A Comparison of Generic Machine
Learning Algorithms for Image
Classification

Raphaél Marée, Pierre Geurts, Giorgio Visimberga T,
Justus Piater, Louis Wehenkel
Montefiore Institute, University of Liege
Liege, Belgium
http:/ /www.montefiore.ulg.ac.be/~maree/

t On leave from Politecnico Di Bari
Bari, Italy

Abstract

In this paper, we evaluate 7 machine learning algorithms for image clas-
sification including our recent approach that combines building of en-
sembles of extremely randomized trees and extraction of sub-windows
from the original images. For the approach to be generic, all these meth-
ods are applied directly on pixel values without any feature extraction.
We compared them on four publicly available datasets corresponding to
representative applications of image classification problems: handwrit-
ten digits (MNIST), faces (ORL), 3D objects (COIL-100), and textures
(OUTEX). A comparison with studies from the computer vision litera-
ture shows that generic methods can come remarkably close to specialized
methods. In particular, our sub-window algorithm is competitive with
the state of the art, a remarkable result considering its generality and
conceptual simplicity.

1 Introduction

Image classification is an important problem which appears in many applica-
tion domains like quality control, biometry (face recognition), medicine, office
automation (character recognition), geology (soil type recognition)...

This problem is particularly difficult for traditional machine learning algo-
rithms mainly because of the high number of input variables that may describe
images (i.e. pixels). Indeed, with a high number of variables, learning methods
often suffer from a high variance (models are very unstable) which deteriorates
their accuracy. Futhermore, computing times can also be detrimental in such
extreme conditions. To handle this high dimensionality, image classication sys-
tems usually rely on a pre-processing step, specific to the particular problem
and application domain, which aims at extracting a reduced set of interesting
features from the initial huge number of pixels. The limitation of this approach
is clear: When considering a new problem or application domain, it is necessary



to manually adapt the pre-processing step by taking into account the specific
characteristics of the new application.

At the same time, recent advances in automatic learning have produced new
methods which are able to handle more and more complex problems without
requiring any a priori information about the application. These methods are
increasingly competitive with methods specifically tailored for these domains.
In this context, our aim in this paper is to compare several of these recent
algorithms for the specific problem of image classification. Our hypothesis is
that it will be possible to obtain with some of these approaches competitive
results with specialized algorithms without requiring any laborious, manual
pre-processing step.

In this goal, our approach was to choose several problems which we think
are representative of the image classification domain and then to apply sev-
eral learning algorithms on each of these problems, without any specific pre-
processing, i.e. by directly using the pixel values. Among recent learning
algorithms potentially able to handle this complex problem, we have chosen a
panel of 7 algorithms, including one generic approach that we have recently
proposed for image classification [17]. These algorithms will be compared es-
sentially on two criteria: accuracy of the models and computational efficiency
(of the learning and test phases). Although several of these algorithms have
been already applied to image classification, usually these studies either do not
compare several algorithms or are focused on only one particular application
problem.

The paper is structured as follows. In Section 2, we briefly describe the
machine learning algorithms chosen for our comparison. Of course, we spend
more time on the description of our own proposal. The essential characteristics
of the four datasets used for the comparison are summarized in Section 3. The
experimentation protocols and the results of the experiments are discussed in
Section 4. We end the paper with our conclusions and discusssions about future
work directions.

2 Algorithms for generic image classification

The input of a generic learning algorithm for image classification is a training
set of pre-classified images,

LS = {(4%c"),i=1,...,N}

where A® is a W, x W, matrix describing the image and ¢* € {1,...,M} is
its classification (among M classes). The elements a};’l of At (k=1,...,W,,
l=1,...,W,) describe image pixels at location (k,!) by means of an integer
value in the case of grey level images or by means of 3 integer RGB values in
the case of color images.

Then, to handle information from pixels without any pre-processing, the
learning algorithm should be able to deal efficiently with a large amount of
data, first in terms of the number of images and classes of images in the learning



set, but more importantly in terms of the number of values describing these
images (i-e. the attributes). Assuming for example that W, = W, = 128, there
are already 128 x 128 = 16384 integer values describing images and this number
is further multiplied by 3 if colors are taken into account.

We describe below seven classification algorithms that we think could work
in such difficult conditions and that we have compared in our experiments.
The common characteristics of these methods is that they are essentially non
parametric and that they can efficiently handle very large input spaces.

2.1 Decision trees

Decision tree induction [3] is one of the most popular learning algorithms with
nice characteristics of interpretability, efficiency, and flexibility. However, the
accuracy of this algorithm is often not competitive with other learning methods
due to its high variance [9]. In this study, we therefore do not expect decision
trees to be satisfactory but we still evaluate it as it is the basis of other promising
and recent algorithms.

2.2 Ensemble of decision trees

Ensemble methods are very popular in machine learning. These methods im-
prove an existing learning algorithm by combining the predictions of several
models obtained by perturbing either the learning set or the learning algorithm
parameters. They are very effective in combination with decision trees that
otherwise are often not competitive with other learning algorithms in terms of
accuracy. Several ensemble methods have been applied to image classification
problems, either in combination with traditional algorithms or with ad hoc
computer vision system (e.g. in [7] and [12]). In this paper, we propose to
compare four different ensemble methods based on decision trees. Two of these
methods are the now famous bagging and boosting techniques. The two other
methods, random forests and extra-trees, are two recent methods that essen-
tially improve bagging in terms of accuracy but also in terms of computational
efficiency. As the extra-trees method is our own proposal, we give below a more
detailed description of it.

2.2.1 Bagging

Bagging [1] (for “boostrap aggregating”) consists in drawing T’ boostrap learn-
ing samples from the original learning set (by random re-sampling without
replacement) and then in producing from each of them a model using the clas-
sical decision tree algorithm. Then, a prediction is computed for a test instance
by taking the majority class among the predictions given by the T trees for this
instance.



2.2.2 Random forests

With Random Forests [2], each of the T trees is grown on a bootstrap sample of
the original learning set like in bagging. But here, during tree construction, at
each node of the tree, only a small number (k) of attributes randomly selected
among the whole set of attributes is searched for the best test. In [2], it has
been shown that random forests give better results than bagging and often
yield results competitive with boosting (see below). It is also faster than these
two algorithms since it requires to consider only a small subset of all attributes
when developping one node of the tree.

2.2.8 FEztremely randomized trees

Extremely randomized trees [9], [10] (extra-trees in short) are another ensem-
ble method for decision trees that is extreme in terms of the randomization
introduced when growing the trees of the ensemble. Indeed, an extremely ran-
domized tree is grown by selecting at each node of the tree the parameters of
the test fully at random. In the context of image classification, this yields the
very simple recursive function shown in Table 1 to build an extra-tree. Several
extra-trees are then built according to this algorithm and their predictions are
aggregated just like in other ensemble methods. Experiments in [9] have shown
that this method gives better results than bagging and is also competitive with
boosting. Its main advantage with respect to other ensemble methods for deci-
sion trees is that it is also extremely fast. The complexity of the algorithm of
Table 1 is independent of the number of attributes and, like other decision tree
based algorithms, it is (empirically) linear with respect to the learning sample
size.

2.2.4 Boosting

Boosting also builds an ensemble of decision trees but, contrary to previous
ensemble methods, it produces the models sequentially and is a deterministic
algorithm. It sequentially applies the learning algorithm to the original learn-
ing sample by increasing weights of misclassified instances. So, as the iteration
proceeds, the models are forced to focus on the “difficult” instances. Several
variants of this algorithm have been proposed in the literature. In our experi-
ment, we will use the original algorithm, called AdaBoost.M1, described in [8]
and we will apply it to decision trees.

2.3 Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm originally mo-
tivated by advances in statistical learning theory [24]. It first applies a transfor-
mation of the initial input space into a new potentially very high dimensional
transformed input space where classes are very likely to be linearly separable
and then deriving a hyperplane to separate each pair of classes in this trans-
formed input space. There exist several efficient implementations of this algo-



Build_extra_tree(input: a learning sample, LS):

e If LS contains images all of the same class, return a leaf with this class
associated to it;

o Otherwise:

1. Set [ax,; < a¢p]=Choose_a_random _split(LS);

2. Split LS into LSyt and LSyigns according to the test [ag,; < an)
and build the subtrees 7. r; = build_extra_tree(LSiest) and Trighe =
build_extra_tree(LSicf¢) from these subsets;

3. Create a node with the test [ay; < as], attach Tiepy and Trigne as
successors of this node and return the resulting tree.

Choose_a_random split(LS):
1. Select a pixel location (k,1) at random;

2. Select a threshold ay, at random according to a distribution N (ug.1,0%,1),
where p; and oy, are resp. the mean and standard deviation of the pixel
values ay,; in LS;

Table 1: Extra-tree induction algorithm for image classification

rithm. In our experiment, we use the algorithm proposed in [5] with Gaussian
and polynomial kernels. SVMs already gave very impressive results in terms
of accuracy and computational efficiency in many complex domains including
image classification problems (e.g. in [4], [11] or [23]).

2.4 Extra-trees with sub-window extraction

Even though ensemble methods with decision trees can handle a very large
number of input variables efficiently (especially our extra-trees), the tree com-
plexity (and, hence, the number of pixels that are combined along a path from
the root node to a leaf in the tree) is limited by the size of the learning set.
When the number of images is small compared to the total number of pixels, a
tree cannot combine enough pixels to provide acceptable models. To solve this
problem, we have adopted another generic approach that is popular in image
classification (e.g. [13] and [6]). It artificially augments the number of images in
the learning set by building models from sub-windows extracted from original
images of the learning set.

Although it can be combined with any learning algorithm, we have combined
this idea with extra-trees, essentially for computational efficiency reasons. In
this variant, the construction of one extra-tree from the ensemble is carried out
in two steps, given a window size w; X we and a number N,,:

e Extract N, sub-windows at random from training set images (by first selecting

an image at random from LS and then selecting a sub-window at a random



Table 2: Database summary

DBs # images # attributes # classes
MNIST 70000 784 (28 28 % 1) 10
ORL 400 10304 (92 %112 1) 40
COIL-100 7200 3072 (32%32%3) 100
OUTEX 864 49152 (128 * 128 * 3) 54

location in this image) and assign to each sub-window the classification of its
parent image;

o Grow an extra-tree to classify these IV, sub-windows by using the w;.w2 pixel
values that characterize them.

To make a prediction for an image with an ensemble of extra-trees grown from
sub-windows, the following procedure is used:

e Extract all possible sub-windows of size w1 X w» from this image;

o Assign to the image the majority class among the classes assigned to the sub-
windows by the ensemble of extra-trees.

3 Four image classification problems

To evaluate the machine learning algorithms for generic image classification
and to allow replication of our experiments, we selected four publicly available
datasets corresponding to common image classification problems: recognition
of handwritten characters (here, digits), faces, objects, and textures. The main
characteristics of the datasets are summarized in Table 2 and an overview of
their images is given in Figure 1. We briefly describe each problem below.

3.1 MNIST, database of handwritten digits

The MNIST database' [16] consists of 70000 handwritten digits that have been
size-normalized and centered in images of 28 x 28 pixels with 256 grey levels
per pixel. The goal is to build a model that classifies digits. Different writing
styles are characterized by thin or thick strokes, slanted characters, etc.

3.2 ORL, face database

The ORL database? from AT&T contains faces of 40 distinct persons with
10 images per person that differ in lighting, facial expressions (open/closed
eyes, smiling/not smiling), facial details (glasses/no glasses) and contain minor
variations in pose. The size of each image is 92 x 112 pixels, with 256 grey
levels per pixel. The goal is to identify faces.

Lhttp://yann.lecun.com/exdb/mnist/
2http://www.uk.research.att.com /facedatabase.html



Figure 1: Overview of the four databases: MNIST, ORL, COIL-100, OUTEX

3.3 COIL-100, 3D object database

The Columbia University Object Image Library® COIL-100 is a dataset with
colored images of 100 different objects (boxes, bottles, cups, miniature cars,
etc.). Each object was placed on a motorized turntable and images were cap-
tured by a fixed camera at pose intervals of 5 degrees. This corresponds to 72
images per object. In COIL-100, each image has been normalized to 128 x 128
pixels and are in true color. For our experiments, we have resized the original
images down to 32 x 32 pixels.

3.4 OUTEX, texture database

Outex? [21] provides a framework for the empirical evaluation of texture anal-
ysis algorithms. The Contrib_TC_0006 dataset we took from Outex has been
derived from the VisTeX dataset. It contains 54 colored textures and 16 images
of 128 x 128 pixels in true colors for each VisTex texture.

4 Experiments

In this section, the seven classification algorithms are compared on the four
problems. Before describing the experimentation protocol and discussing the
results, the next subsection discusses some implementation details and the way
we have tuned the different parameters of the methods.

3http://www.cs.columbia.edu/CAVE/
4http://www.outex.oulu.fi/



4.1 Implementation and determination of the
parameters

For all algorithms except for SVM, we have used our own software which is
implemented in C. For SVM, we have used the LibSVM ® package which is a
C++ implementation of the algorithm presented in [5].

For each machine learning method, the values of several parameters need
to be fixed. We discuss this tuning stage for each method below. For some
algorithms, the values of the parameters are fixed on the basis of the resulting
error on the test sample. We are aware that this would lead to slightly under-
estimated error rates, however, we believe that this will not be detrimental for
comparison purposes, especially since the number of parameters in each method
is quite small.

Classical decision trees are fully developed, i.e. without using any pruning
method. The score measure used to evaluate tests during the induction is
the score measure proposed in [25] which is a particuler normalization of the
information gain. Otherwise our algorithm is similar to the CART method [3].

Ensemble methods all are influenced by the number of trees T' which are
aggregated. Usually, the more trees are aggregated, the better the accuracy.
So, in our study, we have used for each problem and for each algorithm, a
number of trees that appeared to be large enough to give stable error rates
on the test samples. Usually, extra-trees that are more randomized requires
more trees than the other variants (from 50 on MNIST to 500 on ORL and
COIL-100). Extra-trees with sub-windows however are stabilized much sooner
(10 trees are sufficient in all problems).

Random forests depends on an additional parameter k which is the number
of attributes randomly selected at each test node. In our experiments, its value
was fixed to the default value suggested by the author of the algorithm which
is the square root of the total number of attributes. According to [2] this value
usually gives error rates very close to the optimum.

Boosting does not depend on another parameter but it nevertheless requires
that the learning algorithm does not give perfect models on the learning sample
(so as to provide some misclassified instances). Hence, with this method, we
used with decision trees the stop-splitting criterion described in [25]. It uses an
hypothesis testing based on the G? statistic [14] to determine the significance
of a test. In our experiments, we fixed the nondetection risk « to 0,005.

For SVM, we used LibSVM with default parameters. We tried their imple-
mentation of linear, polynomial (with degree 2 and 3) and radial basis kernel
functions. Again, the best kernel was choosen on the test sample.

For extra-trees on sub-windows, additional parameters are the size of sub-
windows w1l x w2 and the number N,, of them extracted during the learning
phase. Like for the number of trees in the ensemble, accuracy appears to be
a monotonically increasing function of N,. On the last three problems, N,
was fixed to 120000. On MNIST, as the initial learning sample size is already
quite large, we further increase this number to 360000. Accuracy is on the

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm/



Table 3: Results on all problems

MNIST ORL
Algorithm Error rate Algorithm Error rate
Classical Decision Tree 11.5% Classical Decision Tree 29.25% + 6.89
Bagging (T = 50) 4.42% Bagging (T = 50) 9.5% + 5.7
Extra-Trees (T = 100) 3.17% Boosting (T = 50) 3.75% + 2.79
Random Forests (T = 100) 3.0% Random Forests (T"= 200) | 1.25% =+ 1.68
Ezxtra-Trees + Sub-Window 2.54% Eztra-Trees (T = 500) 1.25% + 1.68
Boosting (T = 50) 2.29% SVMs (linear) 1.25% £ 1.25
SVMs (poly2) 1.95% Extra-Trees + Sub-Window 0.5% + 1.0
LeNet-4[16] 0.7% - -
COIL-100 OUTEX
Algorithm Error rate Algorithm Error rate
Classical Decision Tree 20.80% Classical Decision Tree 89.35%
Bagging (T = 50) 2.24% Bagging (T = 50) 73.15%
Egztra-Trees (T = 500) 1.96% SVMs (linear) 71.99%
Random Forests (T' = 500) 1.17% Boosting (T = 50) 69.44%
Boosting (7" = 100) 0.54% Random Forests (T' = 1000) 66.90%
SVMs (linear) 0.44% Extra-Trees (T = 1000) 65.05%
Eztra-Trees + Sub-Window 0.35% Egztra-Trees + Sub-Window 2.78%
Local Affine Frames [20] 0.1% RGB Histograms [18] 0.2%

other hand very much influenced by the size of sub-windows. The optimal size
is problem-dependent and has been tuned manually on each problem.

4.2 Protocols and results

The test protocols are discussed in this section on each problem. Results are
summarized in Table 3. For each problem, the methods are sorted by decreasing
error rates.

4.2.1 MNIST

In the literature, the first 60000 images are often used for learning and the
remaining 10000 examples are used for validation. In [16], the results of many
learning methods are reported, they range from 12% with a one-layer neural
network to 0.7% with the authors’ method “Boosted LeNet-4”. Our results are
obtained by strictly following this protocol. Error rates with generic methods
vary from 11.5% with a classical decision tree to 1.95% with support vector
machines. Using sub-windows, the error rate is 2.54% (with T = 10, N, =
360000 and w; = wy = 24) which is less accurate than Boosting and SVM. In
[4], an error rate of 1.1% was obtained with another implementation of SVM.

4.2.2 ORL

In the literature, various algorithms with pre-processing steps have been tested
on this dataset, including hidden Markov models [19], convolutional neural
networks [15], SVMs [11], and variants of nearest neighbors [22]. But the
protocol for testing is different from one paper to another. Given the fact
that this database is quite small and as there is no well-defined test protocol,



our experiments use 10-fold cross-validation to provide a fair assessment of the
generic methods. It means that the learning set was randomly partitioned into
10 learning samples with 360 images (9 views per subject) while the remaining
images (1 view per subject) used for tests samples. Following this procedure,
we get an average error rate (10 runs) of 29.25%, with a classical decision tree,
down to 0.5% with our sub-windows (with 7' = 10 and wy = we = 32). Random
Forests, Extra-Trees, and SVM give a slightly inferior result with an average
error rate of 1.25%.

4.2.3 COIL-100

This problem was approached in the literature with different methods, some of
them specific to 3D object recognition, that use different matching techniques
of local or global features (color histograms, eigenwindows, locale affine frames
[20], etc.). For the learning sample, we took 18 views for each of the 100
objects, starting with the pose at 0 and then going on with intervals of 20. The
remaining views were devoted to the test sample. Methods in the computer
vision literature provide error rates from 12.5% to 0.1%. Using this protocol,
classical decision tree yields an error rate of 20.80% that drops down to 0.35%
with the combination of extra-trees and sub-windows (with 7' = 10 and wl =
w2 = 16). Boosting and SVMs are close to our approach with respectively an
0.54% and 0.44% error rate.

4.2.4 OUTEX

This dataset has a small number of objects but a very large number of at-
tributes. The OUTEX framework precisely defines the images to use in the
learning and test sample (8 images for each texture in both ensembles). The
paper [18] evaluates several feature extraction techniques and image transfor-
mation methods in combination with a traditional nearest neighbors algorithm.
Their resulting error rates on this dataset vary from 9.5% to 0.2%. Using the
same protocol, most of the popular learning methods are especially bad with
an error rate varying from 89.35% (classical decision tree) to 66.90% (random
forests). Extra-trees are also not satisfactory with an error rate of 65.05% (even
with 7' = 1000). On the other hand, sub-windows reduce error rates down to
2.78% (with T = 10 and wl = w2 = 4). These results can be explained by
the nature of the problem. As textures are generally based on the repetition
of small patterns, one can extract small sub-windows from the original images
that are quite well classified by models since they contain sufficient information
to classify the whole image. This statement is further confirmed by the fact
that small sub-windows of size 4 x 4 give the best results on this problem. On
the other hand, extra-trees alone and other learning algorithms are not able
to find relevant information among the high number of pixels describing the
textures because the characteristics patterns are not associated with specific
image locations.



4.3 Discussion

As expected, for each problem, classical decision trees are not satisfactory. This
is explained by the high variance of this method. However, ensemble methods
are well-known in the literature for improving accuracy and this is confirmed
by our experiments. Indeed, Bagging and in a more impressive way Boosting
give much more accurate results for each problem. Random forests and Extra-
Trees are competitive with Boosting. SVM is very close to boosting but maybe
slightly better in average. Extra-trees with sub-windows is the best generic
method in terms of accuracy on three of the four problems (ORL, COIL-100,
OUTEX) but it is nevertheless beaten by boosting and SVM on MNIST. On
all problems, the best results, always obtained either by SVM or extra-trees
with sub-windows, are competitive with state-of-the-art techniques in computer
vision. This is remarkable considering that these algorithms are very easy to
use.

Another criterion for comparing algorithms for computer vision is their com-
putational efficiency. To give an idea of the difference between the algorithms,
Table 4 reports the computing times 8 for learning each model on the COIL-
100 and MNIST problems. Extra-trees is undoubtedly the fastest method. On
COIL-100, growing 500 extra-trees is even faster than growing one single de-
cision tree. Not surprisingly, bagging and boosting that build T trees with
the classical decision tree induction algorithm are the slowest methods. Ran-
dom forests are much faster but still slower than the extra-trees (especially
on COIL-100). SVMs are very fast on COIL-100 but slower on MNIST which
consists of much more images. Our sub-windows method increases significantly
the computing times of extra-trees but the resulting algorithm is still much
faster than bagging and boosting on COIL-100. On MNIST, high computing
times are attributed to the augmented learning sample (IV,, = 360000).

The prediction times for all tree-based algorithms are negligible. With sub-
windows however, the test of a new image requires the propagation of all sub-
windows in the trees of the ensemble and it depends mostly on the size of the
sub-windows. For example, it takes about 54s to predict the classes of the 5400
test objects on COIL-100 and about 12s to test the 10000 images on MNIST.
Although our implementation is not optimal, we believe that these times are
nevertheless reasonable. With SVM, prediction times depends on the number
of support vectors. On both problems, it was the slowest method for testing
with a prediction time of 3m19s for COIL-100 and 8m09s on MNIST.

5 Conclusions

We compared seven generic algorithms for image classification including our
recent approach that combines building of ensembles of extremely randomized
trees and extraction of sub-windows from the original images. Classical deci-
sion tree, Bagging, Boosting, Random Forests and SVM are the other meth-

60n a Pentium IV 2.53Ghz.



Table 4: Learning time on MNIST and COIL-100

MNIST COIL-100

Algorithm Time Algorithm Time
Boosting (T = 50) 6h22m29s Boosting (1" = 100) 5h25m01s
Eztra-Trees + Sub-Window | 5h06m24s Bagging (T = 50) 1h53m25s

Bagging (T = 50) 5h01mlls Random Forests (T' = 500) 51m34s

SVMs (poly2) 28m28s Eztra-Trees + Sub-Window | 45m45s

Random Forests (T' = 100) 20m16s Classical Decision Tree 3mO08s

Eztra-Trees (T = 100) 11m39s SVMs (linear) 1m02s

Classical Decision Tree 7ml7s Egztra-Trees (T = 500) 9s

ods we evaluated on four different image classification problems for which test
protocols were rigorously specified. The accuracy of our generic sub-window
technique is the best on three of the four problems and is comparable to state-
of-the-art techniques but slightly inferior to the best known results. In fact, our
experiments demonstrate that generic methods, in particular our sub-window
algorithm, can come remarkably close to specialized methods. In many prac-
tical application contexts, a slight performance drop in exchange for reduced
task-specific pre-processing and manual intervention may constitute a very de-
sirable trade-off.

The future directions are two-fold. First, as our wrapping method of extrac-
tion and classification of sub-windows from images is generic, it is attractive to
combine it with other learning algorithms (in particular Boosting and SVMs).
Second, experiments should be carried out to compare the robustness of these
generic approaches to rotation, scaling, occlusion, and noise. Although some
algorithms are close in terms of accuracy, it is not sure that they would be
all affected in the same way by these perturbations. In [17], we provided a
preliminary study of the behavior of our sub-window approach in the presence
of rotation, scaling, and occlusion on the COIL-100 problem. We observed
good robustness to small transformations introduced in test images and also
suggested some improvements that preserve the generic nature of the algorithm.

6 Acknowledgments
Raphaél Marée is supported by the “Région Wallonne” (Belgium). Pierre
Geurts is a research associate of the F.N.R.S., Belgium.
References
[1] L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
[2] L. Breiman. Random forests. Machine learning, 45:5-32, 2001.

[3] L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification
and Regression Trees. Wadsworth International (California), 1984.



[4]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. J. C. Burges and B. Scholkopf. Improving the accuracy and speed of
support vector machines. In M. C. Mozer, M. 1. Jordan, and Thomas
Petsche, editors, Advances in Neural Information Processing Systems, vol-
ume 9, page 375. The MIT Press, 1997.

Chih-Chung Chang and Chih-Jen Lin. Libsvm : a library for support
vector machines. Technical report, Computer Science and Information
Engineering, National Taiwan University, 2003.

J. Dahmen, D. Keysers, and H. Ney. Combined classification of hand-
written digits using the ’virtual test sample method’. In Proc. Second
International Workshop, MCS 2001 Cambridge, UK, pages 99-108, July
2001.

H. Drucker. Fast decision tree ensembles for optical character recognition.
In Proc. Fifth Annual Symposium on Document Analysis and Information
Retrieval, pages 137-147, 1996.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.

In Proc. Thirteenth International Conference on Machine Learning, pages
148-156, 1996.

P. Geurts. Contributions to decision tree induction: bias/variance trade-
off and time series classification. Phd. thesis, Department of Electrical
Engineering and Computer Science, University of Liege, May 2002.

P. Geurts. Extremely randomized trees. Technical report, Department of
Electrical Engineering and Computer Science, University of Liege, 2003.

G.-D. Guo, S. Li, and K. Chan. Face recognition by support vector ma-
chines. In Proc. International Conference on Automatic Face and Gesture
Recognition, 196-201., 2000.

G.-D. Guo and H.-J. Zhang. Boosting for fast face recognition. In Proc.
IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces
and Gestures in Real-Time Systems, pages 96-100, 2001.

M.S. Hoque and M. C. Fairhurst. A moving window classifier for off-
line character recognition. In Proc. of the Seventh International Work-
shop on Frontiers in Handwriting Recognition, Amsterdam, pages 595—600,
September 2000.

T.O. Kvalseth. Entropy and correlation : Some comments. IEEE Trans.
on Systems, Man and Cybernetics, SMC-17(3):517-519, 1987.

S. Lawrence, C. Lee Giles, A. C. Tsoi, and A. D. Back. Face recognition:
A convolutional neural network approach. IEEE Transactions on Neural
Networks, 8(1):98-113, 1997.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proc. of the IEEE, 86(11):2278-2324,
1998.

R. Marée, Geurts P., Piater J., and Wehenkel L. A generic approach for
image classification based on decision tree ensembles. Submitted.

T. Menp, M. Pietikinen, and J. Viertola. Separating color and pattern
information for color texture discrimination. In Proc. 16th International
Conference on Pattern Recognition, 2002.

A. Nefian and M. Hayes. Face recognition using an embedded HMM.
In Proc. IEEE Conference on Audio and Video-based Biometric Person
Authentication, pages 19-24, March 1999.

S. Obrzalek and J. Matas. Object recognition using local affine frames
on distinguished regions. In FElectronic Proceedings of the 13th British
Machine Vision Conference, University of Cardiff, 2002.

T. Ojala, T. Menp, M. Pietikinen, J. Viertola, J. Kyllnen, and S. Huovi-
nen. Qutex - new framework for empirical evaluation of texture analysis
algorithms. Proc. 16th International Conference on Pattern Recognition,
Quebec, Canada, 1:701-706, 2002.

R. Paredes and A. Perez-Cortes. Local representations and a direct vot-
ing scheme for face recognition. In Pattern Recognition in Information
Systems, Proc. 1st International Workshop on Pattern Recognition in In-
formation Systems, pages 71-79, July 2001.

M. Pontil and A. Verri. Support vector machines for 3d object recogni-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(6):637-646, 1998.

V.N. Vapnik. The nature of statistical learning theory. Springer Verlag,
1995.

L. Wehenkel. Automatic learning techniques in power systems. Kluwer
Academic, Boston, 1998.



