been de�ned, and are
superimposed into the DMP framework as

ÿ =
(
αz(βzτ−2(g − y)− τ−1ẏ) + aτ−2f(x)

)
− τ−2ua,

which represents the entire ECVD and DMP based potential �eld.
Combining the ECVD based DMPs with the new coordinate system for reaching and motion

amplitude, we have fully de�ned the low level controller. Its main contribution is to learn a grasping
movement by imitation and then to reactively adapt these motions to new situations in a manner
suited to the task and speci�ed by the upper level controller.

4. Evaluations

The following sections evaluate the system both in simulation and on a real robot platform. The
�rst part of the evaluation (Section 4.1) tests the upper level controller against other continuum UCB
policies on a simulated benchmark problem. The real world evaluation, presented in Section 4.2,
demonstrates the complete controller working on a real robot grasping novel objects in cluttered
environments.

4.1. Comparative UCB Analysis

This section focuses on the reinforcement learner and shows that the CGB algorithm (see Algo-
rithm 1) performs well in practice, and can be scaled to the more complex domain of grasp learning.
The comparison is between four UCB policies, including our proposed method, on a 1D benchmark
example of the continuum-armed bandits problem. The policies were tested on the same set of 100
randomly generated 7th order spline reward functions. The rewards were superimposed with uni-
form noise of width 0.1, but restricted to a range of [0, 1]. The space of bandits was also restricted
to a range between 0 and 1. None of the policies were informed of the length of the experiment in
advance, and each policy was tuned to achieve high rewards.

4.1.1. Compared Methods

The tested competing policies are UCBC [3], CAB1 [18], and Zooming [19]. These algorithms
represent standard UCB policy implementations for continuum bandits in the literature. A key issue
for any policy that uses discretizations is selecting the number of discrete bandits to use. Employing
a coarser structure will lead to faster convergence, but the expected rewards upon convergence are
also further from the optimal. Balancing this trade-o� is therefore important for a policy's success.
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Figure 8: The expected rewards over 100 experiments are shown for the four compared methods. The results were
�ltered for clarity. Due to the di�erences in experiment lengths, the x-axis uses a logarithmic scale. The dashed
horizontal line represents the maximum expected reward given the noise.

The UCBC policy of Auer [3] divides the bandits space into regular intervals and treats each
interval as a bandit in a discrete UCB policy. After choosing an interval, a uniform distribution
over the region selects the bandit to attempt. The number of intervals sets the coarseness of the
system, and was tuned to 10.

Instead of using entire intervals, the CAB1 policy of Kleinberg [18] selects speci�c grasps at
uniform grid points. A discrete UCB policy is then applied to these points, for which we chose
UCB1 [2], as suggested in [18]. The discretization trade-o� is dealt with by resetting the system at
�xed intervals with larger numbers of bandits, thus ensuring that the points becomes denser as the
experiment continues.

The zooming algorithm, of Kleinberg et al. [19], also uses a grid structure to discretize the
bandits. In contrast to CAB1, the grid is not uniform and additional bandits can be introduced at
any time in high rewarding regions. A discrete policy is then applied to this set of active bandits.
Similar to CAB1, the zooming algorithm works in time intervals and resets its grid after �xed
numbers of trials.

Our proposed Continuum Gaussian Bandits (CGB) method was initialized with 4 equispaced
points. Demonstrated data was not used in order to test its performance without the bene�ts of
such data. All four methods were initially run for 55 trials, as shown in Figure 8. The CAB1,
UCBC, and Zooming methods extended to 1000 trials to demonstrate their convergence behavior.

4.1.2. Results

The expected rewards for the four UCB policies during the experiment can be seen in Fig-
ure 8. The computation and run times were also acquired for the experiments for comparison, and
estimated for the 6 dimensional problem, as shown in Table 1.

Apart from our proposed policy, Zooming was the most successful over the 1000 trials at achiev-
ing high rewards, as it adapts its grid to the reward function. However, only CGB consistently
determined the high rewarding regions and converged on them. In several trails, the reward func-
tion had two distinct peaks with near-optimal rewards, and the CGB policy converged onto both.

The convergence of UCB policies is frequently described by the merit's percentage of exploitation
µ(x∗)/(µ(x∗) + σ(x∗)), where x∗ is the current action selected by the policy. This value is initially
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UCBC CAB1 Zoom CGB

Mean Reward 0.6419 0.4987 0.6065 0.9122

1D computation time 46 µs 47 µs 27 µs 2.9 sec

6D computation time 4.6 sec 6.7 ms 5.6ms 17.6 sec

1D initialization run time 10 min 12 min 24 min 4 min

6D initialization run time 1.9 yrs 1.2 days 4.2 days 24 min

Table 1: These results pertain to the �rst 50 grasp attempts in the benchmark problem. The shows the mean
computation times for the di�erent algorithms, and how they would scale to six dimensions, given the computational
complexity of the algorithms [18, 3, 19]. Similarly, the table shows the amount of time needed to initialize the systems
by trying each of the initial grasps once.

zero and increases as the policy returns to previously explored actions with high rewards. The
97.5% exploitation mark was reached by the CGB policy on average at the 33rd trial. Another
measure of convergence is found by directly comparing the di�erent maxima found by CGB. The
policy converges when the expected value µ(x∗) of the selected action is greater than the highest
merit value µ(x) + σ(x) of the other candidate actions. This criterion is based on the fact that the
merit function µ(x) + σ(x) tends to µ(x) as the exploration of an action is exhausted. Using this
criteria, the policy converged on average at the 37th trial.

As parametric policies, the standard methods assume that the optimal solution can be rep-
resented by their �xed features and corresponding parameters. These policies can therefore only
converge to an optimal solution if it is representable by these features. Both CAB1 and the Zooming
algorithm will converge onto the true optimum, but only as the number of samples tends to in�nity,
as indicated in Figure 8.

In terms of computation times, the previous methods were faster than the proposed method,
although CGB and UCBC exhibit similar orders of magnitude. One reason for CGB being slower
is that this implementation performs the parallel search for maxima sequentially. Parallelizing this
search would reduce the expected 6D computation time of CGB to 0.65 seconds.

Most of the system's time is however used to perform the actions (i.e., the run times). For
this comparison we focused on the time required to initialize the systems by trying each initial
grasp once. Not only is the proposed method the fastest in terms of run times (see Table1), it
also shows that implementing the other methods for grasping is not practical due to the curse of
dimensionality.

The UCBC algorithm has both longer computation and running times than CAB1 and the
Zooming algorithm. However, as CAB1 and the Zooming algorithm increase the number of active
actions throughout the experiment, these would ultimately exhibit computation and run times
greater than UCBC.

The memory requirements of the previous methods increases exponentially with the dimension-
ality, and CGB will only require more memory than UCBC once it has performed a million grasps.
The memory requirements of CGB scale with the number of samples, and su�cient memory should
be made available depending on the di�culty of the learned task.

In cases where large numbers of samples have been accumulated, suitable implementations of
GPR (e.g., Sparse GP [38]) reduce the computational complexity. The loss of accuracy incurred
by such implementations is comparable to the accuracy limits inherent to discretization methods,
making these methods suitable alternatives to standard GPR.

Ultimately the experiment shows that the proposed method outperforms the other methods in
a low dimensional setting, and is the only practical method for higher dimensions due to the curse
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of dimensionality.

4.2. Robot Grasping Task

A. Preshaping

B. Grasping

C. Lifting

Figure 9: The three main phases
of a basic grasp are demonstrated.
(A) Preshaping the hand poses the
�ngers to match the object's geom-
etry. (B) Grasping closes the three
�ngers at the same rate to secure
the object. (C) The object is lifted
and the �ngers adjust to the addi-
tional weight. The objects at the
bottom of A and B are clutter.

Having shown that the proposed Gaussian Bandits algorithm is
an e�cient UCB policy, the robotics evaluation focuses on including
the lower level controller for improved actions in a robot grasping
scenario. This experiment involves the complete system being im-
plemented on a real robot platform. The following sections detail
the running of the experiment (Section 4.2.1) and the results of the
experiment (Section 4.2.2).

In this experiment, we implement only the methods proposed
in this paper. The methods described in Section 4.1.1 were not
tested on the real system as their discretizations make them highly
impractical.

4.2.1. Grasping Experiment

The robot is a basic hand-eye system consisting of a 7 degrees
of freedom Mitsubishi PA-10 arm, a Barrett hand, and a Videre
stereo camera. The robot only uses sensors essential for the task
and forgoes additional hardware such as tactile sensors and laser
range�nders. The robot's task was to learn several good grasps of
novel objects through trial and error. All grasps were executed on
the real robot and not in simulation.

Each trial begins by estimating the object's position and orien-
tation to convert between world and object reference frames, and
to project the ECVD model of the object into the scene representa-
tion. The stereo camera allows the object position and orientation
to be reliably estimated using the pose estimation method of De-
try et al. [10].

The CGB algorithm then determines the parameters of the next
grasp, which the reactive lower level controller uses to modify the
grasping action. If the robot grasps the object, the robot attempts
to lift the object from the table, thus ensuring that the table is
not supporting to the object. Trials are given rewards depending
on how little the �ngers moved while lifting the object, thereby
encouraging more stable grasps. The rewards are not deterministic
due to errors in pose estimation and e�ects caused by the placement
of the object.

The robot task was made more di�cult by adding clutter to
the scene. After each grasp attempt, the hand reverses along the
same approach direction, but without employing the detractor �elds
or preshaping of the hand, to determine if collisions would have
occurred if the reactive controller had not been used.

The system was run three times on a table tennis paddle to show that it is repeatable. To show
that the system can adapt to various scenarios and objects, the experiment was also run twice on
both a toy watering can and a wooden box.



4.2 Robot Grasping Task 19

The experiments for learning to grasp a paddle consisted of 55 trials, while only 40 trials were
requried for the watering can and box experiments. Overall 325 di�erent grasp attempts were
executed with the combined active and reactive system.

4.2.2. Results

A. Flat B. Slanted

C. Cylindrical Handle D. Arched Handle

E. Knob F. Extreme Point

Figure 10: Various preshapes are shown. A and B show
the system adjusting to di�erent plane angles. C and D

demonstrate the preshaping for di�erent types of handles. E
shows the preshaping for a circular disc structure, such as a
door knob, and gets its �ngers closely behind the object. F
shows where the object was out of the reach of two �ngers,
but still hooks the object with one �nger.

The active learner and reactive controller
were successfully integrated and the complete
system converged onto high-rewarding grasp
regions in all of the trials. The imitation
learning was straightforward, requiring only
one demonstration and allowing for continu-
ous smooth motions to be implemented. Ex-
amples of the estimated �nger goal locations
can be seen in Figure 10. The preshaping
adapted to a range of geometries, and consis-
tently placed the �ngers close enough to the
object for a controlled grasp to be executed.
This preshaping gave more control over the
object when grasping, leading to higher re-
wards and allowing for more advanced grasps
to be performed (see Figure 11)

The detractor �eld and preshaping of the
hand allowed the system to work in cluttered
environments, which was not a trivial task.
The hand came into contact with the clut-
ter for an estimated 8.3% of the grasp at-
tempts, but never more than a glancing con-
tact. These contacts were usually with visu-
ally occulded parts of the objects, and thus
not fully modelled by the ECVDs. Accumu-
lating the scene representation from multiple
views solves this problem. During the revers-
ing phases, when the reactive controller is de-
activated, the hand collided with one or more
pieces of clutter during 85.4% of the attempts.
Thus, the reactive control decreases the number of contacts with the clutter by a factor of ten. The
�ngers always opened su�ciently to accept the object without colliding with it.

The rewards during the experiment are shown in Figure 12. In all of the experiments, the
proposed hybrid system found suitable grasps for the object. The watering can and box experiments
converged faster than the paddle experiments, due to their initial search region being smaller. While
all experiments acquired low rewards for the initial grasps, the soft boundaries allowed the system
to explore beyond these regions and �nd neighbouring regions of better grasps.

Amongst the most important results of this experiment is that the central loop of the hybrid
controller works in practice. The system did not just quickly learn a graspable location on an
object, but rather the hybrid system quickly learned an entire �uid motion for grasping the object,
including preshaping. The system took a single demonstrated action and learned modi�cations that
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Demonstration of a Controlled Grasp

A. Preshaping B. Grasping

Figure 11: A controlled grasp, made possible by the hybrid system's preshaping ability. (A) The preshaping matchs
the geometry of the object. When grasping, the two �ngers on the left pinch the paddle. The �nger on the right
turns the paddle clockwise about the pinched point. (B) The grasping ends when the paddle has become aligned
with all three �nger tips.

generalized the action to three di�erent objects. The learning process was signi�cantly hastened
by the hybrid approach, as the reactive controller allowed the dimensionality of the reinforcement
learner to be kept relatively low, while simultaneously performing complicated grasping motions.

The upper and lower levels divide the grasping problem into two sub-problems: determining
where to grasp an object and deciding how to correctly execute the grasp. By incorporating the
reactive controller in the learning loop, the hybrid system learned an action that solves both of
these sub-problems.

5. Conclusion

We have presented a hierarchical hybrid controller that can e�ciently determine good grasps of
objects and execute them. The upper level controller is based on reinforcement learning to allow
the robot to learn from its own experiences, but capable of incorporating supervised data from
other sources if available. Grasp execution is handled by a lower level controller based on imitation
learning and reactive control. This hybrid structure allowed the system to learn both good grasp
locations and corresponding grasp executions simultaneously, while keeping the dimensionality of
the learning problem low.

We have shown that the presented algorithms and learning architectures work well both in
simulation and on a real robot. In simulation, the active learner outperformed several standard UCB
policies designed for the continuum-armed bandits problem. The entire system was successfully
implemented on a real robot platform, which consistently found highly rewarding grasps for various
objects.
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