
Adapting Preshaped Grasping Movements usingVision DesriptorsOliver Krömer, Renaud Detry, Justus Piater, and Jan PetersMax Plank Inistitute for Biologial CybernetisSpemannstr. 38, 72076 Tübignen, Germany{oliverkro,Jan.Peters}�tuebingen.mpg.de{Renaud.Detry,Justus.Piater}�ulg.a.beAbstrat. Grasping is one of the most important abilities needed for fu-ture servie robots. In the task of piking up an objet from between lut-ter, traditional robotis approahes would determine a suitable graspingpoint and then use a movement planner to reah the goal. The plannerwould require preise and aurate information about the environmentand long omputation times, both of whih are often not available. There-fore, methods are needed that exeute grasps robustly even with impre-ise information gathered only from standard stereo vision. We proposetehniques that reatively modify the robot's learned motor primitivesbased on non-parametri potential �elds entered on the Early Cogni-tive Vision desriptors. These allow both obstale avoidane, and theadapting of �nger motions to the objet's loal geometry. The methodswere tested on a real robot, where they led to improved adaptability andquality of grasping ations.1 IntrodutionConsider grasping an objet at a spei� point in a luttered spae, a ommontask for future servie robots. Avoiding ollisions is easy for humans, as is pre-shaping the hand to math the shape of the objet to be grasped. Most adultsperform these ations quikly and without exessive planning. All of these a-tions our before the hand omes into ontat with the objet, and an thereforebe aomplished using stereo vision [1,2℄. In ontrast, robots often struggle withexeuting this task, and rely on speially designed sensors (e.g., laser sanner,ERFID) to get aurate and omplete representations of the objet and environ-ment [3, 4℄, followed by lengthy planning phases in simulation [5℄.To avoid exessive planning, a robot an employ a sensor-based ontroller,whih adjusts its motions online when in the proximity of obstales or other ex-ternal stimuli [6℄. Sensors suh as time-of-�ight ameras, ultrasoni sonar arrays,and laser range �nders are favored for these purposes due to their relatively densesampling abilities [7,8℄. Stereo vision systems, while usually giving sparser read-ings, have also been used for obstale detetion, espeially in the �eld of mobilerobots. However, these methods often rely on task-spei� prior knowledge (e.g,assume the ground is �at) and are designed to avoid obstales ompletely [8,9℄,while the robot must get lose to the objet for grasping tasks. In terms of robot

*VSQ�%RMQEPW�XS�%RMQEXW����õ�-RXIVREXMSREP�'SRJIVIRGI�SR�XLI�7MQYPEXMSR�SJ�%HETXMZI�&ILEZMSV
0IGXYVI�2SXIW�MR�'SQTYXIV�7GMIRGI��������:SPYQI���������������������(3-���������������������������C���
%YXLSV�TSWX�TVMRX��8LI�SVMKMREP�TYFPMGEXMSR�MW�EZEMPEFPI�EX�[[[�WTVMRKIVPMRO�GSQ��



2 Oliver Krömer, Renaud Detry, Justus Piater, Jan Peters

A. Sene B. ECV RepresentationFig. 1. A) The robot used in our experiments and an example of a grasping task in aluttered environment. B) The green ECVDs represent the objet to be grasped, whilethe surrounding ECVDs in the sene are lutter. The oordinate frame of one of therobot's �ngers and variables used in setion 2 are shown. The x-y-z oordinate systemis loated at the base of the �nger, with z orthogonal to the palm, and y in the diretionof the extended �nger. The marked ECVD on the left signi�es the jth desriptor, withits position at vj = (vjx, vjy , vjz)
T , and edge diretion ej = (ejx, ejy, ejz)

T of unitlength. The position of the �nger tip is given by p = (px, py, pz)
T .manipulators, the researh has foused on oarse objet representations of novelobjets [10�13℄ and using additional sensor arrays when in lose proximity tothe objet [14, 15℄.In this paper, we propose a sensor-based robot ontroller that an performhuman inspired grasping motions, inluding preshaping of the hand, smooth andadaptive motion trajetories, and obstale avoidane, using only stereo vision todetet the environment. The ontroller uses potential �eld methods [6℄, whihtreat the robot's state as a partile in a fore-�eld; i.e. the robot is attrated toa goal state, and repelled from obstales.The system uses the dynamial systemmotor primitive (DMP) framework [16,17℄ for the attrator �eld, whih are apable of enoding omplex trajetoriesand adapting to di�erent grasp loations. These DMPs are implemented as apassive dynamial system superimposed with an external fore; i.e.,

ÿ = αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x), (1)where αz and βz are onstants, τ ontrols the duration of the primitive, a is anamplitude, f(x) is a nonlinear funtion, and g is the goal for the state variable y.The variable x ∈ [0, 1] is the state of a anonial system ẋ = −τx, whih ensuresthat the di�erent hand and arm motions are synhronized. The funtion f(x)is used to enode the trajetory for reahing the goal state, and takes the form

f (x) = (
∑M

i=1
ψi)

−1
∑M

j=1
ψj(x)wjx, where ψ(x) are M Gaussian basis fun-tions, and w are weights. The weights w an be programmed through imitationlearning [18℄. The DMPs treat the goal state g as an adjustable variable andensure that this �nal state is always reahed.



Grasping with ECVDs and DMPs 3The sene's visual representation is used to augment the DMP motions andform the basis of the repelling �eld. The sene desription needs to be in 3D, workat a �ne sale to maintain geometri details, and represent the sene sparsely toredue the number of alulations required per time step. The Early CognitiveVision system of Pugeault et al. [19, 20℄ (see Fig. 1) ful�lls these requirementsby extrating edge features from the observed sene. The system subsequentlyloalizes and orientates these edges in 3D spae [21℄, with the resulting featuresknown as early ognitive vision desriptors (ECVD) [19℄. By using a large numberof small ECVDs, any arbitrary objet/sene an be represented.The methods for generating the DMP and ECVD based potential �elds aredetailed in Setion 2. In Setion 3, the system is tested on a real robot andshown to be apable of avoiding obstales and adapting the �ngers to the loalgeometry of the objet for improved grasps using only stereo vision.2 Methods for Reative GraspingThe methods proposed in this setion were inspired by human movements. Hu-man grasping movements an be modeled as two linked omponents, transporta-tion and preshaping, synhronized by a shared timer or anonial system [22,23℄.Transportation refers to the ations of the arm in moving the hand, while thepreshaping ontrols the opening and subsequent losing of the �ngers [24℄.Humans perform the reahing/transportation omponent in a task-spei�ombination of retina and hand oordinates [25℄, whih allows for easier spei�-ation of objet trajetories in a manipulation task than joint oordinates wouldand also results in a redution in dimensionality.Similar to the transportation omponent, the main purpose of the �ngerposture omponent is to preshape the hand by extending the �ngers su�ientlyfor them to pass around the objet upon approah, and then lose on the objetsimultaneously for a good grasp [22,24℄. Over-extending the �ngers is undesirableas it makes ollisions with the environment more likely and is usually restritedto situations where the shape of the objet is unertain [22, 26℄.The DMP and ECVD based potential �eld implementations are desribed inSetions 2.1 and 2.2. Setion 2.3 proposes methods that improves the interpola-tion of grasping movements to new grasp loations.2.1 Regular Dynamial Motor Primitives for GraspingThe �rst step towards speifying the grasping movements is to de�ne an attrator�eld as a DMP that enodes the desired movements given no obstales. Theprinipal features that need to be de�ned for these DMPs are the goal positions,and the generi shape of the trajetories to reah the goal.Determining the goal posture of the hand using the ECVDs has been investi-gated in a previous paper [27℄. Possible grasp loations were hypothesized fromthe geometry and olor features of the ECVDs, and subsequently used to reatea kernel density estimate of suitable grasps. It was then re�ned by evaluatinggrasps on the real system. However, this grasp synthesizer only gives the desiredloation and orientation of the hand and not the exat �nger loations.



4 Oliver Krömer, Renaud Detry, Justus Piater, Jan PetersUsing the ECVDs, the goal position of eah �nger is determined by �rstestimating a loal ontat plane for the objet in the �nger oordinate systemshown in Fig. 1. If the region to be grasped is not planar, it an still be linearlyapproximated as suh for eah �nger to give good results. To ensure the approx-imation is aurate in the proximity of the �nger, the in�uene of the ith ECVDis weighted by wi = exp(−σ−2
x v2

ix − σ−2
y v2

iy − σ−2
z v2

iz), where σx, σy, and σz arelength sale onstants that re�et the �nger's length and width, and vi is theposition of the ECVD in the �nger referene frame. The hand orientation washosen suh that the Z diretion of the �nger should be approximately parallelto the ontat plane, whih redues the problem to desribing the plane as aline in the 2D X-Y spae. The X-Y gradient of the plane is approximated by
φ = (

∑N

i=1
wi)

−1
∑N

i=1
wi arctan(eiy/eix), where N is the number of vision de-sriptors, and ei is the diretion of the ith edge. The desired Y position of the�ngertip is then given by p̃y = (

∑N

i=1
wi)

−1
∑N

i=1
(wiviy − tan(φ)wivix), whihan be onverted to joint angles using the inverse kinematis of the hand.Many of the bene�ial traits of human movements, inluding smooth motionsand small overshoots for obstale avoidane [23, 24, 28℄, an be transferred toDMPs through imitation learning. To demonstrate grasping motions, we used
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A. Proposed DMP oordinate system B. Example TrajetoriesFig. 2. A)The above diagram shows the the oordinate systems for the transportationDMPs. The axes Xw-Yw-Zw are the world oordinate system, while Xp-Yp-Zp is theoordinate system in whih the DMP is spei�ed. The trajetory of the DMP is shownby the pink line, starting at the green point, and ending at the red point. Axis
Xp is parallel to the approah diretion of the hand (the blak arrow a). Axis Yp isperpendiular to Xp, and pointing from the start s towards the goal g.B) The plot shows reahing trajetories, wherein the x and y values are governedby two DMPs sharing a anonial system. The standard DMPs and the augmentedDMPs desribed in Setion 2.3 are presented along with their respetive �nal approahdiretions.a VICON motion traking system to reord the movements of a human testsubjet during a grasping task. It is not neessary for the objet used for thedemonstration to math that grasped by the robot later. VICON markers wereonly required on the bak of the hand and �nger tips. As the reahing trajetoriesare enoded in task spae rather than joint spae, the orrespondene problemof the arm was not an issue for the imitation learning step. Details for imitationlearning of DMPs using loally weighted regression an be found in [18℄.



Grasping with ECVDs and DMPs 5As DMPs are provably stable [17℄, they are safe to exeute on a robot andalso ensure that the �nal arm and �nger postures will also always be ahievedwhen physially possible. The repelling �eld must maintain this stability.2.2 Adapting the Motor Primitives with Vision DesriptorsHaving spei�ed the basi grasping movements, a repelling �eld re�nes the mo-tions in order to inlude obstale avoidane for the transportation and ensurethat the �nger tips do not ollide with the objet during the hand's approah.The repelling �eld is based on ECVDs, whih an be understood as small linesegments of an objet's edges loalized in 3D (see Fig. 1).
A. Preshaping B. Grasping

C. LiftingFig. 3. The three main phases of a basigrasp are demonstrated. The preshap-ing of the hand (A) tries to pose the�ngers to math the objet's geometry.The grasping (B) then loses the three�ngers at the same rate until they se-ure the objet. Finally (C) the objet islifted. The objets on the bottom A andB are lutter that had to be avoided.

The repelling potential �elds forECVDs are haraterized by two mainfeatures; i.e., the repelling fores ofmultiple ECVDs desribing a singleline do not superimpose, and the �eldshould not stop DMPs from reah-ing their ultimate goals. The systemtherefore uses a Nadaraya-Watsonmodel [29℄ of the form
ua = −s(x)

∑N

i=1
ricai

∑N

j=1
rj

,to generate a suitable repelling �eld,where ri is a weight assigned to the ithECVD, s is the strength of the over-all �eld, x is the state of the DMPs'anonial system, and cai is the re-pelling fore for a single desriptor.Subsript a spei�es if the detrator�eld is for the �nger motions �f � orthe reahing movements �h�.The weight of an ECVD for ol-lision avoidane is given by ri =
exp(−(vi − p)Th(vi − p)), where viis the position of the ith ECVD in theloal oordinate system, h is a vetor of width parameters, and p is the �n-ger tip position, as shown in Fig. 1. A suitable set of width parameters are
h = 2[w, l, l]T, where w and l are the width and length of the �nger respe-tively.The reahing and �nger movements reat di�erently to edges and employ dif-ferent types of basis funtions cfi and chi for their potential �elds. For the �ngers,the individual potential �elds are logisti sigmoid funtions about the edge ofeah ECVD of the form ρ(1+exp(diσ

−2

c ))−1, where di =
∥

∥(p− vi) − ei(p − vi)
Tei

∥

∥is the distane from the �nger to the edge, ρ ≥ 0 is a saling parameter, and
σc ≥ 0 is a length parameter. Di�erentiating the potential �eld results in a
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(

diσ
−2

c

) (

1 + exp
(

diσ
−2

c

))

−2. As the logisti sigmoid ismonotonially inreasing, the repelling always fores the �ngers open further tomove their tips around the ECVDs and thus ensure that they always approahthe objet from the outside. Similarly, a symmetrial potential funtion an beemployed to fore the hand losed when near ECVDs pertaining to obstales.The reahing motion uses basis funtions of the form ̺ exp(−0.5dT

i diσ
−2

d ),where di = (q−vi)−ei(q−vi)
Tei is the distane from the end e�etor position,

q, to the edge, and ̺ ≥ 0 and σd ≥ 0 are sale and length parameters respetively.Di�erentiating the potential with respet to di gives a fore term in the Ydiretion of chi = ̺(di.Y)σ−2

d exp(−0.5dT

i diσ
−2

d ), whih an be interpreted as aradial fore from the edge with an exponentially deaying magnitude.To synhronize the repelling �eld with the DMPs and ensure the repellingstrength is zero at the end of a motion, the strength s is oupled to the anonialsystem of the DMPs. Hene, s(x) = (
∑M

j=1
ψj(x))

−1
∑M

i=1
ψi(x)wix, where x isthe value of the anonial system, ψ are the DMP basis funtions, and w speifythe varying strength of the �eld during the trajetory. To re�et the human ten-deny towards more preise movements during the last 30% of a motion [28℄, thestrength funtion was set to give the highest strengths during the �rst 70% of themotion for the reahing trajetories, and the last 30% for the �nger movements.The repelling �elds of both the grasping and reahing omponents have nowbeen de�ned, and an be superimposed into the DMP framework as

ÿ =
(

αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x)

)

− τ−2ua,whih then represents the omplete ECVD and DMP based potential �eld.2.3 Generalizing Dynamial Motor Primitives for Grasping

Fig. 4. Examples of di�erent approahdiretions are presented, all based o� ofa single human demonstration.

Having de�ned the potential �eld for asingle grasping motion, we must gen-eralize the movements to new targetgrasps. By interpolating the traje-tories in a task-spei� manner, thenumber of example trajetories re-quired from the demonstrator for im-itation learning an be greatly de-reased. While the goal states ofDMPs an be set arbitrarily, the ap-proah diretion to the grasp annotbe easily de�ned and the amplitudeof the trajetory an be unneessarilysensitive to hanges in the start posi-tion y0 and the goal position g.The orret approah diretionan be maintained by using a task-spei� oordinate system. We pro-pose the Xp-Yp-Zp oordinate system



Grasping with ECVDs and DMPs 7
A. Flat B. Slanted C. Cylindrial Handle

D. Arhed Handle E. Knob F. Extreme PointFig. 5. Pitures A and B show the system adjusting to di�erent plane angles. ImagesC and D demonstrate the preshaping for di�erent types of handles. Piture E showsthe preshaping for a irular dis struture, suh as a door knob, and manages to getits �ngers losely behind the objet. Piture F shows a preshape where the objet wastoo far away to be reahed by two of the �ngers, but still hooks the objet with 1 �nger.shown in Fig. 2, whih dediates one axis xp spei�ally to the approah dire-tion. The majority of the unobstruted reahing motion will lie in a plane de�nedby the starting point, the goal loation, and the �nal approah diretion, whihwe use to de�ne our seond axis yp. The �nal axis zp is given by zp = xp × yp.The seond problem relates to the sensitivity of saling motions with rangesgreater than ‖y0−g‖, whih grasping motions require to move around the outsideof objets. The system an be desensitized to variations in y0 − g by employingthe amplitude term a = ‖η(g − y0) + (1 − η)(gT − y0T )‖ instead of the standard
a = (g−y0) [16℄, where gT and y0T are the goal and start positions of the trainingdata respetively, and η ∈ [0, 1] is a weighting hyperparameter that ontrols howonservative the generalization is. By taking the absolute value of the amplitude,the approah diretion is spei�ed solely by the hoie of Xp-Yp-Zp oordinatesystem and not the amplitude term. This amplitude term is a generalization ofthe amplitude proposed by Park et al. [12℄, whih orresponds to the speial aseof η = 0. Example interpolations of a transportation trajetory an be seen inFig. 2.3 Grasping ExperimentsThe methods desribed in Setion 2 were implemented and evaluated on a realrobot platform onsisting of a Videre stereo amera, a Barrett hand, and a 7-degrees-of-freedom Mitsubishi PA10 arm, as shown in Fig. 1.3.1 Grasping Experiment ProedureTo test the system's obstale avoidane ability, the robot was given the task ofgrasping an objet without hitting surrounding lutter (see Fig. 1). Eah trialbegins with an estimate of the pose of the objet relative to the robot [30℄ and



8 Oliver Krömer, Renaud Detry, Justus Piater, Jan Peterssetting the desired grasp loation. The model's ECVD are then projeted intothe sene, and the robot attempts to perform the grasp and lift the objet o�the table.If the hand ollides with an obstale or knoks the objet down during itsapproah, the trial is marked as a failure. Grasp loations on the objet wereprede�ned, and all suessful trials had to lift the objet from its stand (seeFig. 3). After eah grasp attempt, the hand reverses along the same approahdiretion, but with a stati preshaping of the hand in order to determine ifollisions would have ourred if the proposed ontroller had not been used. Theexperiment onsisted of 50 trials and were varied to inlude di�erent approahdiretions and loations around the objet.Additional trials were performed on another objet to further explore how thesystem's preshaping ability adapts to di�erent objet geometries. The lutter wasremoved in these trials to demonstrate the range of grasps that a single humandemonstration an easily be generalized to.3.2 Experimental Results
A. Preshaping
B. GraspingFig. 6. The preshaping allows for moreontrolled grasping. (A) The preshapehas mathed the loal geometry of theobjet. When grasping, the two �ngerson the left immediately pinh the pad-dle, while the �nger on the right turnsthe paddle about the pinhed point. (B)The grasping ends when the paddle hasbeome aligned with all three �nger tips.

The repelling �eld and preshaping ofthe hand allowed the system to han-dle the luttered environment that theobjet had been plaed in, whih wasnot a trivial task. The hand ameinto ontat with the lutter for anestimated 8% of the grasp attempts,but never more than a glaning on-tat. When the proposed ontrollerwas deativated and a stati preshapewas used, the hand ollided with oneor more piees of lutter in 86% ofthe trials. Thus, the proposed sensor-based ontroller led to a fator of tenderease in the number of ontatswith the lutter. The few instaneswhen the hand did ollide with theobstales were the result of obstalesbeing partially oluded, and thus notfully represented by the ECVDs. Thisproblem represents the main restri-tion of the urrent method, whih anbe overome by simply using multipleviews to aumulate the ECVD rep-resentation of the sene, as desribedin [19, 20℄. The repelling �elds of the�ngers ensured that the hand alwaysopened su�iently to aept the objet without olliding with it.



Grasping with ECVDs and DMPs 9Using only a single human demonstration, the robot ould perform a widerange of reahing movements with varied approah diretions, as demonstratedin Fig. 4. Requiring fewer demonstrations hastens the imitation learning proess,while still allowing the robot to perform smooth and natural reahing motions.The inorporation of ECVDs allowed the �ngers to adapt to a wide varietyof di�erent objet geometries, as shown in Fig. 5, and plae the �nger tips verylose to the objet before applying the grasp. This lose proximity to the objetrestrits how muh the objet an move during the �nal grasping phase, as the�ngers make ontat with the objet at approximately the same time, and leadsto grasps being applied in a more ontrolled manner. An example of a ontrolledgrasp is shown in Fig. 6, whih would not be possible without the proposedpreshaping, as the �nger on the right would have made �rst ontat with thepaddle and simply knoked it down.The results ultimately show that our hypothesis was orret and the proposedmethods represent a suitable basis for avoiding obstales without relying on aompliated path planner, and using only stereo vision information.4 ConlusionsThe proposed methods augment dynamial system motor primitives to inor-porate Early Cognitive Vision desriptors by using potential �eld methods, andrepresent important tools that a robot needs to exeute preshaped grasps of anobjet in a luttered environment using stereo vision. The tehniques allow forpreshaping the �ngers to math the geometry of the objet and shaping the tra-jetory of the hand around objets. The ontroller was tested on a real robot,and was not only suessful at performing the task, but also requires very fewdemonstrations for imitation learning, improves obstale avoidane, and allowsfor more ontrolled grasps to be performed.Referenes1. C. Bard, J. Troaz, and G. Verelli, �Shape analysis and hand preshaping forgrasping,� in IROS proeedings, 1991.2. T. Iberall, �Grasp planning for human prehension,� in ICAI proeedings, 1987.3. A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann, �Integrated graspplanning and visual objet loalization for a humanoid robot with �ve-�ngeredhands,� in IROS, pp. 5663�5668, 2006.4. Z. Xue, A. Kasper, J. M. Zoellner, and R. Dillmann, �An automati grasp planningsystem for servie robots,� in proeedings of International Conferene on AdvanedRobotis (ICAR), 2009.5. D. Bertram, J. Ku�ner, R. Dillmann, and T. Asfour, �An integrated approahto inverse kinematis and path planning for redundant manipulators,� in ICRA,pp. 1874�1879, 2006.6. M. W. Spong, S. Huthinson, and M. Vidyasagar, Robot Modeling and Control.WSE, 2005.7. M. Khatib, �Sensor-based motion ontrol for mobile robots,� 1996.8. K. Sabe, M. Fukuhi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshi-gahara, �Obstale avoidane and path planning for humanoid robots using stereovision,� in ICRA, pp. 592�597, 2004.
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