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ABSTRACT

A novel and generic approach for image classification is presented.
The method operates directly on pixel values and does not require
feature extraction. It combines a simple local sub-window extrac-
tion technique with induction of ensembles of extremely random-
ized decision trees. We report results on four well known and pub-
licly available datasets corresponding to representative applica-
tions of image classification problems: handwritten digits (MNIST),
faces (ORL), 3D objects (COIL-100), and textures (OUTEX). A
comparison with studies from the computer vision literature shows
that our method is competitive with the state of the art, an inter-
esting result considering its generality and conceptual simplicity.
Further experiments are carried out on the COIL-100 dataset to
evaluate the robustness of the learned models to rotation, scaling,
or occlusion of test images. These preliminary results are very
encouraging.

1. INTRODUCTION

Image classification is an important problem which is particularly
difficult for traditional machine learning algorithms mainly be-
cause of the high number of input variables that may describe im-
ages (i.e. pixels). Indeed, with a high number of variables, these
methods tend to produce very unstable models with low gener-
alization performance (for decision trees, see [1]). Furthermore,
computing times can also be detrimental in such extreme condi-
tions. To handle this high dimensionality, image classification sys-
tems usually rely on a pre-processing step, specific to the partic-
ular problem and application domain, which aims at extracting a
reduced set of interesting features from the initially huge number
of pixels. This reduced set is then used as new input variables
for traditional learning algorithms, possibly tuned for the specific
application. The limitation of this approach is clear: When con-
sidering a new problem or application domain, it is necessary to
manually adapt the pre-processing step by taking into account the
specific characteristics of the new application. But, at the same
time, recent advances in automatic learning have produced new
methods that are able to handle more and more complex problems
without requiring any a priori information about the application.
These methods are increasingly competitive with methods specifi-
cally tailored for these domains.

In this paper, we evaluate a recent and generic machine learn-
ing algorithm based on decision tree ensembles that has been shown
to perform remarkably well on a variety of tasks [1]. Motivated by
the problem of image classification, we then introduce an exten-
sion of this algorithm that augments its generality even further.

Both forms of the algorithm operate directly on the pixel values
and do not extract any task-specific features. To demonstrate the
performance of the algorithms, and of the extended version in par-
ticular, we have chosen four typical problems in image classifica-
tion, and have ran exactly the same algorithm on each of them. In
all four cases, the extended algorithm produces results competitive
with the state of the art.

In section 2, we formally define the problem of image clas-
sification and we describe the two parts of our generic algorithm:
extremely randomized trees (extra-trees) and local sub-window ex-
traction. Section 3 presents the results of our experiments. The
accuracy of our algorithm is compared to previous results on four
datasets presented in the literature. Finally, the robustness of the
method to rotation, scaling, and occlusion is analysed on the COIL-
100 problem.

2. PROPOSED ALGORITHMS

The input of a generic learning algorithm for image classification
is a training set of pre-classified images,

LS ={(A",¢),i=1,...,N}

where A* is a W, x W, matrix describing the image and ¢’ €
{1,..., M} isits classification (among M classes). The elements
aj, of A" (k=1,...,Ws,1=1,...,W,) describe image pixels
at location (k, 1) by means of an integer value in the case of grey
level images or by means of 3 RGB values in the case of color
images.

To handle information from pixels without any pre-processing,
the learning algorithm should be able to deal efficiently with a
large amount of data, first in terms of the number of images and
classes of images in the learning set, but more importantly in terms
of the number of values describing these images (the attributes).
Assuming for example that W, = W, = 128, there are already
128128 = 16384 integer values describing images and this num-
ber is further multiplied by 3 if colors are taken into account.

In the next section, we present a recent method that is based on
ensembles of decision trees. Several obvious shortcomings of this
basic algorithm are simultaneously addressed by adding a wrapper
technique that consists in classifying local sub-windows extracted
from the original images. This latter variant is described in Sub-
section 2.2.

2.1. Ensemble of Extremely Randomized Trees

Ensemble methods are very popular in machine learning. These
methods consist in improving an existing learning algorithm by



combining the predictions of several models. They are very ef-
fective when used with decision trees that otherwise are often not
competitive in terms of accuracy with other learning algorithms.
We think that ensemble methods based on decision trees are a
good starting point for designing a generic system for image clas-
sification. They do not make any a priori assumption about the
application problem, they have been successfully applied to many
complex problems in various application domains (see e.g. [2] for
some recent applications) and, moreover, they compare very fa-
vorably with other state-of-the-art algorithms (e.g. Support Vector
Machines [3]). In this context, we first propose to apply a par-
ticular ensemble method for decision trees to image classification
problems. The method consists in building many extremely ran-
domized trees (extra-trees). It was first proposed in [1].

Extremely randomized trees have the same structure as clas-
sical decision trees [4] but the induction algorithm is different. In
the classical induction algorithm, the tree is grown in a top-down
fashion by using the learning examples and searching at each node
for the test that maximizes a score measure (e.g. a normalization of
Shannon information [5] that evaluates the ability of a test to sep-
arate instances of the current learning subset). On the contrary, in
the extremely randomized induction algorithm [1], a tree is grown
by selecting at each node the test attribute fully at random and its
threshold is chosen randomly around the mean of its current val-
ues. In the context of image classification, this yields the very
simple recursive function shown in Table 1 where LS is initialized
with all the learning examples . Tests at the internal nodes are of
the form [ax,; < a:x] that compare the value of the pixel at po-
sition (k, 1) to a threshold a:x. Several extra-trees are then built
from the same learning sample (in practice as many as possible)
and, to make a prediction for an image, we propagate successively
the entire image into all the trees and we assign to the image the
majority class among the classes given by the trees.

Experiments in [6] have shown that this method compares fa-
vorably with other ensemble methods with trees on typical ma-
chine learning databases. Its good accuracy is explained by a
bias/variance analysis in [1]. Briefly, since each tree is fully grown
until it perfectly classifies the learning sample, the method has a
low bias. At the same time, the randomization yields a set of trees
that are as uncorrelated as possible, which yields a small vari-
ance when their predictions are aggregated. Among tree ensem-
ble methods, the extremely randomized algorithm presented here
is also especially interesting in the context of images because of its
computational efficiency. Indeed, to a certain extent 2, its complex-
ity is not related to the number of pixels in the image since at each
tree node, an attribute and a threshold are selected at random. As-
suming that the trees are approximately balanced, tree depth will
be close to log N. Since the development of one level requires or-
der IV operations, the complexity of the algorithm is thus NV log N
with respect to the number of images in the learning set, indepen-
dently of the number of pixels. Furthermore, the prediction of one
unseen image with one tree requires on average only log N tests
(each of which involves comparing the value of a pixel to a thresh-

Linthis algorithm, the threshold on the score measure, s, , ensures that
atest is quite discriminating despite its random selection. Indeed, using
this threshold, if a random test is not able to separate well instances, then
another random test is considered. In al our experiments, this threshold
will be fi xed to 0.1 (which is 10% of the maximal possible value of the
score).

2In practice, several random selections are sometimes necessary to fi nd
an informative test according to the score threshold. But, usualy, their
number is small with respect to the total number of attributes.

old) and hence remains very fast even for very large learning set
sizes.

Build_extra_tree(LS):

e If LS contains images all of the same class, return a leaf
with this class associated to it;

e Otherwise:

1. Set[ar, < an]=Choose_a_random_split(LS);

2. Split LS into LSies+ and LSyign: according to
the test [ar; < awn] and build the subtrees
Tieg+ = build_extra_tree(LSics:) and Trignt =
build_extra_tree(LSyign:) from these subsets;

3. Create a node with the test [ar, < a:s], attach Tie s
and 7,sgn: as successors of this node and return the
resulting tree.

Choose_a_random_split(L.S):
1. Select a pixel location (%, 1) at random;

2. Select a threshold a:p at random according to a distribu-
tion N(pr,1, ok,1), Where ug; and oy, are respectively the
mean and standard deviation of the pixel values ay; in LS;

3. If the score of this test is greater than a given threshold s,
return the test [ax,; < a¢n);

4. Otherwise, return to step 1 and select a different location. If
all locations have already been considered, return the best
test so far.

Table 1. Extra-tree algorithm for image classification

2.2. Local Sub-window Extraction

Even though the previous method handles a large number of input
variables efficiently, the number of tests on pixels (that are com-
bined along a path from the root node to a terminal node) in a
tree is limited by the size of the learning set. In practice, when
the number of images available for learning is small compared to
the total number of pixels, the algorithm cannot combine enough
tests on pixels to provide acceptable models. Furthermore, from
the point of view of computer vision, this algorithm is a global
approach to image classification as it operates on the entire image
without focusing on local appearances. Limitations of global ap-
proaches are well known in image classification, including sensi-
tivity to occlusions, scale changes and different viewpoints or ori-
entations. Another drawback of this global method is that it does
neither consider possible repetition of small patterns nor their un-
specific image locations.This is particularly true in texture images
but this must also be considered to ensure translation invariance.

To address those shortcomings, we have adopted another gene-
ric approach that is popular in image classification (e.g. [7], [8],
and [9]). It consists in building models from several local sub-
windows extracted from original images of the learning set. How-
ever, our approach is different from those cited above: In order
to be efficient and generic, our extraction algorithm is random and
does not require filtering of informative windows. Indeed, to a cer-
tain extent, determining which image pixels discriminate over the
entire set of images will implicitly be done by the tree induction
algorithm.



In this variant, the induction of extra-trees is then carried out
in two simple steps, given a window size w; x w2 and a number
Ny:

e Extract N,, sub-windows at random from training set im-
ages (by first selecting an image at random from LS and
then selecting a sub-window at a random location in this
image) and assign to each sub-window the classification of
its parent image;

e Grow each extra-trees to classify these V., sub-windows by
using all the w1 * wo pixel values that characterize them.

To make a prediction for an image with an ensemble of extra-trees
grown from sub-windows, the following procedure is used:

e Propagate successively all possible sub-windows of size w x
wo from this image into the ensemble of extra-trees;

e Assign to the image the majority class among the classes
assigned to the sub-windows.

Because in our experiments NV, will be greater than the original
learning set size IV, this variant will increase the computing times
needed to build a model. Also, since testing an image entails test-
ing all of its sub-windows, prediction time will substantially in-
crease.

3. EXPERIMENTS

In this section, we carry out two runs of experiments. The first run
aims at showing the generality of our approach. To this end, we
tested it on four well-known and publicly available datasets corre-
sponding to typical classification problems: recognition of hand-
written characters and particularly digits (MNIST), faces (ORL),
objects (COIL-100), and textures (OUTEX). The main character-
istics of those datasets are summarized in Table 2 and an overview
of their images is proposed by Figure 1. Our results are presented
in Section 3.1 as well as a comparison with specific approaches
found in the literature. Significance with respect to the state of
the art is high as we stricly followed public protocols. In Section
3.2, the second run of experiments (on COIL-100 only) aims at
analysing in more detail the algorithm by studying its robustness
to learning set composition, rotation, scaling, and occlusion of test
images.

3.1. Evaluation of Accuracy

The two variants (i.e. extra-trees and extra-trees on local sub-
windows) have been tried on the four datasets. In both cases, the
values of some parameters need to be fixed. Extra-trees are only
influenced by one parameter: the number of trees 7. However,
as extremely randomized trees are grown independently, the more
trees are aggregated, the better. So, in our study, we have used for
each problem a number of trees that stabilizes error rates on the
test samples. In the case of extra-trees, a large number of trees is
usually necessary (from 50 on MNIST to 500 on ORL and COIL-
100), while, with sub-windows, the error rate is stabilized much
sooner (10 trees are sufficient in all problems). For extra-trees with
sub-windows, additional parameters are the size of sub-windows
wl x w2 and the number N,, of them which are extracted during
the learning phase. Like for the number of trees in the ensemble,
accuracy appears to be a monotonically increasing function of NV,
On the last three problems, N,, was fixed to 120000. On MNIST,
as the initial learning sample size is already quite large, we further

Fig. 1. Overview of the four databases: MNIST, ORL, COIL-100,
OUTEX

increase this number to 360000. Note that, in all cases, a larger
value of IV,, could further improve the accuracy but could become
detrimental in terms of computing times. Moreover, accuracy is
very much influenced by the size of sub-windows. The optimal
size is problem-dependent. In our experiments, this latter parame-
ter has been tuned manually on each problem. Nevertheless, cross-
validation could be used to determine its value automatically.

Table 3 summarizes the error rates obtained by our two vari-
ants and compares them with results found in the literature. The
test protocols and related works are discussed below on each prob-
lem.

DBs # images 4 attributes # classes
MNIST 70000 784 (28 x 28 x 1) 10
ORL 400 10304 (92 x 112 % 1) 40
COIL-100 7200 3072 (32 * 32 % 3) 100
OUTEX 864 49152 (128 * 128 * 3) 54
Table 2. Database summary
DBs Extra-trees | Sub-windows Related work
MNIST 3.26% 2.63% 12% to 0.7% [10]
ORL |4.56% + 1.43]|2.13% + 1.18| 7.5% to 0% [11]
COIL-100 2.04% 0.39% 12.5% t0 0.1% [12]
OUTEX 64.35 % 2.78% 9.5% to 0.2% [13]

Table 3. Evaluation of accuracy: error rates on all problems.

3.1.1. MNIST, Database of Handwritten Digits

The MNIST database® [10] consists of 70000 handwritten digits
that have been size-normalized and centered in images of 28 x 28
pixels with 256 grey levels per pixel. Different writing styles are
characterized by thin or thick strokes, slanted characters, etc.

In the literature, the first 60000 images are generally used for
learning and the remaining 10000 examples are used for valida-
tion. The results in Table 3 are obtained by strictly following this
protocol. Error rates in [10] vary from 12% to 0.7%. In com-
parison, with 50 extra-trees, we get 3.26%. Using sub-windows,
the error rate drops to 2.63% (with 7' = 10, N,, = 360000 and
w1 = wy = 24).

3.1.2. ORL, Face Database

The ORL database® from AT&T Laboratories Cambridge contains
faces of 40 distinct persons with 10 images per person that differ

Shttp://yann.lecun.com/exdb/mnist/
“4http://www.uk.research.att.com/facedatabase.htm



in lighting, facial expressions (open/closed eyes, smiling/not smil-
ing), facial details (glasses/no glasses) and contain minor varia-
tions in pose. The size of each image is 92 x 112 pixels, with 256
grey levels per pixel.

Published results in the literature range from 7.5% to 0% error
rate ([14], [15], [16], [11]). Unfortunately, the protocol for test-
ing is different from one paper to another (average of 3, 4, or 5
executions on different subsets of images) and furthermore the in-
formation provided does not always allow to reproduce it exactly.
So, given the fact that this database is quite small and as there is
no well-defined test protocol, our experiment uses resampling esti-
mates to provide a fair assessment of our two methods. More pre-
cisely, we averaged the results of 100 runs of the two algorithms
where, in each run, 5 distinct images were randomly drawn in each
class to form the learning sample and the other half of the dataset
was used to form a separate test sample. Following this procedure,
we get with extra-trees (T = 500) a mean error rate of 4.56% and
with sub-windows 2.13% (with T = 10 and w1 = w2 = 32).
Of course, these error rates cannot directly be compared to other
published results as the test protocols are different.

3.1.3. COIL-100, 3D Object Database

The Columbia University Object Image library® [17] gathers 3D
objects databases. COIL-100 [18] is a dataset with colored images
of 100 different objects (boxes, bottles, cups, miniature cars, etc.).
Each object was placed on a motorized turntable and images were
captured by a fixed camera at pose intervals of 5 degrees. This
corresponds to 72 images per object. In COIL-100, each image
has been normalized to 128 x 128 pixels and are in true color.
For our experiments, we have resized the original images down to
32 x 32 pixels.

As in many publications (e.g. [12]), we took for the learning
sample 18 views for each of the 100 objects, starting with the pose
at 0° and then going on with intervals of 20°. The remaining views
were devoted to the test sample. Using this protocol, methods in
the literature provide error rates from 12.5% to 0.1%. Extra-trees
yields an error rate of 2.04% (with 7" = 500) that drops down to
0.39% with sub-windows (with 7" = 10 and w1l = w2 = 16).

3.1.4. OUTEX, Texture Database

Outex® [19] provides a framework for the empirical evaluation of
texture analysis algorithms. The Contrib_TC_0006 dataset we took
from Outex has been derived from the VisTeX dataset. It contains
54 colored textures and 16 images of 128 x 128 pixels in true color
for each VisTex texture.

The OUTEX framework precisely defines the images to use in
the learning and test sample (8 images for each texture in both en-
sembles). The paper [13] evaluates several feature extraction tech-
niques and image transformation methods in combination with a
traditional nearest neighbors algorithm. The resulting error rates
on this dataset vary from 9.5% to 0.2%. Using the same proto-
col, the extra-trees method is especially bad with an error rate of
64.35% (even with T = 1000). On the other hand, sub-windows
reduce error rates down to 2.78% (with 7’ = 10 and wl = w2 =
4). These results were foreseeable due to the global approach of
extra-trees and localization aptitude of sub-windows, as we ex-
plained in section 2.2.

Shttp:/Avww.cs.columbia.edw/CAVE/
Shttp:/Avww.outex.oulu.fi /

3.1.5. Discussion

For each problem, our results are comparable to other approaches,
but are slightly inferior to the best published results achieved by
specialized algorithms tuned to the given problem. On the MNIST
data, the sub-window algorithm was also outperformed by another
generic method based on support vector machines [20]. On the
ORL dataset, the comparison is only indicative. Given the diffi-
culty of the OUTEX problem, it is not surprising that the best of
specific methods performs better than our generic methods.

A great advantage of our algorithm, especially in its basic
form, is its computational efficiency. Due to the random choice
of the tests, the construction of extra-trees is very fast. For exam-
ple, the construction of 1000 trees on OUTEX problem requires
only about 5s”. On MNIST, 50 trees are grown in about 8 minutes.
Also, the test of a new image is negligible (less than a millisecond
whatever the problem). On the other hand, computing times with
sub-windows are greater since the learning sample size increases.
Furthermore, prediction times are also longer since they require
the propagation of all sub-windows in the trees of the ensemble.
For example, it takes about 8 minutes to build 10 extra-trees with
sub-windows on OUTEX and about 0.6s to classify one image.
Although our implementation is not optimal, we believe that these
times are nevertheless reasonable.

3.2. Evaluation of Robustness

In contrast to most modern computer vision algorithms for recog-
nition, our algorithms in their current form are not invariant to
many important transformations of the image. Intensity variations
are not expected to be a problem; any of the popular methods for
intensity normalization should apply. Invariance to other transfor-
mations can be added as outlined at the end of this section. In the
following paragraphs, we study the robustness of our algorithms
under some typical conditions found in realistic image classifica-
tion scenarios, using the COIL-100 dataset as an example.

3.2.1. Generalisation

Let us first study the generalisation ability of our approach by con-
sidering different learning sample sizes. On the COIL-100 dataset,
reducing the number of training views increases perspective distor-
tions between learned views and images presented during testing.
Table 4 shows error rates under various choices of training images
where nv denotes the number of views per object selected in the
training sample. The remaining 72 — nwv views are reserved for
testing. The azimuthal angles corresponding to the selected train-
ing views are also given in the table and are thus repeatable and
comparable. As expected, error rates increase when the size of the
learning set decreases. Extra-trees with sub-windows are always
better than extra-trees whatever the number of learning views, and
their errors remain very small up to 8 images per object. These
results are directly comparable — and in fact very similar — to those
published by Obrzalek and Matas [12], which are also shown in
the table.

3.2.2. Rotation

The second experiment aims at analysing the robustness of induced
models to image-plane rotation of the test images. To this end, we

7Our code iswritten in C and the program runs on aPentium 1V 2.4GHz
with 1GB memory.



Generalisation Extra-trees | Sub-windows | LAFs [12]
nv = 36; k = 10° 0.33% 0.06 % -

nv = 18; k x 20° 2.04 % 0.39% 0.1%
nv = 8; k » 45° 7.55 % 1.53 % 0.6 %
nv=4;45° + k% 90° | 12.46 % 4.94 % 53%
nv = 2;0°,90° 24.91 % 12 % 122 %
nv =1;0° 36.1 % 24.83 % 24 %

Table 4. Error rates with different learning and test sample sizes
for COIL-100 images.

have tested models grown from the original images (with 18 views
per object in the learning sample) on rotated versions of the test
images. Results for rotations between 0° and 45° are reported
in Table 5. Extra-trees with sub-windows are shown to be more
robust to rotations than extra-trees. Error rates are acceptable with
this variant up to about 20° of rotation. Although they are not
taken into account during the learning phase, the algorithm is thus
robust to small rotational deviations.

Rotation | Extra-trees | Sub-windows
ra =0° 2.04 % 0.39 %
ra=10°| 5.31% 0.85 %
ra = 20°| 22.80 % 3.20%
ra =30°| 43.11% 8.85 %
ra = 45°| 76.61 % 31.69 %

Table5. Error rates with 2D rotated test images for COIL-100 (18
views for learning): test images are rotated by ra degrees.

3.2.3. Scaling

Another important image transformation is scaling. As extra-trees
require that all images contain the same number of pixels, they can
not classify images of different sizes. Extra-trees on sub-windows
however may classify images of any size, provided only that this
size is larger than the sub-window size. We thus study invariance
to scaling with this latter variant. To this end, we tested the model
built from 32 x 32 images and sub-windows of 16 x 16 pixels
(with T = 10) on scaled version of the test images ranging from
16 x 16 to 48 x 48 pixels. Results are summarized in Table 6.
They remain quite good for moderate variations in scale. The poor
results obtained with test images of the size of the sub-windows is
explained by the fact that in this case only one sub-window can be
extracted from test image and thus the classification corresponds to
the average of only 10 classifications (one per extra-tree), which is
not enough for the variance-reduction effect of extra-trees to take
place.

Scaling | Sub-windows
16x16 71.72 %
24x24 2.67%
32x32 0.39 %
40x40 143 %
48x48 7.15%

Table 6. Error rates with scaled test images for COIL-100 (18
views for learning).

Occlusion Extra-trees | Sub-windows
of = 0% 2.04 % 0.37 %
of =25% 3.72% 0.37 %
of =37.5% 12.10 % 472 %
of =40.625% | 15.96 % 7.07 %
of = 43.75% 21.85% 14.04 %
of =46.875% | 33.93% 26.76 %
of =50% 49.26 % 47.69 %

Table 7. Error rates with occluded test images for COIL-100 (18
views for learning): of % of right part of each test image is set to
black.

3.2.4. Occlusion

As a last experiment, we have studied the sensitivity of our models
to occlusion by erasing increasing parts of the test images. Re-
sults are summarized in Table 7 where “of = x%” means that
x% of the pixels at the right part of the test images are replaced by
black pixel values. Here again, extra-trees with sub-windows per-
form better than extra-trees and their accuracy remains good up to
40% of partial occlusions. These results are nevertheless inferior
to those of Obrzalek and Matas [12] who obtained an error rate of
7.4% for 50% of occlusion which is comparable with our result for
40% of occlusion. An easy way to improve our method’s robust-
ness to larger occlusions could be to remove from the vote those
sub-windows whose predictions seem to be “uncertain”. For ex-
ample, if a sub-window receives fewer than 5 identical predictions
by the T = 10 trees, then this sub-window might not be taken
into account in the final vote because its confidence is low. Exper-
iments have shown that such a strategy would reduce the error rate
from 47.69% down to 18.44% in the case of 50% occlusion. Ad-
ditional investigations should be carried out to assess the validity
of this approach.

3.2.5. Discussion

Since our algorithm considers raw pixel values at specific posi-
tions within the image or within a sub-window, many of the issues
of template-matching techniques apply. In the case of the full-
image classifier, any image transformations affect the single fea-
ture vector, which has a rather detrimental effect on classification
accuracy. On the other hand, an image contains substantial redun-
dancy — which is implied by the presence of informative structure
— in the form of homogeneous regions and smooth intensity gra-
dients. Thus, spatial image transformations do not alter all ele-
ments of the feature vector to the same extent. Moreover, some
transformations result in image content being shifted to a different
location while approximately preserving their local structure. The
sub-window technique capitalizes on both of these effects: Many
feature vectors will be left more or less intact by a given image
transformation, resulting in remarkably robust performance. Their
robustness to partial occlusions is competitive with the state of the
art. This algorithm is also robust enough to small rotations and
moderate scaling to admit, for example, brute-force multi-scale
and/or multi-orientation processing at discrete scales and orienta-
tions during training or during testing.

Another way to achieve invariance to rotation and scaling is lo-
cal normalization of sub-window sizes and orientations. For exam-
ple, techniques similar to those proposed by Obrzalek and Matas



[12] could be applied. This is a subject of further study.

It should be noted that the parameters of the method used for
this study are those that minimize the error in normal conditions.
But these parameters have an influence on recognition rate with
perturbed images. For example, we have observed that reducing
the sub-window size increases the robustness to rotation. On the
other hand, enlarging them gives better performance in presence
of occlusions. This tradeoff between accuracy in normal condition
and robustness to some transformations certainly deserves further
investigation.

4. CONCLUSION AND FUTURE WORK

In this paper, we evaluate two generic algorithms for image clas-
sification based on ensembles of decision trees. First, extremely
randomized trees [1] are applied directly on pixel values. This
method yields good results and it is particularly attractive in terms
of computational efficiency. Second, we propose a variant that
involves extraction and classification of local sub-windows from
images. This technique improves systematically the accuracy but
increases computing times required to build a model and to predict
the class of an image. On the four datasets we used, the accuracy
of our algorithms is comparable to state-of-the-art techniques but
slightly inferior to the best known results.

Specialized methods will probably always perform better than
generic methods. Our results demonstrate however that the latter
can come remarkably close. In many practical application con-
texts, a slight performance drop in exchange for reduced task-
specific pre-processing and manual intervention may constitute a
desirable trade-off.

The robustness of our approach was analysed in the presence
of rotation, scaling and occlusions on the COIL-100 test set. We
observed good robustness to small transformations introduced in
test images. However, the method could certainly be improved ac-
cording to this latter criterion by augmenting the learning sample
with transformed versions of the original images. While general,
this technique is especially interesting in the context of our algo-
rithm because of its small computing times. Moreover, the sub-
window variant can easily be augmented by techniques for nor-
malizing rotation and scale to achieve invariance.
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