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Deep Hierarchies in the Primate Visual Cortex:
What Can We Learn For Computer Vision?

Norbert Kriiger, Peter Janssen, Sinan Kalkan, Markus Lappe, AleS Leonardis, Justus Piater,
Antonio J. Rodriguez-Sanchez, Laurenz Wiskott

Abstract—Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that
computer vision is facing, such as object recognition and categorization, motion detection and activity recognition or vision-based
navigation and manipulation. This article reviews some functional principles and structures that are generally thought to underlie the
primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized
for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system
considering recent discoveries in neurophysiology. The hierarchal processing in the primate visual system is characterized by a
sequence of different levels of processing (in the order of ten) that constitute a deep hierarchy in contrast to the flat vision architectures
predominantly used in today’s mainstream computer vision. We hope that the functional description of the deep hierarchies realized
in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive

interaction between biological and computer vision research.

Index Terms—Computer Vision, Deep Hierarchies, Biological Modeling

1 INTRODUCTION

The history of computer vision now spans more than half a
century. However, general, robust, complete satisfactory solu-
tions to the major problems such as large-scale object, scene
and activity recognition and categorization, as well as vision-
based manipulation are still beyond reach of current machine
vision systems. Biological visual systems, in particular those
of primates, seem to accomplish these tasks almost effortlessly
and have been, therefore, often used as an inspiration for
computer vision researchers.

Interactions between the disciplines of “biological vision”
and “computer vision” have varied in intensity throughout
the course of computer vision history and have in some way
reflected the changing research focuses of the machine vision
community [32]. Without any doubt, the groundbreaking work
of Hubel and Wiesel [72] gave a significant impulse to the
computer vision community via Marr’s work on building
visual hierarchies analogous to the primate visual system
[109]. However, the insufficient computational resources that
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Fig. 1. Deep hierarchies and flat processing schemes

were available at that time and the lack of more detailed
understanding of the processing stages in the primate visual
system presented two insurmountable obstacles to further
progress in that direction.

What followed was a reorientation of mainstream computer
vision from trying to solve general vision problems to focusing
more on specific methods related to specific tasks. This has
been most commonly achieved in flat processing schemes (see
figure[T] right) in which rather simple feature-based descriptors
were taken as an input and then processed by the task-
dependent learning algorithms. The ties with the biological
vision faded, and if there were some references to biological-
related mechanisms they were most commonly limited to
individual functional modules or feature choices such as Gabor
wavelets.

While the progress on some specialized machine vision
problems and problem domains has been enormous (on some
tasks, these systems can easily surpass human capabilities),
artificial systems still lack the generality and robustness
inherent in the primate visual system. As we are gaining
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more and more insight into the functional mechanisms of the
visual cortex (largely due to the advanced imaging techniques
used in neuroscience), the time may be ripe to make a new
attempt at looking at the mechanisms that could bring the
capabilities of artificial vision, primarily in terms of generality
and robustness, closer to those of biological systems. This may
be a feasible enterprise also from the computational point
of view, particularly in the light of new developments of
computer architectures such as GPUs and multi-core systems.

In this paper, we will primarily focus on hierarchical
representations and functional mechanisms of primates. We
will look at different hierarchical levels of processing as well
as different information channels (e.g., shape, color, motion)
and discuss information abstractions that occur throughout the
hierarchy.

It is known that around 55% of the neocortex of the
primate brain is concerned with vision [44] and that there
is a hierarchical organization of the processing pipeline that
spans 8 to 10 levels (see figure [2). There is clear evidence
that neurons in the early visual areas extract simple image
features (e.g., orientation, motion, disparity, etc.) over small
local regions of visual space and that this information is then
transmitted to neurons in higher visual areas which respond
to ever more complex features with receptive ﬁeld{] covering
larger and larger regions of the visual field. Such hierarchical
structures, to which we refer as deep hierarchies (see figure El,
left), exhibit a number of computational advantages compared
to the so-called flat processing schema (see figure |1| right).

Two important aspects are computational efficiency and
generalization: As the hierarchical levels build on top of
each other, they exploit the shareability of the elements to
efficiently arrive at more complex information units. Such
a design principle also contributes to common computations
(both during learning and inference) which results in highly
efficient processing as well as in lower storage demands.
Moreover, reusing commonalities that exist among different
visual entities and which are important perceptual building
blocks for achieving different tasks leads to generalization
capabilities and transfer of knowledge. For example, there is
strong neurophysiological evidence that a generic description
in terms of a variety of visual properties is computed in
areas V1-V4 and MT, covering around 60% of the volume
of visual processing in the primate neocortex (see [44] and
figure 2] where visual areas are drawn proportionally to their
actual sizes). These areas carry necessary information for a
completion of a number of different tasks, such as object
recognition and categorization, grasping, manipulation, path
planning, etc.

It is also evident that in the visual system of primates
there are separate (though highly inter-connected) channels
that process different types of visual information (color, shape,
motion, texture, 3D information), which contribute to the effi-
ciency of representation (avoiding the combinatorial explosion
of an integrated representation) and robustness (with respect
to the available information). These advantages cover multiple

1. The receptive field of a neuron is the region where certain stimuli produce
an effect on the neuron’s firing.

aspects and will be discussed in more detail in section

However, although all neurophysiological evidence suggests
that in the primate visual system quite a number of levels
are realized, most existing computer vision systems are ‘flat’
and hence cannot make use of the advantages connected to
deep hierarchies. Here in particular the generalization and
scalability capabilities are crucial for any form of cognitive
intelligence. In fact, there is overwhelming neurophysiological
evidence that cognition and the concept of deep hierarchies
are linked [178]]. As a consequence, we see the issue of
establishing deep hierarchies as one major challenge on our
way towards artificial cognitive systems.

Bengio [9]] discussed the potential of deep hierarchies as
well as fundamental problems related to learning of deep hi-
erarchies. In particular, he emphasizes the problem of the huge
parameter space that has to be explored due the large number
of hierarchical levels. This learning problem can be alleviated
by (a) tackling intermediate representations as independent
learning problems as well as (b) introducing bias in terms
of basic connectivity structures expressed in the number of
levels or the locality of connectivity of individual units of such
deep structures. We believe that this paper can help to guide
the learning process of deep hierarchies for vision systems by
giving indications for suitable intermediate representations in
the primate’s visual system. In addition, we believe that useful
guidelines for connectivity patterns can be derived from the
biological model in terms of appropriate receptive field sizes
of neurons, number of levels being processed in the biological
model as well as the number of units in a certain hierarchical
level as indicated by area sizes in the primate’s visual cortex.

Despite the challenges connected to the learning of deep
hierarchies, there exists a body of work in computer vision
that made important contributions towards understanding and
building hierarchical models. Due to lack of space, a more
thorough review is outside the scope of this paper, and the
following list is far from complete. From the computational
complexity point of view, Tsotsos has shown that unbounded
visual search is NP complete and that hierarchical architectures
may be the most promising solution to tackle the problem
[189]. Several works have shown that efficient matching can
only be performed in several hierarchical stages, including
Ettinger [42], Geman et al. [S9], [60], Mel and Fiser [114],
Amit [1] [2], Hawkins [69], Fidler et al. [45]], Scalzo and Piater
[153], Ullman and Epshtein [192], DiCarlo and Cox [31],
Ommer and Buhmann [[126], Serre and Poggio [[157], Pugeault
et al. [138], and Rodriguez-Sanchez [144]. Among the more
known hierarchical models are the Neocognitron [54], HMAX
[141], [158]], LHOP [46], 2DSIL [145]] and Convolutional Nets
[101]]. Recently, Bengio [9] published an exhaustive article on
learning deep architectures for artificial intelligence.

In summary, in this article, we want to argue that deep hier-
archies are an appropriate concept to achieve a general, robust,
and versatile computer vision system. Even more importantly,
we want to present relevant insights about the hierarchical
organization of the primate visual system for computer vision
scientists in an accessible way. We are aware that some of
our abstractions are rather crude from the neurophysiological
point of view and that we have left out important details of the
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processes occurring at the different levelsﬂ but we hope that
such abstractions and the holistic picture given in this paper
will help to foster productive exchange between the two fields.

The paper is organized as follows: In section [2] we will
touch upon the aspects of the primate visual system that are
relevant to understand and model the processing hierarchy.
The hierarchy in the primate vision system is then outlined
from two perspectives. In the horizontal perspective (sections
[BH6D we give a description of processing in the different areas
indicated in figure [2] In section [7] we give a vertical perspec-
tive on the processing of different visual modalities across the
different areas. In section [8] we then draw conclusions for the
modeling and learning of artificial visual systems with deep
hierarchical structures.

2 RELEVANT ASPECTS OF THE STRUCTURE
OF THE VISUAL CORTEX

In section we provide a basic overview of the deep
hierarchy in the primate visual system. In section we
also give an intuition of basic (mostly biological) terms
used in the following sections. Most data we present in the
following were obtained from macaque monkeys since most
neurophysiological knowledge stems from investigations on
these.

While the primate brain consists of approximately 100
cortical areas, the human brain probably contains as many
as 150 areasﬂ There is a general consensus that the primary
sensory and motor areas in the monkey are homologous to
the corresponding areas in the human brain. Furthermore,
several other cortical areas in the monkey have an identified
homologue in the human (e.g. MT/MST, AIP). These areas
can be viewed as landmarks which can be used to relate other
cortical areas in the human to the known areas in the monkey.

It should be mentioned that a visual cortical area consists of
six layers, which do not correspond to the layers in artificial
deep models. In general, layer 4 is the input layer where
the inputs from earlier stages arrive. The layers above layer
4 (layers 2 and 3) typically send feedforward connections
to downstream visual areas (e.g. from V1 to V2), whereas
layers 5 and 6 send feedback projections to upstream areas
or structures (e.g. from V1 to the LGN and the Superior
Colliculus — see also section[3.2)). At higher stages in the visual
hierarchy, the connectivity is almost always bidirectional. At
present, detailed knowledge about the precise role of cortical
microcircuits in these different layers is lacking.

2. For example, a heterogeneity of computations has been reported, includ-
ing summation, rectification, normalization [19], averaging, multiplication,
max-selection, winner-take all [150] and many others [89]]. This is of great
interest for addressing how neurons are inter-connected and the subject of
much discussion but out of the scope of the present paper.

3. A region in the cerebral cortex can be considered to be an area based on
four criteria: (1) cyto- and myeloarchitecture (the microscopic structure, cell
types, appearance of the different layers, etc.), (2) the anatomical connectivity
with other cortical and subcortical areas, (3) retinotopic organization, and
(4) functional properties of the neurons. In far extrastriate cortex, where
retinotopic organization is weak or absent, the specific functional properties
of the neurons are an important characteristic to distinguish a region from the
neighboring regions.

2.1 Hierarchical Architecture

Here we give a coarse and intuitive summary of the processing
hierarchy realized in the primate visual system. A more
detailed description can be found in sections [3] — [6] Basic
data on the sizes of the different areas, receptive field sizes,
latency, organization etc. are provided in table [T}

The neuronal processing of visual information starts in the
retina of the left and right eye. Nearly all connections then
project to a visual area called LGN before it reaches the visual
cortex. We call these stages precortical processing and the
processing in these areas is described in section [3| The visual
cortex is commonly divided into three parts (figure 2| and table
[I): the occipital part gives input to the dorsal and ventral
streams. The occipital part covers the areas V1-V4 and MT.
All areas are organized retinotopically, i.e., nearby neurons in
the visual cortex have nearby receptive fields (see table |1} 6th
column) and the receptive field size increases from V1 to V4
(see table E], 3rd column). There are strong indications that
these areas compute generic scene representations in terms
of processing different aspects of visual information [84].
However, the complexity of features coded at the different
levels increases with the level of the hierarchy as will be
outlined in detail in section 4] Also it is worth noting that the
size of the occipital part exceeds the other two parts occupying
more than 62% of the visual cortex compared to 22% for the
ventral and 11% for the dorsal pathway [44] (see table [T} 2nd
column)ﬂ In the following, we call the functional processes
established in the occipital part early vision indicating that
a generic scene analysis is performed in a complex feature
structure.

The ventral pathway covers the areas TEO and TE which
are involved in object recognition and categorization. The
receptive field sizes are in general significantly larger than in
the occipital part. There is a weak retinotopic organization
in area TEO which is not observed in area TE. Neurons’
receptive fields usually include the fovea (the central part of
the retina with the highest spatial resolution). In the ventral
path, the complexity of features increases up to an object
level for specific object classes (such as faces) [[127], however
most neurons are responsive to features below the object
level indicating a coding scheme that uses multiple of these
descriptors to code objects and scenes [173]].

The dorsal pathway consists of the motion area MST and
the visual areas in posterior parietal cortex. The dorsal stream
is engaged in the analysis of space and in action planning.
Similar to the ventral stream, the receptive field sizes increase
along the dorsal pathway and the complexity of stimulus
features increases progressively (e.g. from simple motion in
MT to more complex motion patterns in MST and VIP).
Moreover, the relation of receptive fields to retinal locations
weakens. Instead, higher areas encode the location of stimuli
in spatial or head fixed coordinates.

Besides the division into two pathways (ventral and dorsal)
it is worth noting that there are also two streams to be

4. These proportions are unknown for the human visual cortex because in
both the temporal and the parietal lobe new areas have probably evolved in
humans compared to monkeys.
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Fig. 2. Simplified hierarchical structure of the primate’s visual cortex and approximate area locations (summarized

from [44]). Box and font sizes are relative to the area size.

distinguished, the magnocellular (M-) and parvocellular (P-)
stream [73]]. This distinction is already present at the ganglion
cell level, i.e., at the level of the output of the retina. P ganglion
cells are color sensitive, have a small receptive field and are
responsible for the high visual acuity in the central visual
field. M ganglion cells have lower spatial but higher temporal
resolution than P ganglion cells. The distinction between P and
M cells carries through LGN to the whole visual cortex. To a
first approximation, the P path is believed to be responsible for
shape and object perception while the M path can account for
the perception of motion and sudden changes [84]. Also the
strongly space-variant resolution from the fovea to the visual
periphery carries through most regions of the visual cortex.

It is worth noting that at every stage in the visual hierarchy,
neurons also exhibit selectivities that are present at earlier
stages of the hierarchy (e.g. orientation selectivity can be
observed up to the level of TEO).

It is in general acknowledged that the influence of extrinsic
information on the visual representations in the brain increases
with its level in the hierarchy. For example, there is no report
on any learning or adaptation processes in the retina and
also quite some evidence on a high influence of genetic pre-
structuring for orientation maps in V1 (see, e.g., [63]). On the
other hand, it has also been shown that learning can alter the
visual feature selectivity of neurons. However, the measurable
changes at the single-cell level induced by learning appear to
be much smaller at earlier levels in the visual hierarchy such
as V1 [155] compared to later stages such as V4 [140] or IT
[104].

2.2 Basic Facts on Different Visual Areas

Table [T] gives basic data on the different areas of the visual
system. The first column indicates the name of the area, the
second column the size in mm? (see also figure [2| where
areas are drawn proportionally to their area size). The third
column indicates the average receptive field size at 5 degrees
of eccentricity. The fourth column indicates the latency to the
first response to a stimuli at the retina.

Figure 3 provides a summary of most of the terms that
follow in columns 5 through 7. The fifth column distinguishes
between contra- and bilateral receptive fields. Contralateral
(co in table 1) receptive fields only cover information from
one hemifield while bilateral (bl in table 1) receptive fields
cover both hemifields (figure Bp). The sixth column indicates
different schemas of organization: Retinotopic organization
(rt) indicates that the spatial arrangement of the inputs from
the retina is maintained which changes every time we move
our eyes, spatiotopic (st) indicates the representation of the
world in real-world coordinates (see figure Eh), clustered
organization (cl) indicates that there are larger subareas with
similar functions, columnar organization (co) indicates that
there is a systematic organization in columns according to
some organizational scheme (mostly connected to visual fea-
tures or retinotopy). The seventh column indicates different
kinds of invariances (see figure Ek:-f): cue invariance (CI) refers
to the ability to obtain the same type of information from
different cues, a cell that responds to an object independently
of its size is called size invariant (SI), similarly for position
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[ Area “ Size (mm2) [ RFS [ Latency (ms) [ co/bi lat. [ rt/st/cl/co [ CI/SI/P1/O1 [ Function
Sub—cortical processing
Retina 1018 0.01 20-40 bl +/-/-/- -/-1-/- sensory input, contrast computation
LGN 0.1 30-40 co +/-/-/- -/-1-/- relay, gating
Occipital / Early Vision
A\t 1120 3 30-40 co +/-/-1+ -/-1-1- generic feature processing
V2 1190 4 40 co +/-/-1+ -/-1-/- generic feature processing
V3/V3A/VP 325 6 50 co +/-/-1+ -/-1-/- generic feature processing
V4/VOT/V4t 650 8 70 co +/-/-1+ +/-/-1- generic feature processing / color
MT 55 7 50 co +/-/-1+ +/+-1+ motion
Sum 3340
[ I Ventral Pathway / What (Object Recognition and Categorization)
TEO 590 3-5 70 co (+)/-1-1+ N-I-1? object recognition and
TE 180 10-20 80-90 bl -/-I+1+ +/+/+/+(-) categorization
Sum 770
[ I Dorsal Pathway / Where and How (Coding of Action Relevant Information) |
MST 60 >30 60-70 bl +/-/+/- I optic flow, self-motion, pursuit
CIP ? ? ? +/-1?? +? 3D orientation of surfaces
VIP 40 10-30 50-60 bl -[+/-1- 1 optic flow, touch, near extra personal space
Ta 115 >30 90 bl (+)/-1-1- WHAI? Optic flow, heading
LIP 55 12-20 50 cl +/-/-/- U-1-1- salience, saccadic eye movements
AIP 35 5-7 60 bl W+1+1? W+1+1? grasping
MIP 55 10-20 100 co +/-17? 1 reaching
Sum 585
TABLE 1

Basic facts on the different areas of the macaque visual cortex based on different sources [44], [28], [95], [142], [162] First column: Name of Area.
Second column: Size of area in mmZ. ’?’ indicates that this information is not available. Third column: Average receptive field size in degrees at 5
degree of eccentricity. Fourth column: Latency in milliseconds. Fifth Column: Contra versus bilateral receptive fields. Sixth Column: Principles of

organization: Retinotopic (rt), spatiotopic (st), clustered (cl), columnar (co). Seventh Column: Invariances in representation of shape: Cue Invariance
(CI), Size Invariance (Sl), Position Invariance (Pl), Occlusion Invariance (Ol). I’ indicates that this entry is irrelevant for the information coded in

these areas. Eighth Column: Function associated to a particular area.

invariance (PI). Finally, a cell that responds similarly to an
object irrespective of whether it is completely or partially
present is invariant to occlusions (OI).

3 SUuB-CORTICAL VISION

In this section, we describe the primate sub-cortical vision sys-
tem. We begin with the retinal photoreceptors as the first stage
of visual processing (section [3.1)), and follow the visual signal
from the eye through the Lateral Geniculate Nucleus (LGN)
(section [3.2). For all areas, we first give a neurophysiological
and then a functional perspective.

3.1 Base Level: Retinal Photoreceptors

The retina is located in the inner surface of

the eye and contains photoreceptors that

are sensitive only to a certain interval of

the electromagnetic spectrum, as well as

fo0 s cells that convert visual information to

s'b—+——+—1v neural signals. The pictogram on the left

illustrates the space-variant retinal density of rods (gray) and

cones (blue) as described below, as well as the uniformly-small

receptive field sizes (around 0.01° of visual angle). Compare

this to the corresponding pictograms we consistently give in
the following sections.

Neurophysiological view: There are two kinds
® ®® of photoreceptors, rods and cones. Rods have a
high sensitivity to low levels of brightness (see icons at
the left). Cones, on the other hand, require high levels of
brightness. We can classify the cones as a function of their
wavelength absorbency as S (short wavelength = blue), M
(middle wavelength = green) and L. (long wavelength = red)
cones. These three cone types allow for the perception of color
[13]. The resolution (i.e., the number of receptors per mm?)
decreases drastically with the distance from the fovea. This
holds for both rods and cones, except that there are no rods
in the fovea. Most cones are concentrated in and around the
fovea, while rods constitute the bulk of the photoreceptors at
high eccentricities.

Functional view: Because only a small part of the retina has
a high spatial resolution (the fovea), gaze control is required
to direct the eyes such that scene features of interest project
onto the fovea. Therefore, primates possess an extensive
system for active control of eye movements (involving the
FEF in the frontal lobe, LIP in the parietal lobe and the
Superior Colliculus in the midbrain). It is influenced both
by reflexive, signal-driven and by intentional, cognitively-
driven attentional mechanisms, and involves the entire visual
hierarchy. Attention models compute where to fixate [135],
[143] and some work even addresses learning to control
gaze, e.g., to minimize tracking uncertainty [6l]. However,
in computer vision cognitively-driven attentional mechanisms
remain largely unexplored.
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Fig. 3. Summary of table 1 concepts: a) Retinotopic (rt)
and spatiotopic (st) organization; b) Contra- (co) versus
bilateral (bl) receptive fields; c) Cue Invariance (Cl); d)

Size Invariance (Sl); e) Position Invariance (Pl); f) Occlu-
sion Invariance (Ol)

3.2 Ganglion Cells and LGN

From the photoreceptors of the retina
information is passed through ganglion
cells and LGN to the primary visual
o cortex. The left LGN receives input of
° the right visual hemifield from both eyes,
and the right LGN receives input of the
left visual hemifield from both eyes. However, the information
from the two eyes remains still entirely separate in six different
neuronal layers (four P- plus two M-layers, three layers receive
input from the left eye, the other three layers from the right
eye) of the LGN; no binocular integration is done at this level.
Regarding spatial analysis, there are no significant differences
between retinal ganglion cells and their LGN counterparts
(there is even almost a one-to-one correspondence between
retinal ganglion and LGN cells [93]). In motion analysis, LGN
ganglion cells have lower optimal temporal frequencies, 4—
10Hz vs. 20-40 Hz in retinal ganglion cells, which indicates
the presence of some low-pass filtering over retinal ganglion
cells [95]. The two prominent new features emerging at this
level are center-surround receptive fields and color opponency.
The visual cortex is also organized into layers, where most of
the feedforward connections (i.e. connections to a higher stage
in the hierarchy) originate from the superficial layers and most
of the feedback connections originate from the deeper layers.
However, virtually nothing is known about the role of these
different cortical layers in stimulus processing.

3.2.1

Ow®

Center-Surround Receptive Fields

Neurophysiological view: Luminance sensitive cells
with a center-surround receptive field come in two

types: on-center/off-surround cells are sensitive to a bright spot
on a dark background; off-center/on-surround cells are sensi-
tive to the inverse pattern. Both are insensitive to homogeneous
luminance. These cells are magnocellular (M) neurons and are
involved in the temporal analysis.

Functional view: Center-surround receptive fields can be
modeled by a difference of Gaussians and resemble a Laplace
filter as used for edge detection [68]. They thus emphasize
spatial change in luminance. These cells are also sensitive to
temporal changes and form the basis of motion processing.
Notably, the transformation into a representation emphasizing
spatial and temporal change is performed at a very early stage,
immediately following the receptor level, before any other
visual processing takes place.

Most of the current computer vision techniques also in-
volve in the earliest stages gradient-like computations which
are essential parts of detectors / descriptors such as SIFT,
HOG/HOF, etc.

3.2.2 Single-Opponent Cells

Neuropsysiological view: Single-opponent cells
4 are color sensitive and compute color differences,

namely L-M (L for long wavelength and M for

middle wavelength, symbol “-” stands for oppo-
nency) and S-(L+M) (S stands for short wavelength), thereby
establishing the red-green and the blue-yellow color axes. They
have a band-pass filtering characteristic for luminance (gray
value) stimuli but a low-pass characteristics for monochro-
matic (pure color) stimuli. These cells are parvocellular (P)
neurons and are somewhat slower but have smaller receptive
fields, i.e. higher spatial resolutions, than the magnocellular
neurons. They are particularly important for high acuity vision
in the central visual field.
Functional view: Single-opponent cells can be modeled by a
Gaussian in one color channel, e.g. L, and another Gaussian
of opposite sign in the opposing color channel, i.e. -M. This
results in low-pass filtering in each color channel. The color
opponency provides some level of invariance to changes in
brightness and is one step towards color constancy.

4 GENERIC SCENE REPRESENTATION IN THE
OccIPITAL CORTEX

All areas in the occipital cortex (except MT) are organized
retinotopically with orientation columns as basic units (see
table [T} 6th column). MT is also organized retinotopically, but
with depth and motion columns. Note that the visual system
is not organized in a strictly sequential hierarchy but there are
shortcuts between levels of the hierarchy. There is a stream
V1 = V2 (— V3E]) — V4 to the ventral pathway and another
stream V1 — V2 — MT to the dorsal pathway (figure [2).
However, there also exist cross connections between V4 and
MT.

The latency of the visual signal increases with each level
by approximately 10 ms, and the receptive field sizes increase
gradually (see table (1} 3rd and 4th column). In general, the

5. Not much is known about the role of V3, therefore we have not given
any detailed information in this paper about V3.
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magnocellular pathway provides most of the input to the dorsal
visual stream and the parvocellular pathway provides most of
the information to the ventral pathway, but this is certainly not
an absolute distinction.

41

V1 is the first cortical area that processes
visual information. Thus, the features it
is sensitive to are more complex than in

Ooo LGN but remain relatively simple: edges,
;'O_.’Q -"'.o ..« gratings, line endings, motion, color, and
50° —f—+—— o disparity.

4.1.1 Edges, Bars, and Gratings

Neurophysiological view: V1 contains cells that
D respond preferentially to edges, bars, and gratings,
(I) ([[D i.e. linear oriented patterns. They are sensitive to
the orientation of the patterns and, in case of
gratings, to their spatial frequency (for a review, see [127]).
Some cells are more sensitive to edges or single bars while
others prefer gratings. There are two types of such cells, simple
and complex cells. The former are sensitive to the phase of a
grating (or exact position of a bar), the latter are not and have
a larger receptive field.
Functional view: The original proposal by Hubel and Wiesel
to achieve the phase-invariant orientation tuning characteristic
of complex cells was simply to add the responses of simple
cells along the axis perpendicular to their orientation, see
[L67] for a computational model. Later authors have attributed
the behavior of complex cells to a MAX-like operation [48]]
(producing responses similar in amplitude to the larger of the
responses pertaining to the individual stimuli — see, e.g., [141]])
or to a nonlinear integration of a pool of unoriented LGN cells
[L15]). In computational models, simple cells can self-organize
from natural images by optimizing a linear transformation
for sparseness, i.e. only few units should respond strongly
at any given time [125], or statistical independence [8] —
however, it has been noted that linear models may not be
sufficient for modeling simple cells [149]. Complex cells can
be learned from image sequences by optimizing a quadratic
transformation for slowness, i.e. the output of the units should
vary as slowly over time as possible [38], [[10]. On a more
technical account it has been shown that Gabor wavelets are a
reasonable approximation of simple cells while the magnitude
of a Gabor quadrature pair resembles the response of complex
cells [82]. Gabor wavelets have also been very successful in
applications such as image compression [29], image retrieval
[108], and face recognition [202]. In fact, it has been shown
using statistics of images that Gabor wavelets (and the simple
cells in V1) construct an efficient encoding of images [164].

4.1.2 Point Features
O Neurophysiological view: V1 also contains cells

that are sensitive to the end of a bar or edge or
@ @ the border of a grating. Such cells are called end-
stopped or hypercomplex [127].
Functional view: In V1, end-stopped cells might help to solve
the aperture problem the system is faced with in motion as

well as disparity processing (see section since they can
detect displacement also in the direction of an edge [127].
Like complex cells, hypercomplex cells can be learned from
image sequences by optimizing slowness [10].

In computer vision, interest point detectors (which are not
subject to the aperture problem due to the fact that they analyze
local regions with occurrence of different orientations) of vari-
ous kinds [[107], [116] have been used since these features have
turned out to be discriminative and stable, which is important
for matching tasks and fundamental in many computer vision
problems (pose estimation, object recognition, stereo, structure
from motion, etc.). In this regard, it is interesting that V1 is
dominated by detectors (simple and complex cells) for linear
features (edges, bars, gratings). A possible reason might be
that most meaningful features in natural scenes are actually
edges which also allow for a complete reconstruction of the
input signal (see, e.g., [39]).

The rather infrequent occurrence of neurons sensitive to
point features at this low-level stage of visual processing
suggests that primate vision does not necessarily rely on point
features for bottom-up visual processing. Stereo and motion
processing on the basis of edge and line features further
suggests that the aperture problem is not solved by V1, but
involves subsequent cortical layers for spatial integration.

4.1.3 Absolute Disparity

Neurophysiological view: V1 is the first area
containing neurons that receive input from both
eyes [84] (neurons in LGN are still monocular)
and are able to compute disparity. In V1, this is
still absolute disparity (i.e., the angular difference between
the projections of a point onto the left and right retinas
with reference to the fovea). Calculating disparity and thereby
depth can be done in V1 without monocular contours in
the image, as it is evident from our ease at interpreting
random-dot stereograms [83]. There are also neurons in V1
that are sensitive to disparity in anticorrelated stereograms
[26], in which the contrast polarity of the dots in one eye is
reversed compared to the other eye. However, these neurons
do not contribute to the depth perception and may have other
functions.

Functional view: A prominent model for disparity estimation
in V1 is the energy model, which is based on Gabor wavelets
with slight phase or positional shifts [50]. Disparity is, of
course, only one cue for depth perception, although an early
one (in terms of processing and development, see [87]) and
operational at close distance. On higher levels and at farther
distances, cues such as occlusion, motion parallax etc. are
used [84] which however are processed in higher-level areas
of the primate brain’s dorsal and ventral visual streams (see
section f.4). Also from a developmental perspective there are
significant differences with pictorial depth cues developing
only after approx. 6 months [87]. This is very much linked
to the observation that statistics of natural scenes are linked
to laws of perceptual organization, an idea first formulated
by Brunswick [17] which has then later been confirmed
computationally (see [200] for a review). This line of thought
opens the perspective to formulate the problem of deriving
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pictorial depth cues in computer vision systems as a statistical
learning problem. Disparity is not only important for depth
perception but also for gaze control [84], object grasping and
object recognition. It has been shown that disparity tuned units
can be learned from stereo images by maximizing mutual
information between neighboring units, because depth is a
feature that is rather stable across space [7].

In computer vision, stereo is a whole field of research, with
many methods based on point features, which are convenient
since their matches fix all degrees of freedom (see, e.g., [16]).
However, there are approaches in computer vision that also
use phase-differences of Gabor wavelets [49]].

4.1.4 Local Motion

—> Neurophysiological view: Neurons in areas V1 and
~ V2 are not only involved in static scene analysis
~ but also in motion analysis. A fraction of simple
~ and complex cells in V1 are direction selective,
meaning that they respond only if the stimulus pattern (grating)
moves in one direction and not the other [[127]. However,
only complex cells have spatio-temporal frequency tuning. The
direction selective cells belong to the M-pathway and project
mostly to area MT [118]]. The aperture problem is not solved
at that stage of processing.
Functional view: Estimating motion, or optic flow, is actually
quite related to estimating disparity, since the latter can be
viewed as a special case of the former with just two frames
that are displaced in space rather then in time. The algorithms
in computer vision as well as models of V1 are in general
correspondingly similar to those discussed for estimating
disparity (see section {.1.3). For V1 (mainly simple cells),
motion processing is usually conceptualized and modeled by
spatiotemporal receptive fields [195], [179]. Complex cell-
like units learned by optimizing slowness are motion direction
selective, much like physiological neurons [10].

It is interesting to note that spatiotemporal features such
as motion have been demonstrated to be the first features
developmentally present in humans for recognizing objects
(even sooner than color and orientation) [204].

4.1.5 Double-Opponent Cells
Neurophysiological view: About 5-10% of
o V1 cells are dedicated color-coding cells (for
reviews see [23], [L61]). In addition to single-
. o opponent cells similar to those in LGN, which
respond to local color (on a blue-yellow or
red-green axis), V1 has double-opponent cells. These cells,
whose existence used to be debated and is now supported
with growing evidence (e.g., [22]), have a spatial-opponency
structure within each color channel in addition to the oppo-
nency between different color channels. Such cells respond
particularly well to a spot of one color on a background of
its opponent color, and are thought to play a crucial role
in perceptual color constancy. It is therefore not surprising
that color contrast effects, i.e. a shift of perceived color of a
stimulus away from the color of the background, have been
observed in V1 [127]. The receptive fields of these cells are
rarely circularly symmetric and therefore also show some

orientation tuning, but their spatial resolution is low. Some
double-opponent cells are also orientation selective. On the
other hand, simple and complex cells, although not considered
as coding color, are often sensitive to the orientation of
equiluminant stimuli, i.e. edges or gratings defined only by
color contrast and not luminance contrast. This shows that
they are sensitive to color, but they do not code the color
polarity but only orientation. We therefore see that color and
form processing are largely (but not completely) separated in
V1.

Functional view: Double-opponent cells form the basis of
color contrast and color constancy, because they allow the
system to take the color context into account in determining
the perceived color [23]]. It is interesting that double-opponent
receptive fields can be learned from natural color images by
optimizing statistical independence [20], which suggests that
they are organized by an information optimization process and
are therefore functionally driven.

In contrast to low-level color normalization in computer
vision, which is based primarily on operations applied the
same way to each pixel (see, e.g., [47]]), it is evident from
human color perception that the achievement of color con-
stancy involves local and global processes spanning all levels
of the hierarchy, as already indicated by Helmholtz (see [199]]
and section [7.1)).

4.2 AreaV2

V2 is a retinotopically-organized area that
mostly receives its input from V1. In V2,
the segregation between M and P pathways
is largely preserved although not complete
[84]]. Like V1, V2 contains cells tuned to
" orientation, color, and disparity. However,
a fraction of V2 cells are sensitive to relative disparity (in
contrast to absolute disparity arising in V1), which means
that they represent depth relative to another plane rather
than absolute depth. The main new feature of V2 is the
more sophisticated contour representation including texture-
defined contours, illusory contours, and contours with border
ownership.

4.2.1 Texture-Defined and lllusory Contours

Neurophysiological view: Some V2 cells are sen-
sitive to texture-defined contours, with an orienta-
tion tuning that is similar to that for luminance-
defined contours [[127]. V2 cells are also sensitive
to illusory contours [[84]. These can arise in var-
ious contexts, including texture or disparity dis-

continuities, or in relation to figure-ground effects
‘ ’ such as the Kanizsa triangle (see icons at the left)f]
Functional view: This is a step towards greater invariance of
shape perception, since contours can be defined by a greater
variety of cues.

6. V1 also responds to illusory contours but has longer latencies and might
be driven by feedback from V2.
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4.2.2 Border Ownership

Neurophysiological view: Borders (i.e., contours)
are mostly formed by the projections of two or
more surfaces that either intersect or have gap
between them in 3D. In most cases, such borders
belong only to one of the surfaces that meet at the border, and
border ownership pertains to the assignment of which surface
(or region) a border belongs to. Border ownership was already
identified as an important visual information by [90], although
with a different term, belongingness. Border ownership, which
was largely neglected in computational approaches to vision,
is especially crucial for diffusion and filling-in mechanisms
with which missing and ambiguous visual information can
be reduced and rectified to a great extent. Discovery of cells
sensitive to border ownership was quite recent. In 2000, Zhou
et al. [206] found that 18% of the cells in V1 and more than
50% of the cells in V2 and V4 (along the ventral pathway)
respond or code according to the direction of the owner of
the boundary. However, the mechanisms by which neurons
determine the ownership is largely unclear.
Functional view: The fact that border ownership sensitive
neurons differentiate the direction of the owner 10-25 ms after
the onset of the response and that border ownership sensitivity
emerges as early as V1 (although to a lesser extent) suggests
that border ownership can be determined using local cues that
can be integrated by lateral long-range interactions along a
boundary. However, as shown recently by Fang et al. [43]], the
process might also be modulated or affected from higher-level
cortical areas with attention.

4.2.3 Relative Disparity

Neurophysiological view: V2 also includes
ﬁ, . disparity-sensitive cells. However, contrary to
O p disparity-sensitive cells in V1, those in V2
are sensitive to relative disparity, which is
the difference between the absolute disparities of two points
in space. Relative disparity is for example the difference in
disparity between a point at the fixation plane (zero disparity)
and a point closer to the observer (near disparity). It is known
that stereopsis relies mostly on the processing of relative
disparity [130].
Functional view: With sensitivity to relative disparity in V2,
it becomes possible to compare depth of objects and reason
about their 3D spatial relationships.

4.3 Area V4

In contrast to MT (see section which
seems to be dominated by M-pathway
input, V4 seems to combine input from
the M as well as the P pathway since
o blocking either M or P pathway reduces
activity of most cells in V4 [84].

V4 neurons respond selectively to orientation, color, dispar-
ity and simple shapes. They continue the process of integrating
lower-level into higher-level responses and increasing invari-
ances. For instance, V4 cells respond to contours defined by

differences in speed and/or direction of motion with an ori-
entation selectivity that matches the selectivity to luminance-
defined contours [[127] (a few such cells are also found in V1
and V2 but with longer latencies, which again suggests that
they are driven by feedback from V4). Prominent new features
in V4 are curvature selectivity and luminance-invariant coding
of hue.

4.3.1 Curvature Selectivity

Neurophysiological view: Some V4 cells are
tuned to contours with a certain curvature (with
a bias towards convex contours [[131]]) or vertices
with a particular angle [127]. This selectivity is
even specific to the position of the contour segment relative
to the center of the shape considered, thus yielding an object
centered representation of shape. V2 also has cells that respond
to curves (contours that are not straight lines), but their
response can be explained by their tuning to edges alone,
which is not the case for V4 neurons.
Functional view: Experiments in monkeys where area V4
was ablated showed that V4 is important for the perception of
form and pattern/shape discrimination. V4 neuronal responses
represent simple shapes by a population code that can be
fit by a curvature-angular position function [131]. In this
representation, the object’s curvature is attached to a certain
angular position relative to the object center of mass. Most V4
neurons represent individual parts or contour fragments.

4.3.2 Color Hue and Luminance Invariance

Neurophysiological view: Color coding cells in

V4 differ from those in V2 in that they code for

hue, rather than color opponency along the two

principal color axes, and that the tuning to hue is
invariant to luminance [24]]. Even though specialized to color,
many of these cells also show a prominent orientation tuning.
Functional view: Luminance invariant tuning to hue is already
a form of color constancy, and the orientation tuning of
color coding cells indicates some level of integration between
color and form perception, although V4 neurons are clearly
segregated into two populations, one for color and one for
form processing [177].

4.4 Area MT

The middle temporal (MT) area is ded-
icated to visual motion and binocular
depth processing. The vast majority of
neurons in area MT are sensitive to
moving stimuli. Neurons are tuned to
0" direction and speed of motion [112].
Receptive fields are about 10 times larger than in V1 so
that MT neurons integrate a set of motion signals from V1
over a larger area. The receptive fields show characteristic
substructures of different motion sensitivity in different parts
of the receptive field [106]. Many MT neurons are also
sensitive to binocular disparity [30]]. Activity in MT directly
relates to perceptual motion [152]] and depth [[14] judgments.
Area MT is retinotopically organized with motion and depth
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columns similar to orientation and ocular dominance columns
in V1.

MT is not only important for perception but also for motor
control, particularly for smooth pursuit eye movements. MT
together with MST provides the main velocity signal in the
feedback control loop [37], [94] through output connections
into oculomotor structures in the brain stem.

II a mid-level representation of motion by com-
——— the aperture problem and encode the direction

—

—

— .

rather than spatiotemporal frequency as V1 cells
are fast, but imprecise, and become more refined over time
tiotemporal energy (in V1), the combination of motion mea-
level representation of motion in the visual field that is more
that is inherent in the combination of motion over large

4.4.1 2D motion
Neurophysiological view: MT neurons compute
bining inputs from V1 neurons that respond to
> local motion [165], [118]. Some MT cells solve
of motion independent of the orientation of the
moving stimulus [117]. MT cells encode the speed
do [133]. In calculating motion signals, MT neurons follow a
coarse-to-fine strategy in which responses to moving stimuli
[129].
Functional view: After initial measurements of local spa-
surements is required to solve the aperture problem, derive 2D
motion direction, and estimate speed. This results in a mid-
faithful to the true motion and more robust against noise than
earlier visual areas such as V1 and V2. The spatial smoothing
receptive fields is partially reduced by disparity information
in the combination of motion signals [99].

4.4.2 Motion Gradients and Motion-Defined Shapes

Neurophysiological view: Some MT cells are
selective to higher order features of motion such
as motion gradients, motion-defined edges, lo-
cally opposite motions, and motion-defined shapes
[127]. These selectivities are aided by disparity
sensitivity. Disparity helps to separate motion
signals from objects at different distances, retain
motion parallax and compute transparent motion
and three-dimensional motion surfaces.

Functional view: MT constructs a representation of motion-
defined surfaces and motion on surfaces.

5 OBJECT RECOGNITION AND CATEGORIZA-
TION: THE VENTRAL STREAM

Lesion studies have demonstrated that the ventral pathway is
critical for object discrimination [193[], whereas the posterior
parietal cortex is important for spatial vision. The most widely
used partitioning of the inferior temporal cortex (IT) is be-
tween the more posterior part, TEO, and the more anterior
part, area TE, based on the presence of a coarse retinotopy in
TEO but not in TE (see table [1)) as well as a larger receptive
field size of neurons in the latter area over the former[’] Two

7. Many more functional subdivisions have been proposed for IT, including

separate regions encoding information about faces, color or 3D shape, but the
correspondence with the anatomical subdivisions is unclear at present.

types of neurons have been identified in IT [174]: Primary
cells respond to simple combinations of features and are a
majority in TEO; Elaborate cells respond to faces, hands and
complex feature configurations and have a high presence in
area TE.

5.1 AreaTEO

Neuropsysiological view: TEO (also known as
PIT for Posterior IT) neurons are orientation-
and shape-selective. It has been shown that TEO
neurons mostly respond to very simple shape
elements. The main difference between TEO and TE is the
coarse retinotopic organization in TEO, which is absent in TE.
The receptive fields of TEO neurons are still relatively small
(3-5 deg) and located around the fovea or in the contralateral
hemifield.
Functional view: TEO is responsible for medium
complexity features and it integrates information
about the shapes and relative positions of multiple
contour elements. TEO integrates contour elements
but with a higher degree of complexity over V4.
This integration is non-linear and it includes in-
hibitory inputs (in addition to the excitatory ones).
Shape tuning is position and size invariant, and it
supports part-based shape theories [127].

TVIH

5.2 AreaTE

Neuropsysiological view: Area TE (also known
as AIT for Anterior IT) can be characterized by
a marked increase in the complexity of the visual
features that drive the neurons with respect to the
previous areas in the ventral pathway (Sec. [). It is suggested
that shape-selective TE neurons integrate the output from the
previous areas. The receptive fields of visual neurons in TE
range from 10 to 20 degrees of visual angle, and the average
response latencies are around 70-80 ms.

Although 2D shape is the primary stimulus dimension to
which TE neurons respond, other object attributes are encoded
in TE as well: color [183|], disparity [183|], texture [183], and
3D shape [81]. At least for color and 3D shape it has been
demonstrated that the processing of these object properties is
largely confined to specific subregions in TE [80], [[184].

Tanaka and co-workers [174]] made a critical contri-

\l/ bution by developing the stimulus-reduction method
(see figure ). After having measured the responses
of TE neurons to real-world objects, they system-
atically reduced the image of the most effective
object in an effort to identify the critical feature to
‘"""O which the TE neurons were responding. For many

TE neurons, the critical feature was moderately
@ complex, i.e. less complex than the entire image but

more complex than simple bars or spots (figure [).
In some cases, the neurons driven by the critical features
were clustered in what might be considered cortical columns
[183]. These findings have led to the hypothesis that TE

neurons do not explicitly code for entire objects but only for
object parts. Therefore, the read-out of TE needs to combine
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information from many TE neurons to build an explicit object
representation.

Functional view: Many properties of TE neurons (e.g. in-
variances, see table E], 7th column) correspond well with the
properties of visual object recognition. Several studies have
demonstrated that the trial-to-trial variations in the firing rate
of TE neurons correlate with the perceptual report of rhesus
monkeys in various tasks, including object recognition [119],
color discrimination [111] and 3D shape discrimination [196].

A neural system capable of object recognition has to fulfill
two seemingly conflicting requirements, i.e. selectivity and
invariance. On the one hand, neurons have to distinguish
between different objects in order to provide information about
object identity (and object class in the case of categorization)
to the rest of the system, by means of sensitivity to features
in the retinal images that discriminate between objects. On
the other hand, this system also has to treat highly dissimilar
retinal images of the same object as equivalent, and must there-
fore be insensitive to transformations in the retinal image that
occur in natural vision (e.g. changes in position, illumination,
retinal size, etc.). This can be achieved by deriving invariant
features that are highly robust towards certain variations by
discarding certain aspects of the visual data (as, e.g., SIFT
descriptors [107]]). From a systematic point of view, it would
be however advantageous to not discard information, but
to represent the information such that the aspects that are
invariant are separated from the variant parts such that both
kinds of information can be used efficiently (see, e.g., [31]
and section [8.2).

TE neurons generally show invariance of the shape pref-
erence to a large range of stimulus transformations (though
in general not in the absolute response levels). The most
widely studied invariances of TE neurons include invariance
for position (PI, cf. table [I, 7th column) and size (SI), but
other stimulus transformations can also evoke invariant shape
preferences: the visual cue defining the shape (cue invariance
CI; [IL83]]), partial occlusion (occlusion invariance OI; [183]),
position-in-depth [79], illumination direction [92] and clutter
(overlapping shapes, [[183])). Rotation in depth evokes the most
drastic changes in the retinal image of an object, and also
the weakest invariance in TE, since most TE neurons show
strongly view-dependent responses even after extensive train-
ing. The only exception might be faces, for which both view-
dependent and view-invariant responses have been documented
[183].

TE neurons typically respond to several but not all exem-
plars of the same category, and many TE neurons also respond
to exemplars of different categories [198]]. Therefore object
categories are not explicitly represented in TE. However,
recent readout experiments have demonstrated that statistical
classifiers (e.g. support vector machines) can be trained to
classify objects based on the responses of a small number
of TE neurons [183]], [88]. Therefore, a population of TE
neurons can reliably signal object categories by their combined

$% @0 "3

Fig. 4. TE neurons respond to critical features of objects
that can be quite complex; more complex than edges or
bars but less complex than objects [174].

activityﬂ It is surprising that relatively little visual training
has noticeable physiological effects on visual perception, on
a single cell level as well as in fMRI [93]. For instance
morphing objects into each other increases their perceived
similarity, which is thought to be a useful mechanism for
learning invariances [51].

6 VISION FOR ACTION: THE DORSAL STREAM

The dorsal visual stream (see Figure contains a number
of areas that receive visual information from areas such as
MT and V3A, and project mostly to the premotor areas in the
frontal lobe, bridging between the visual and motor systems.
The areas located in the dorsal stream are functionally related
to different effectors: LIP is involved in eye movements, MIP
in arm movements, AIP in hand movements (grasping) and
MST and VIP in body movements (self—motion)ﬂ

6.1 MST

Neurophysiological view: Area MST receives its
major input from area MT (see figure [2). Like
| MT, MST has many neurons that respond to visual
: motion. Receptive fields in MST are much larger
than those of MT, often covering substantial portions of the
visual field without a clear retinotopic arrangement. Many
MST neurons respond selectively to global motion patterns
such as large-field expansions or rotations [176]. Thus, MST
neurons integrate motion in different directions from within
the visual field. The structure of the receptive fields, however,
is very complex and often not intuitively related to the pattern
selectivity [34]. MST neurons are tuned to the direction of self-
motion, or heading, in an optic flow field [132], [100]. MST
neurons carry disparity signals [[148] and receive vestibular
input [15], [[67] both consistent with their involvement in self-
motion estimation.
Area MST is also involved in smooth pursuit
k eye movement [37], where it employs non-visual
K N (extraretinal) input [122]. Using this extraretinal
information, some MST neurons cancel the retinal
effects of eye movements and respond to motion in the world
rather than to motion on the retina [41]. This is also seen in
Area V3A [57].
Functional view: Area MST is concerned with self-motion,
both for movement of the head (or body) in space and

8. In contrast, an explicit category representation is present in the prefrontal
cortex [S3] and surprisingly also in the posterior parietal cortex (area LIP,
[52]). Category information even occurs earlier, is stronger and more reliable
in parietal cortex than in the prefrontal cortex [169].

9. Note that since not much is known about area 7a we have not discussed
this area in detail.
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movement of the eye in the head. The selectivity of MST
neurons to optic flow patterns generates a population-based
map of heading in MST [100]. Rather than representing the
distribution of particular features in a retinotopic map of
the visual field, as lower areas such as V1, V2, V4 or MT
do, MST creates a new reference frame that represents self-
motion in different directions in space. The organization is not
retinotopic, but heading is represented in retinal coordinates,
i.e, left or right with respect to the direction of gaze. The
access to extraretinal eye movement information enables MST
to estimate heading during combinations of body movement
and eye movement.

The estimation of self-motion from optic flow is a common
requirement in robotics. Solutions to this problem rely on the
combination of many motion signals from different parts of
the visual field as well as from non-visual areas relevant for
heading estimation.

6.2 Caudal Intraparietal Area (CIP)

@ @ Neuropsysiological view: CIP[ET] receives strong

projections from area V3A and projects to LIP

and AIP [121]. In [163], [170] it was reported

that CIP neurons respond selectively to tilted
planar surfaces defined by binocular disparity (first-order
disparity). Some CIP neurons are also selective for the 3D
orientation of elongated stimuli [[151]. CIP neurons can show
cue invariance for the tilt of planar surfaces, which means
that the preference for a particular tilt is preserved when
different depth cues signal the tilt (disparity, texture and
perspective [190]). Results [188]] suggest selectivity for zero-
order disparity (position in depth) of CIP neurons. More
recently, [86] also reported selectivity for curved surfaces
(second-order disparity) in one monkey. CIP neurons do not
respond during saccadic eye movements. No data exist on the
size and shape of the CIP receptive fields nor on response
latencies of CIP neurons.

Functional view: It is convenient to make a distinction
between different orders of depth information from disparity
[71]. Zero-order disparity refers to position-in-depth of planar
surfaces (or absolute disparity, no disparity variation along the
surface, see section [7.3) first-order disparity refers to inclined
surfaces (tilt and slant, linear variations of disparity along the
surface), and second-order disparity refers to curved surfaces
(concave or convex, a change in the variation of disparity over
the surface). CIP contains neurons that encode zeroth-, first-
and possibly second-order disparities, which suggests that it is
an important visual intermediate area that may provide input
to visuomotor areas such as LIP and AIP. Not much is known
about about the internal organization of CIP.

10. Note that since receptive field sizes of CIP neurons are unknown we
have not drawn a corresponding figure as for the other regions.

6.3 Lateral Intraparietal Area (LIP)

Neurophysiological view: LIP is situated
between visual areas and the motor sys-
tem, receiving information from the dor-
sal and the ventral stream and projecting
to other oculomotor control centers in
the frontal lobe (FEF) and the superior
colliculus [103]. LIP neurons respond before saccadic eye
movements into the receptive field, and electrical microstim-
ulation of LIP can evoke saccadic eye movements [[181].

The visual responses in LIP are related to the salience of the
stimulus [65)], which led to the suggestion that LIP contains
a salience map of the visual field, that guides attention and
decides about saccades to relevant stimuli [11]. Moreover,
LIP has been implicated in several other cognitive processes:
decision formation [[L60]], reward processing [136], timing [76]]
and categorization [52]. A more recent series of studies has
also demonstrated that LIP neurons can respond selectively to
simple two-dimensional shapes during passive fixation [[156], a
property that had been primarily allocated to the ventral visual
stream.

Dke Functional view: The representation of space in
LIP exemplifies several key properties of spatial
% have visual receptive fields that represent loca-
tions on the retina, i.e. they represent stimuli in a
before a saccadic eye movement, some LIP neurons become
sensitive to stimuli at locations where their receptive field
between the current and the future receptive field seems
like a transient shift of the receptive field before a saccade.
centric coordinates, the activity of the cells is modulated
by eye position, i.e., some cells respond more strongly to
the right than when it looks to the left, and vice versa [4].
The combination of retino-centric receptive fields and eye
represent the location of a stimulus in head-centric coordinates,
i.e. can perform a coordinate transformation [207]], [137]. This
with auditory spatial input for the localization of sights and
sounds [3]].
Despite more than two decades of single-cell studies, a consid-
erable controversy exists with respect to the role of area LIP in
attention, decision formation, etc. However, LIP is believed
to be a core area for spatial representation of behaviorally
into a spatial representation in which each neuron uses eye-
centered coordinates but in which the entire population forms
even when the eye position changes. At the single neuron level,
remapping of activity across saccades ensures continuity of the

processing in the dorsal stream. LIP neurons
retino-centric coordinate system. However, a few milliseconds
will be after the saccade [36]. This remapping of activity
Moreover, although LIP receptive fields are basically in retino-
stimuli in their receptive field when the animal looks to
position modulation provides a population code in LIP that can
transformation allows, for example, for a combination of visual
LIP is one of the most studied areas in the dorsal stream.
high-level cognitive control processes such as motor planning,
relevant stimuli. Visual (and auditory) input is transformed
a head-centric representation that encodes stimulus location
visual representation despite the eye movement.
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6.4 Ventral Intraparietal Area (VIP)

Neuropsysiological view: Area VIP is
connected with a wide range of visual,
somatosensory, and premotor (mouth
representation) areas. VIP neurons are
multi-modal, in the sense that they can
be activated by visual, tactile, vestibular
and auditory stimulation, and smooth pursuit eye movements
[21]. The tactile receptive fields are generally located on the
skin of the head and face, and visual and tactile receptive fields
frequently match in size and location: a neuron that responds
to tactile stimulation of an area around the mouth will also
respond to visual stimuli approaching the mouth. It has been
proposed that VIP encodes near-extrapersonal space [21]]. The
receptive fields of VIP neurons vary from purely retinocentric
to purely head-centered [35], including also receptive fields
that are intermediate between retinocentric and head-centered.
Furthermore, some VIP neurons respond to complex motion
stimuli, such as the direction of heading in optic flow displays.

Functional view: Area VIP is likely

to be involved in self-motion, control
of head movements, and the encoding
of near-extrapersonal (head-centered)
space which link tactile and visual
fields.
6.5 Medial Intraparietal Area (MIP)
Neuropsysiological view: MIP mainly
projects to the dorsal premotor cortex
(PMd). Neurons in this area typically re-
spond selectively during a delayed reach
task, in which monkeys are instructed
to reach to a target on a touch screen
after a certain time delay in order to receive a reward. MIP
neurons will respond to particular reaching directions but not
to others, and this neural selectivity is primarily eye-centered.
When monkeys are free to choose the target, the MIP and
PMd show increased spike-field coherence, suggesting direct
communication between these brain areas [134].
Functional view: The activity of MIP neu-
rons mainly reflects the movement plan towards
the target, and not merely the location of the
target or visual attention evoked by the target
appearance [55)]. MIP neurons also respond more when the
animal chooses a reach compared to when the animal chooses
a saccade towards a target, indicating that MIP encodes
autonomously selected motor plans [25].

6.6 Anterior Intraparietal Area (AIP)

Neuropsysiological view: The main inputs to
AIP arise in LIP, CIP and the ventral pathway
@ [12], whereas the output from AIP is directed

l—!—!—!—@ towards the ventral premotor area F5, which is
also involved in hand movements. Reversible inactivation of
AIP causes a profound grasping deficit in the contralateral
hand [56]. Sakata and co-workers showed that AIP neurons

frequently discharge during object grasping [151], with a
preference for some objects over other objects. Some AIP
neurons respond during object fixation and grasping, but not
during grasping in the dark (visual-dominant neurons), other
AIP neurons do not respond during object fixation but only
when the object is grasped, even in the dark (motor-dominant
neurons), whereas a third class of AIP neurons responds
during object fixation and grasping, and during grasping in the
dark (visuo-motor neurons, [120]). AIP encodes the disparity-
defined 3D structure of curved surfaces [168]]. However, ex-
periments with monkeys indicate that the neural coding of
3D shape in AIP is not related to perceptual categorization
of 3D shape [196]. In contrast, most 3D-shape-selective AIP
neurons also respond during object grasping [[180]], suggesting
that AIP represents 3D object properties for the purpose of
grasping (i.e., grasping affordances).

Functional view: Neurons in AIP are sensitive to
the 2D and 3D features of the object and shape
of the hand (in a light or dark environment)
relevant for grasping. In other words, area AIP
might be involved in linking grasping affordances of objects
with their 2D and 3D features. The extraction of grasping
affordances from visual information is also currently a highly
researched area in robotics since picking up unknown objects
is a frequent task in autonomous and service robotics.

7 THE VERTICAL VIEW: PROCESSING OF DIF-
FERENT VISUAL MODALITIES

Based on the knowledge we gained in sections [3] - [6] on the
brain areas involved in the processing of visual information,
we can now summarize the processing of different visual
modalities such as color (section [7.I), 2D and 3D shape
(section and [7.3), motion (section as well as the
processing for object recognition (section and actions
(section @]) in a ’vertical view’, emphasizing the hierarchical
aspects of processing of visual information. Figure [5 gives
an overview of this vertical (per modality) as well as the
horizontal (per area) view.

7.1 Color

Color can be an extremely informative cue and has always
been used as one of the basic features in psychophysical visual
search experiments. Efficient search can be performed with
heterogeneous colors (up to nine distractors) as soon as they
are widely separated in color space [203].
Neurophysiologically color processing is characterized by a
steady progression towards color constancy (see figure [5} 3rd
column). The three cones types (L, M, S) have a broad and
largely overlapping wavelength tuning, and their firing rate is
heavily affected by luminance. The single-opponent cells in
LGN establish the two color axes red-green and blue-yellow,
thereby sharpening the wavelength tuning and achieving some
invariance to luminance. Double-opponent cells provide the
means to take nearby colors into account for color contrast. In
V4 hue is encoded, which spans the full color space. The final
step is IT where there exists an association of color with form
[205]]. In TEO (closer to V4) most of the neurons are activated
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those of the corresponding areas. Connectivity is indicated in the vicinity, with the downwards arrowheads indicating
the source area and the upwards arrowheads indicating the destination area. All but the retina — LGN connection are

mirrored by feedback connections.

maximally by a simple combination of features such as bars
or disks varying in size, orientation and color [175]. Elaborate
cells (a majority in sub-area TE) respond to combinations of
different features (shape and texture, shape and color, texture
and color, texture and color and shape) [173].

There are a number of relevant insights that can be drawn
from the neurophysiological evidence presented in the sections
before. Color processing is taking place in a, to a large
degree separated, pathway that only merges in general shape
representations on the level of TE. Color is a cheap but also
brittle feature for computer vision purposes. Its efficient use
for object recognition depends on achieving color constancy
which can still be seen as a challenge in computer vision
applications. In the primate visual system, this is only achieved
at rather late stages (V4 and beyond), hence involving a
large part of the visual hierarchy. This is very different from

color normalization schemes on a pixel level predominant in
computer vision. A hierarchical representation might be able
to provide means to provide mid— and high level cues for
achieving color constancy.

7.2 Two-Dimensional Shape

Processing of 2D shape is characterized throughout the visual
system by increasing receptive field sizes, increasing complex-
ity of relevant features, and increasing degree of invariance
(see figure [5] 4th column).

The receptive field sizes are tiny in the retina and can be
as large as half the visual field in IT (see Table [I} second
column). But it is not only the size that increases, the receptive
fields also get more complex and dynamic. In the early areas,
receptive fields tend to show a linear response. Beginning in
V1, cells have a non-classical receptive field, i.e. the response
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of these cells is modulated by the surrounding, which implies
contextual effects. In V4, strong attentional effects have been
shown, resulting in different responses of a cell for identical
stimuli, if the task and thereby the attentional state changes
[84]. In IT, receptive fields are very large but the selectivity
can be influenced by clutter and other objects in the scene
[147]. For isolated objects on a blank background, receptive
fields are very large; for an object on a cluttered background
or among many distractors, receptive fields are relatively small
which indicates a tight connection between detection and
segmentation.

The features that drive cells in the visual system also
gradually increase in complexity. They are simply spots in
retina and LGN, primarily bars or edges in V1, particular
curves in V4, then more complex patterns and object parts
in TEO and TE. The general notion is that the more complex
features are built up from the simpler ones, e.g. simple cells
that are sensitive to bars can be combined from on- and off-
center cells that are sensitive to spots.

Early on does the visual system try to make responses
invariant to frequently occurring but irrelevant variations [201].
That starts already in the retina where several mechanisms are
in place to achieve a high degree of luminance invariance,
so that we can see in the darkness of the night and the
brightness of a sunny day. Some position invariance is first
achieved in V1 by the complex cells, which are sensitive to
bars and edges of certain orientations, like simple cells, but
which are less sensitive to the position of the stimuli. This
position invariance increases throughout the visual system and
in IT, objects can be moved around by 10 degrees or even more
without degrading the selectivity of some of the IT cells [185]],
[75]. There is also increasing size invariance. In addition to
invariances to illumination and to geometrical transformations,
invariance is also achieved with respect to the cues used to
define objects (see table 7t column). Edges are the primary
features used to represent objects, it seems. In V1 they are
defined as boundaries between dark and light, or between
different color hues; in V2 contours may also be defined by
texture boundaries and these cells respond to illusory contours;
in V4 contours may even be defined by differences in motion.

Representing and recognizing a 2D shape requires more
than a collection of edges. The edges must be integrated
somehow into one coherent percept. This is known in neuro-
science as the binding problem [186], [84]. It is thought that
there must be a mechanism that binds together the elementary
features to one object, because otherwise one would mix the
features of one object with those of another one and perceive
something that is not there (this actually happens in humans
in case of fast presentation times [[187]). Possible solutions
to the binding problem are tuning of cells to conjunctions of
features, spatial attention, and temporal synchronization. The
latter idea assumes that somehow the visual system manages
to synchronize the firing of those neurons that represent the
same object and desynchronize them from others [166l], which
could also explain the fairly limited number of objects we
can process simultaneously. The binding problem is related to
segmentation. Responses that represent also border ownership,
like in V2, and responses that are specific to the relative

position of an edge with respect to the object center, like in
V4, are probably relevant for both processes.

7.3 Three-Dimensional Shape

The brain computes the third dimension (depth) from a large
number of depth cues. Binocular disparity is one of the
most powerful depth cues. Importantly, only second-order
disparities (see section are independent of eye position
(vergence angle) and distance [71], thereby constituting a very
robust parameter to estimate the three-dimensional layout of
the environment.

The neural representation of 3D shape emerges gradually
in the visual system (see figure 5] '3D shape’ column). A
few general principles can be identified. First, at progressively
higher stages in the visual system, the neurons become tuned
to more complex depth features, starting with absolute dis-
parity in V1 [27]. Along the ventral stream, new selectivity
emerges for relative disparity in V2 [182], first-order disparity
in V4 [70] and finally second-order disparity in IT [70],
[8Q]. Along the dorsal stream areas V3 and V3A encode
primarily absolute disparities [S], area MT encodes absolute,
relative and first-order disparity [97]], [191], [123], area CIP
encodes primarily first-order disparity [190], and AIP second-
order disparities [168]. As with every other visual feature
representation, the receptive fields of the neurons become
larger and the latencies become longer. Secondly, at every level
in the hierarchy the neural selectivity of the previous level(s)
is reiterated such that at the highest levels in the hierarchy
(e.g. IT cortex) selectivity for zero-, first- and second-order
disparities can be measured [81].

Thirdly, in the visual hierarchy there seems to be a consid-
erable amount of parallel processing of 3D shape information.
Thus the end-stage areas of both the ventral and the dorsal
visual stream (area AIP), each contain a separate represen-
tation of 3D shape [79], [L168]]. These representations are
distinct because the properties of 3D-shape selective neurons
differ markedly between IT and AIP: the coding of 3D shape
in AIP is faster (shorter latencies), coarser (less sensitivity
to discontinuities in the surfaces), less categorical and more
boundary-based (less influence of the surface information)
compared to IT [180], [77]. Finally, the two neural repre-
sentations become more tailored towards the behavioral goal
that the two processing streams support: in IT the 3D-shape
representation subserves categorization of 3D shapes [197],
but in AIP most 3D-shape selective neurons also respond
during grasping [180]. In contrast, selectivity for anticorrelated
disparities (in which each black dot in one eye corresponds to
a white dot in the other eye and no depth can be perceived)
is present in V1 [26], MT [96] and MST [171], weak in V4
[[L'72] but absent in IT [[78] or AIP [180], presumably because
the latter areas are not involved in eye movements, which are
strongly modulated by anticorrelated disparity [[110]].

7.4 Motion

The pattern of motion that is induced on the retina when one
moves through the environment provides information about
one’s own motion and about the structure of the environment
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[61]. The motion pathway extracts this information from the
optic flow.

The first steps of motion analysis in V1 involve the
computation of local spatiotemporal motion energy from the
dynamics of the retinal image [195)], [179]. A mid-level
representation in area MT computes basic motion features
such as 2D direction and speed based on the V1 inputs
[L65]. This computation needs to solve several difficult prob-
lems. First, local motion energy calculation by spatiotemporal
receptive fields in V1 measures only the direction normal
to the orientation of a moving bar or grating (the aperture
problem). Secondly, spatiotemporal receptive fields cannot
calculate speed but only spatiotemporal frequency. Speed
tuning corresponds to orientation in spatiotemporal frequency.
Most V1 neurons respond to a specific combination of spatial
and temporal frequency whereas truly speed-tuned neurons
respond to a preferred speed v over a range of spatial and
temporal frequency s.t.: v = df /dt. Both problems are solved
in MT by combining signals from many different V1 cells
[L65], [133]. However some complex cells in V1 have also
been found to already solve these problems [128].

As indicated in figure [5] (6th column), the spatial integration
that is needed to perform this integration leads to larger recep-
tive fields in MT and thus has the effect of spatially smoothing
the motion pattern. However, this smoothing is well adapted
to the structure of the optic flow and preserves self-motion
information [18]]. Different weighting of inputs within the MT
receptive fields moreover allows new motion features to be
computed such as differential motion (differences between
motion directions at adjacent positions in the visual field),
motion edges, and gradients of the motion field [127]. These
higher order motion signals are directly related to properties
of surfaces in the scene. An important signal that carries this
information is motion parallax, i.e. the difference in speed of
two objects at different distances from a moving observer. The
sensitivity of MT neurons to motion edges and locally opposite
motion can be used to extract motion parallax from the optic
flow. Motion processing is combined with disparity analysis in
MT in order to separate motion signals from different depths
[99]].

The extraction of information about self-motion is a func-
tion of area MST. MST neurons have very large, bilateral
receptive fields and respond to motion patterns. The patterns
include expansion, contraction, rotation, and more generally
speaking, spirals [176]], [34]. One way to look at MST is
thus in terms of pattern analysis. However, MST is better
understood in terms of self-motion analysis [100]. Self-motion
describes the translation and rotation of the eye of the observer
in space, i.e. the 6 degrees of freedom of any rigid body
motion. Single MST neurons are tuned to particular self
motions, i.e. to particular translation directions (e.g. forward
or rightward) and to rotations as well as to combinations
of rotation and translation [100]], [67]]. MST thus contains a
representation of self-motion.

Motion processing is linked to smooth pursuit eye move-
ments. When one tracks a moving target with the eyes,
the target is stable on the retina while the background is
sweeping across the retina. The target, however, is perceived

to move and the background is perceived as stable. Some
cells in MST respond to motion in the world rather than
motion on the retina, by combining visual information with
extraretinal information about ongoing eye movements [41].
This combination of visual and extraretinal signals is also
useful for self-motion analysis when one does not look in the
direction of movement but fixates and tracks an object in the
visual field [99]. Vestibular input about the state of self-motion
is also combined with vision in MST [67].

In summary, the analysis of motion in the primate visual
system proceeds in a hierarchy from V1 (local spatiotemporal
filtering) to MT (2D motion) to MST (self-motion, motion in
world coordinates). Along this hierarchy several computational
problems are solved, the features become more complex, re-
ceptive fields become larger, and spatial integration of motion
signals increases. The representation shifts from one of motion
in the visual field (V1, MT) to one of motion in the world
and motion of oneself in the world (MST). Also along this
hierarchy, visual motion processing is combined with disparity
(MT, MST), eye movement information (MST), and vestibular
signals (MST). The representation becomes thus less tied to
the image and more to the action of the body.

7.5 Object Recognition

Object recognition goes beyond simple 2D-shape perception
in several aspects: integration of different cues and modalities,
invariance to in-depth rotation and articulated movement,
use of context. It is also important to distinguish between-
class discrimination (object categorization) and within-class
discrimination of objects.

Some integration of different cues is done already for
2D-shape perception. For instance, edges can be defined by
luminance in V1, by textures in V2 and by differences in
motion in V4. However, color and shape seems to be processed
rather independently until high up in the hierarchy. Motion
is processed early on, but it is used for object recognition
in a different way than for shape perception. For instance,
one can recognize familiar people from great distance by their
characteristic gait. Other modalities, such as sound and odor,
obviously also contribute to object recognition.

It appears that the units in IT pull together various features
of medium complexity from lower levels in the ventral stream
to build models of object parts. Precise granularity of these
parts has not been established at present time, although there
are indications that they span different sizes of receptive fields
and are possibly tuned to different levels of feature invariance
(abstraction) [174]. Computational models that can predomi-
nantly be described as compositional hierarchies (the hierar-
chical organization of categorical representations) define/learn
units that are not inconsistent with these findings. For example,
it has been shown that features that have been learned (in an
unsupervised manner) at the level that roughly corresponds to
IT contain sufficient information for reliable classification of
object categories (this can be related to readout experiments
[[74]]). Some of the related computational models could also
help in making predictions regarding the need for massive
feedback (from IT to LGN/V1) and alleviate the problems
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with the stimulus-reduction method as these stimuli could be
generated through a learning procedure [46].

Rotation in depth usually changes the shape of an object
quite dramatically. However, a small fraction of IT neurons
can exhibit some rotation invariance and speed of recognition
of familiar objects does not depend on the rotation angle
[79]. A particular case are face sensitive neurons which
can show a rather large invariance to rotations in depth.
Representations of the same object under different angles are
presumably combined into a rotation invariant representation
like simple cell responses might be combined into a complex
cell response. Comparing unfamiliar objects from different
perspectives seems to require mental rotation and requires
extra time that is proportional to the rotation angle [154].

Context plays a major role in object recognition [124] and
can be of different nature — semantic, spatial configuration
or pose — and is, at least partially, provided by higher areas
beyond IT. A simple example are the words “THE’ and ‘CAT’,
which can be written with an identical character in the center
with a shape somewhere between an ‘H’ and an ‘A’. We
recognize this very same shape immediately in the appropriate
way depending on the context of the surrounding two letters.
But we are also faster to recognize a sofa in a living room
than floating in the air or a street scene. Interestingly, objects
also help to recognize the context and context may be defined
on a crude statistical level [124].

Some people have perfectly good object recognition capabil-
ities but cannot recognize faces, a deficit known as prosopag-
nosia, although they can recognize people by their clothes or
voices. The FFA (fusiform face area) seems the brain structure
for face recognition [85]]. There is evidence that prosopagnosia
not only affects face processing but that it is a deficit in telling
apart instances from the same category. For instance bird-
watcher with prosopagnosia cannot tell birds apart anymore
and car experts cannot make fine car distinctions [58].

It is interesting that in human subjects highly selective neu-
rons have been described that may support object recognition.
For example, recordings from epileptic patients in the medial
temporal lobe have shown that single neurons reliably respond
to particular objects, like the tower of Pisa, in whatever image
[139].

7.6 Action Affordances

To supply visual information to the planning and control of
action, the visual system extracts specific action-relevant fea-
tures in hierarchical processing along the occipital and dorsal
pathways. This processing is characterized by successively
increasing complexity, multi-sensory integration, and a shift
from general visual representations to representation specific
for particular effectors and actions. Moreover, this processing
is to some degree independent of conscious perception, such
that lesion patients may be able to interact correctly with
objects they fail to recognize and vice versa [64].

Early stages in the dorsal stream hierarchy (V1, V2, MT) are
concerned with visual feature extraction (location, orientation,
motion,) and the estimation of action-relevant objects features,
such as surface orientation, from different cues (motion: MT,

stereo: CIP). These features are encoded in a retinotopic frame
of reference. Hierarchically higher areas encode information in
spatiotopic or head-centric reference frames, sometimes at the
single cell level (as in area VIP [35]]) and often in a population
code (areas MST, LIP, 7A, MIP) [137]. A major function of
the dorsal stream thus lies in coordinate transformations.

These transformations are necessary because the planning
of action with different effectors needs to consider targets in
different reference frames. Eye movements are best encoded
in a retinocentric representation but reach movements need a
transformation to arm coordinates, and hence a representation
of the target in space. It is not always clear what the best
encoding for a particular action is, but the areas in the parietal
cortex provide a number of parallel encodings for different
tasks.

A further issue for these transformations lies in the combi-
nation of vision with other sensory or motor signals. Along
the processing in the dorsal stream visual information is
combined with vestibular (in MST, VIP), auditory (in LIP),
somatosensory (in VIP), and proprioceptive or motor feedback
signals (MST and VIP for smooth eye movements, LIP for
saccades, MST/VIP/7A/MIP for eye position). Since these sig-
nals come in different sensory representations, the combination
with vision requires extensive spatial transformations.

Eventually, higher areas in the dorsal stream construct spa-
tial representations that are specialized to provide information
for specific actions: LIP represents salience in the visual scene
as a target signal for eye movements, MIP and AIP provide
information for reaching (target signals) and grasping (shape
signals). LIP and VIP provide information for the control
of self-motion. Therefore, the processing of action-relevant
visual information in the dorsal stream is characterized by a
separation of functions, unlike processing in the ventral stream,
which is focused on the perception of objects.

8 WHAT CAN WE LEARN FROM THE VISUAL
SYSTEM FOR COMPUTER VISION?

What can we learn from the primate visual system for
computer vision systems as well as the learning of deep
hierarchies? We believe that there are at least four design
principles of the former that could be advantageous also for
the latter: hierarchical processindﬂ separation of information
channels, feedback and an appropriate balance between prior
coded structure and learning.

8.1

One prominent feature of the primate visual system is its
hierarchical architecture consisting of many areas that can
roughly be ordered in a sequence with first a common early
processing and then a split into two interacting pathways, see
Figure [2] and [5} Each pathway computes progressively more
complex and invariant representations. What are the possible
advantages of such an architecture?

Hierarchical Processing

11. In Introduction, we listed several authors who have in various ways
studied and demonstrated this principle.
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Computational efficiency: The brain is a machine with an
enormous number of relatively simple and slow processing
units, the neurons. Thus, significant performance can only be
achieved if the computation is distributed efficiently. A visual
hierarchical network does this spatially as well as sequentially.
The spatial partitioning results in localized receptive fields, and
the sequential partitioning results in the different areas that
gradually compute more and more complex features. Thus,
computation is heavily parallelized and pipelined. On a PC,
this is less of an issue because it has only one or few but very
fast processing units. However, this might change with GPUs
or other computer architectures in the future and then the high
degree of parallelization of hierarchical networks might be a
real plus.

Computational efficiency in the primate visual system also
arises from the fact that a lot of processing is reused for several
different purposes. The occipital part, which constitutes most
of the visual cortex, provides a generic representation that
is used for object recognition, navigation, grasping, etc. This
saves a lot of computation.

Learning efficiency: Equally important as the computational
efficiency during the inference process is the learning effi-
ciency. Hierarchical processing helps in that it provides several
different levels of features that already have proven to be
useful and robust in some tasks. Learning new tasks can
build on these and can be fast because appropriate features
at a relatively high level are available already. For instance
invariance properties can simply be inherited from the features
and do not have to be learned again.

Hierarchical processing, in particular in conjunction with the
progression of receptive field sizes (see Table 1, column 3),
offers mechanisms that may alleviate the overfitting problem.
Namely, small size receptive fields in the lower hierarchical
layers limit the potential variability of the features inside the
receptive fields and consequently confine the units to learn low
dimensional features, which can be sampled with relatively
few training examples [46]. The process is recursively applied
throughout the hierarchy resulting in a controlled progression
in the overall complexity of units on the higher layers. This
corresponds to an implicit regularization.

It is important to note that biological visual systems mature
in complexity and sophistication in an intertwined process of
development (through growing neural substrate) and learning
(tuning of neural units) in a sequence of stages. From the
computational point of view, this has important implications
that deserve more attention in the future.

The world is hierarchical: Even within the brain is the
visual system extreme in that has such a deep hierarchy. This
may have to do with the complexity of the vision problem
or the importance vision has for us. But it might also be a
consequence of the fact that the (visual) world around us is
spatially laid out and structured hierarchically. Objects can be
naturally split into parts and subparts, complex features and
simple features, which makes hierarchical processing useful.
Nearby points in the visual field are much more related than
distant points, which makes local processing within limited
receptive fields effective at lower levels.

8.2 Separation of Information Channels

Another prominent feature of the visual system is the sepa-
ration of information channels. Color, motion, shape etc. are
processed separately, even in separate anatomical structures,
for quite some time before they are integrated in higher areas.
Some of these features are even duplicated in the dorsal and
the ventral pathway but with different characteristics and used
for different purposes. We believe this has at least two reasons:
availability of information and efficiency of representation.
Availability of information: Depending on the circumstances,
some of the information channels may not be available at all
times. If we look at a photograph, depth and motion are not
available. If it is dark, color is not available. If it is foggy
high resolution shape information is not available, and motion
and color might be the more reliable cues. A representation
that would integrate all cues at once would be seriously
compromised if one of the cues is missing. Separating the
information channels provides robustness with respect to the
availability of the different information cues.

Efficiency of representation: Separating the information
channels naturally results in a factorial code; an integrated
representation would yield a combinatorial code, which is
known to suffer from the combinatorial explosion and also
does not generalize well to new objects. If we represent
four colors and four shapes separately, we can represent 16
different object more efficiently, i.e. with fewer units, than
if we would represent each object as a unique color/shape
combination. And also if we have seen only a few of the 16
possible combinations, we still can learn and represent unseen
combinations easily.

It has been suggested that the binding problem, which arises
because different neurons process different visual features
of the same object (e.g. color and shape), is solved by
means of neuronal synchronization in the temporal domain
[40], [146]. In this ‘binding by synchronization’ hypothesis,
neurons throughout the cortex encoding features of the same
object would show synchronous activity, which would act as
a ’label’ that would indicate that the different features belong
to the same object. However, experimental support for the
synchronization hypothesis has been mixed [98], [33l], [159],
and no experiment has unambiguously proven that synchrony
is necessary for binding.

8.3 Feedback

While we have outlined in this paper a hierarchical feedfor-
ward view on visual processing, it is important to remember
that within the visual cortex there are generally more feedback
connections than forward connections. Also lateral connec-
tions play an important role. This hints at the importance
of processes like attention, expectation, top-down reasoning,
imagination, and filling in. Many computer vision systems try
to work in a purely feed-forward fashion. However, vision is
inherently ambiguous and benefits from any prior knowledge
available. This may even imply that the knowledge of how the
tower of Pisa looks influences the perception of an edge on
the level of V1. It also means that a system should be able to
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produce several hypotheses that are concurrently considered
and possibly not resolved [102].

8.4 Development and Learning of Visual Processing
Hierarchies

In this paper, we focused on a description of and lessons to
be learned from the end product, the functional visual system
of the adult primate. We do not have the space here to discuss
what is known about the development [194] and learning of
biological visual processing hierarchies (e.g., [105], [113]).
However, there are some fairly obvious conclusions relevant
to computer vision.

First, in contrast to most deeply hierarchical computer vision
systems, the primate visual processing hierarchy does not
consist of a homogeneous stack of similar layers that are
trained either bottom-up or in a uniform fashion. Rather, it
consists of heterogeneous and specialized (horizontal) layers
and (vertical) streams that differ considerably in their func-
tions. Thus, a conceptually simple, generic vision system may
not be achievable. It may be that biology has instead chosen
to optimize specialized functions and their integration into a
perceptual whole. It remains to be seen however, whether the
specialization of cortical areas is due to fundamentally differ-
ent mechanisms or to differences in the input and the particular
combination of a very small set of learning principles (see, e.g,
(3110, 191D).

An aspect of these heterogeneous layers and streams that
should be of interest to computer vision is that these dis-
tinct functional units and intermediate representations provide
structural guidance for the design of hierarchical learning
systems. As discussed by Bengio [9], this constitutes a way
of decomposing the huge end-to-end learning problem into a
sequence of simpler problems (see also p. [2).

Secondly, biological vision systems arise due to interactions
between genetically-encoded structural biases and exposure
to visual signals. One might argue that this is precisely
how today’s computer vision systems are conceived: The
computational procedure is designed by hand, and its param-
eters are tuned using training data. However, inhomogeneous
processing hierarchies require dedicated learning methods at
various stages. Mounting evidence for adult cortical plasticity
suggests that the influence of learning on cortical processing
is much more profound than the tuning of synaptic strengths
within fixed neural architectures [66], [62].

9 CONCLUSION

We have reviewed basic facts about the primate visual system,
mainly on a functional level relevant for visual processing. We
believe that the visual system still is very valuable as a proof
of principle and a source of inspiration for building artificial
vision systems. We have in particular argued for hierarchical
processing with a separation of information channels at lower
levels. Moreover, concrete design choices which are crucial for
or potentially facilitate the learning of deep hierarchies (such
as the structure of intermediate representations, the number
of layers and the basic connectivity structure between layers)
can be motivated from the biological model. Main stream
computer vision, however, seems to follow design principles
that are quite different from what we know from primates.
We hope that the review and the thoughts presented here
help in reconsidering this general trend and encourage the
development of flexible and multi-purpose vision modules that
can contribute to a hierarchical architecture for artificial vision
systems.
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