
A Block–based IDE Extension for the ESP32

Patrick Lamprecht, Simon Haller-Seeber and Justus Piater

Department of Computer Science, University of Innsbruck
https://informatik.uibk.ac.at/

Technikerstr. 21a, 6020 Innsbruck, Austria

Abstract. Robotics with state-of-the-art microcontrollers leads to plenty
of unique opportunities for computer science education at school. This
paper introduces an ESP32 extension to Ardublockly specifically de-
signed for educational purposes. It discusses the advantages of block-
based programming for school education and presents the new key fea-
tures within the IDE. To demonstrate the capabilities of the developed
extension for computer science education in schools, an exercise in the
field of swarm robotics was developed.

Keywords: physical computing, swarm robotics at school, block-based pro-
gramming

1 Introduction

When computer science teachers want to address new content such as physical
computing by building real interactive systems that sense and respond within the
real world, they still might use Arduino microcontrollers. Almost all researched
sources use or recommend Arduino Uno boards as hardware to implement their
(physical computing) projects [5,9,10,11]. The most recent revision 3 of the Ar-
duino Uno came onto the market in 2010 and was not further developed [4, p.5].
More modern microcontrollers such as the BBC Micro:Bit started to emerge
in 2015 and were spread with huge efforts by BBC and other partners. The
Micro:Bit Educational Foundation (established in September 2016) pushed this
local educational experiment to a global scale. One of their big contribution was
the vision to develop an “inexpensive, powerful and easy-to-use learning tool”
[1, p. 1]. Although one of the core design goals of the Micro:Bit is to “open a
window into the future” [1, p. 1–2] this failed due to only providing Bluetooth
connectivity and no WiFi on the chip, which makes it hard to cover the evolving
field of IoT applications [8].

The ESP32 from Espressif Systems entered the market in September 2016
as a powerful, low-cost, low-power microcontroller. A device with 30 times more
processor power and 260 times more SRAM compared to an Arduino Uno Revi-
sion 3, as well as a small form factor, low weight, embedded WiFi and Bluetooth,
the ESP32 has been evaluated as an excellent microcontroller for IoT scenarios.
The bread board friendly version ESP32-DevKitC is treated as an alternative
solution for educational purposes. [6, p. 8–9] [7, p.143]

https://orcid.org/0000-0002-1538-5906
https://orcid.org/0000-0002-1898-3362
https://informatik.uibk.ac.at/


2 P. Lamprecht et.al.

As each pupil owns an individual set of previous knowledge and skills in com-
puter science it is our responsibility as teachers to manage these heterogeneous
knowledge levels and to support the learning of pupils in all these different (class)
levels. This creates the didactic demand to provide a flexible, block-based Vi-
sual Programming IDE to effectively teach programming skills within a physical
computing environment.

To address those challenges and to introduce the microcontroller ESP32
to computer science education in schools, we developed an extension to Ar-
dublockly. The extension offers ESP32 support and IoT key features, and is
developed to boost the use of robotics in schools. A case study at the end of
this paper will demonstrate how this block-based IDE can be used to develop
swarm-robotics scenarios with learners in schools. This field was chosen to pro-
vide a beneficial new direction for robotics in education, as swarm robotics is
based on interactive communication between robots and is very rarely discussed
in the field of computer science education.

2 Block-based programming in education

Typically programming is perceived as the act of writing program code in a
problem-oriented programming language. Once we set the focus to the entire
creation process of a program it turns out that the process of developing an
algorithm – as a strategy to solve the problem – is a much more demanding
task than merely translating it into a programming language. Fuchs introduced
the term Algorithmic Thinking as the brain activity which is needed to identify
algorithmic structures (like branches, loops and conditions) to solve a specific
problem. [3, p. 218]

Block-based programming follows this concept of Algorithmic Thinking as
learners do not need to have skills in any program language syntax. They rather
need to show their problem-solving competence as they recognize and apply
control and data structures correctly to develop an executable program solving
particular problems. [6, p. 3]

The Cognitive Load Theory of Sweller [2] revealed that the overload of a
learner’s brain has negative impact on learning results. Block-based program-
ming delivers a positive effect on learning, as it sets a strong focus on creating
the algorithm, while at the same time taking the burden from learners to code
syntax in a text-based programming language. Wintrop and Wilensky [13] con-
firmed in their field study that it is much easier for pupils to learn block-based
programming than text-based programming. Block-based programming enables
lecturers to introduce learners in a step-by-step process to a text-based program-
ming syntax: First they only read the code, then they are asked to comment it
and finally they start to write (small) parts of the program in the text-based
language. This approach enables teachers to associate one problem with multiple
levels of task complexity to teach a heterogeneous group of learners.



A Block–based IDE Extension for the ESP32 3

3 Block-based programming interface for the ESP32

Due to the major benefits that have been evaluated in a detailed comparison
between four Block-based Programming IDE’s (Edublocks for ESP32, TUNIOT
for ESP32, Blocklyduino and Ardublockly) [6, p. 12–14], Ardublockly has been se-
lected as framework to integrate the ESP32 microcontroller and implement new
blocks based on the new possibilities with this more recent microcontroller. After
this evaluation on 18 characteristics within six major categories, the major bene-
fit of Ardublockly was revealed to be its outstanding didactic qualification, as its
view always shows blocks and text-based code simultaneously and it highlights
the generated text-based code for each added block in real-time [6, p. 12–14].
As Ardublockly was released under the Apache 2.0 license it is open for any
modification. Besides the integration of the ESP32 Board into Ardublockly the
implementation consists of eleven new modules which were developed
with 27 new blocks. Each implementation was done based on specified require-
ments. Additionally the advantages for school education were revealed for each
implementation. After the integration of the ESP32 with all its interfaces into
Ardublockly, the primary interest was to develop blocks to use the new features
provided by the hardware. Ardublockly neither offered a possibility to establish
a network communication nor provided implementations of network protocols.
Therefore efforts were spent on one block to connect the microcontroller to
an existing WiFi network, and another to switch the microcontroller
into access-point mode and create its own WiFi network.

On top of this basic WiFi connector implementation any network protocol
can be implemented. As IoT is a central evolution of the last decade within the
field of computer science, the objective was to enable all teachers and lecturers
to include real-life IoT scenarios into their classes. Therefore the IoT Network
Protocol MQTT was fully implemented by establishing four new blocks.
This includes the publish feature from the MQTT protocol (e.g. to publish sensor
values) as well as the subscribe feature of MQTT to constantly receive new
information on a specific topic.

Fig. 1. Part of the introduced blocks. Details to all block implementation can be found
in [6, p. 19–31]



4 P. Lamprecht et.al.

To utilize the Block-based IDE with the ESP32 for applications in the field of
robotics, features to handle robot movements are key. Admittedly in Ardublockly
blocks to handle standard DC motors were missing. Therefore two new blocks
were developed to enable the Motor Driver L298N to run DC Motors by
supporting a two-channel operation. The standard types of movement – forward,
backward, stop – have been implemented directly to avoid low-level pin handling.
To allow full control of movement a speed regulation for the motors is necessary.
This utilizes the technique of pulse width modulation (PWM) to handle the
power-flow. Therefore another 3 blocks were developed to implement the
generic PWM functionality.

A robot uses sensors to receive information from its surroundings and to
enable orientation. One communication channel to these sensors is the I2C bus.
To facilitate error handling with cabling for sensors that use the I2C bus, an I2C
Scanner was implemented using only one block. It detects the connected
I2C devices and prints their unique device addresses to the serial bus.

Typically the output of microcontroller programs developed in Ardublockly
is printed to the serial bus, which is observed by the serial monitor of the Ar-
duino IDE. This turns out to be problematic for robotic scenarios as soon as the
robot starts moving. Therefore the OLED Display Adafruit SSD1306 was
included into the IDE by developing three new blocks as a new option
to deliver outputs to the user.

Another characteristic of microcontrollers is that they store all of their vari-
ables and actual GPIO Pin statuses within their RAM. This leads to an essential
problem when it comes to a (short) power outage at the microcontroller because
all data and status will be gone and the program will restart from scratch. The
decision to equip learners with the possibility to store information permanently
(e.g. GPIO Pin state) and let them recover this information after a reboot led
to the development of two new blocks for EEPROM management. The
blocks allows a string of up to 511 characters to be stored into the EEPROM as
the ESP32 emulates the EEPROM with 512 Byte of its flash memory.

All developments together form the new block-based visual programming IDE
extension to Ardublocky. The Windows and Linux release together with its doc-
umentation can be found at https://github.com/pati5000/Ardublockly-ESP/.
In addition to this documentation, two specific manuals for teachers were cre-
ated, a compact, single-page manual for teachers (Ardublockly ESP Quick Start
Guide) in German and English and an advanced manual in English that enables
teachers to easily develop new blocks.

4 Bringing Swarm Robotics into schools using the ESP32

The IDE is developed to be suitable for beginners as well as advanced learners.
The following exercise in the field of swarm robotics should demonstrate how
powerful the IDE is simply by combining the implemented modules. Swarm
robotics was chosen as it is based on interactive communication between robots

https://github.com/pati5000/Ardublockly-ESP/


A Block–based IDE Extension for the ESP32 5

and provides beneficial new directions for robotics in education. Moreover, swarm
robotics is very rarely discussed in the field of computer science education.

The ultimate goal for learners in this example is to build a self-balancing
seesaw such that a variable number of robots are distributing their weights to
keep the seesaw in balance.

Fig. 2. Seesaw example setup similar to the setup in this video [14]

The seesaw itself is equipped with a ESP32-DevKitC SoC that operates a 3-
axis gyroscope and acceleration sensor (model MPU-6050). This microcontroller
controls the positioning of the seesaw. It reads the positioning information from
the sensor and sends it via a WiFi Network to an MQTT broker using the MQTT
protocol. Another PC in the network is supposed to act as an MQTT broker or
it is assumed that a MQTT cloud service is used.

The robots subscribe via MQTT to receive this information. Each of them
is equipped with a ESP32-DevKitC SoC, a minimum of six infrared sensors, a
3-axis gyroscope and acceleration sensor (model MPU-6050), a L298N motor
driver, as well as DC motors and wheels where the quantity depends on the
individual design. The infrared sensors are needed to enable the robots to detect
the edges of the seesaw. The gyroscope and acceleration sensor is only needed
to determine on which side of the seesaw the robot is located. The motor driver
and the motors are used to move the robot in specific directions to distribute its
own weight. Based on the information of the gyroscope and acceleration sensors
the swarm intelligence will calculate and control the move of the robots.

The swarm intelligence is implemented in one program which will be provided
to all robots. The robots will communicate on three MQTT topics:

– Subscribe the status of the gyroscope and acceleration sensor in the seesaw
(acts as a single source of truth),

– Publish the seesaw and robot status after each cycle of move,
– Negotiate who will take the next action.

The challenge for learners is to develop a protocol for this swarm commu-
nication and decision making of the swarm. Only one robot should move at a
given time. After a move there should be another cycle of measurement and
negotiation before there is a new move.

Most probably it will be required to introduce the learners to the field of
swarm intelligence. Therefore lecturers can run the workshop developed by Sto-
vold [12, p. 203–204]. In this workshop the learners try to find a real-life swarm



6 P. Lamprecht et.al.

intelligence algorithm based on the example of the behaviour of wild fireflies.
The goal is to synchronize their flashing with each other to attract females. The
learners should be allowed some time to discuss their ideas in small groups and
ideally demonstrate their solutions to the whole class. This will prepare them
for the discussion of the algorithm they need to develop for this robot balancing
task.

5 Conclusion

The ESP32 and Ardublocky with its ESP extension is an attempt to boost
education in computer science, physical computing and especially educational
robotics. A modern, powerful and affordable microcontroller and an IDE which
is optimized for educational purposes has been developed as a state-of-the-art
didactic environment for learners at multiple (class) levels to learn programming
at individual depth and speeds by experimenting on physical computing projects.

Learners benefit from block-based programming as algorithmic thinking is
developed without the tedious act of learning the syntax from a specific, text-
based programming language.

By providing a workshop and an advanced programming example on swarm
robotics, this paper picked a field that is rarely discussed in computer science
education but is highly visible in nature. This paper also contributes to the de-
velopment of more holistic, motivating and innovative computer science lectures.
Well-designed computer science education is an effective way to support learners
to gain relevant competences for their future.

References

1. Austin, J., Baker, H., Ball, T., Devine, J., Finney, J., de Halleux, P., Hodges,
S., Moskal, M., Stockdale, G.: The BBC micro:bit – from the UK to the World.
Communications of the ACM (4 2019)

2. Chandler, P., Sweller, J.: Cognitive load theory and the format of instruction. Fac-
ulty of Education - Papers 8 (12 1991). https://doi.org/10.1207/s1532690xci0804 2

3. Fuchs, K.J., Milicic, G.: Algorithmisches Denken im anwendungsorientierten Un-
terricht. Didaktik der Naturwissenschaften. Neue Horizonte in Biologie, Geometrie
und Informatik (2016)

4. Hughes, J.M.: Arduino: A Technical Reference: A Handbook for Technicians, En-
gineers, and Makers. O’Reilly Media, Inc. (2016), media.digikey.com/pdf/Data%
20Sheets/O’Reilly PDFs/Arduino A Technical Reference 9781491921760.pdf

5. Kortuem, G., Bandara, A.K., Smith, N., Richards, M., Petre, M.: Educating the
Internet-of-Things generation. Computer 46(2), 53–61 (2012)

6. Lamprecht, P.: Entwicklung eines Block Programming Interface für den Mikro-
controller ESP32 zum Einsatz im modernen Informatikunterricht (2019), http:
//dx.doi.org/10.13140/RG.2.2.13935.46249

7. Maier, A., Sharp, A., Vagapov, Y.: Comparative analysis and practical implemen-
tation of the ESP32 microcontroller module for the internet of things. In: 2017
Internet Technologies and Applications (ITA). pp. 143–148. IEEE (2017)

https://doi.org/10.1207/s1532690xci0804_2
media.digikey.com/pdf/Data%20Sheets/O'Reilly_PDFs/Arduino_A_Technical_Reference_9781491921760.pdf
media.digikey.com/pdf/Data%20Sheets/O'Reilly_PDFs/Arduino_A_Technical_Reference_9781491921760.pdf
http://dx.doi.org/10.13140/RG.2.2.13935.46249
http://dx.doi.org/10.13140/RG.2.2.13935.46249


A Block–based IDE Extension for the ESP32 7

8. Micro:bit Educational Foundation: Micro:bit Hardware (2020), https://tech.
microbit.org/hardware/

9. Perenc, I., Jaworski, T., Duch, P.: Teaching programming using dedicated Arduino
Educational Board. Computer Applications in Engineering Education (2019)

10. Przybylla, M., Henning, F., Schreiber, C., Romeike, R.: Teachers’ Expectations and
Experience in Physical Computing. In: International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives. pp. 49–61. Springer (2017)

11. Przybylla, M., Romeike, R.: Empowering learners with tools in CS education:
Physical computing in secondary schools. it-Information Technology 60(2), 91–
101 (2018)

12. Stovold, J., Powell, S.: Teaching Object-Oriented Programming in Secondary
Schools Using Swarm Robotics. In: Moro, M., Alimisis, D., Iocchi, L. (eds.) Edu-
cational Robotics in the Context of the Maker Movement. pp. 201–204. Springer
(2020)

13. Wintrop, D., Wilensky, U.: To block or not to block, that is the question: students’
perceptions of blocks-based programming. In: Proceedings of the 14th International
Conference on Interaction Design and Children. pp. 199–208. Marina Umaschi Bers
(2015)

14. Íñiguez, A.: Swarm Technology, Ants, Robots, IoT and Parallel Processing (2016),
https://www.youtube.com/watch?v=ElEHN8tHJnc

https://tech.microbit.org/hardware/
https://tech.microbit.org/hardware/
https://www.youtube.com/watch?v=ElEHN8tHJnc

	A Block–based IDE Extension for the ESP32

