
Random Subwindows for Robust Image Classification
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Abstract

We present a novel, generic image classification method
based on a recent machine learning algorithm (ensembles
of extremely randomized decision trees). Images are clas-
sified using randomly extracted subwindows that are suit-
ably normalized to yield robustness to certain image trans-
formations. Our method is evaluated on four very differ-
ent, publicly available datasets (COIL-100, ZuBuD, ETH-
80, WANG). Our results show that our automatic approach
is generic and robust to illumination, scale, and viewpoint
changes. An extension of the method is proposed to improve
its robustness with respect to rotation changes.

1. Introduction

We consider the general problem of image classification
as it occurs in a variety of domains such as medecine, biol-
ogy, geology, astronomy, quality control, office automation,
arts, etc. Image classification methods seek to automatically
classify previously unseen images of various kinds of “ob-
jects” using databases of labeled images provided by human
experts. To be useful in practice, image classification meth-
ods must be automatic, generic and robust.

In this paper, we propose a novel method that combines a
recent machine learning algorithm with a novel technique of
extracting subwindows (square patches) from images. The
main steps of our approach are described in Section 3. Em-
pirical results are reported in Section 4 on four datasets pre-
sented in the literature. In Section 5, we explain the good
behavior of our method and a variant is proposed to increase
robustness to rotation changes. Some indications about its
memory and computing time requirements are also given.

2. Related Work

Many recent image classification methods function ac-
cording to the following scheme [9]. First, interest points or

image regions are detected whose neighbourhood has high
informational content and which are thought to be robustly
detectable in images under varying conditions [11].

Then, the appearance of the interest points or regions is
encoded by a feature vector of numerical values computed
in their neighbourhood [10]. Such descriptors are often de-
signed to be discriminative, concise and insensitive to vari-
ous transformations such as illumination, orientation, scale,
and viewpoint changes. They are sometimes compressed by
dimensionality reduction (such as PCA or DCT) because lo-
cal regions contain too much data for the traditional learning
methods that are not able to deal with very high numbers of
variables. These local feature vectors are then stored in a
database for use during the recognition step.

To predict the class of a new image, every feature
vector computed from a test image is classified using a
nearest-neighbor algorithm against the feature vectors in the
database. The majority class among the classes assigned to
local feature vectors is then assigned to the test image.

3. Method

Our approach largely follows the aforementioned
scheme. In earlier work [7], we proposed a method
which applies a machine learning technique on fixed-size,
square subwindows randomly extracted from images. In the
present paper, we greatly improve the autonomy and the ro-
bustness of this method to certain image transformations.
This improvement is obtained through a novel technique of
extracting subwindows that takes into account these trans-
formations in a parameter-free way. During the training
phase, subwindows are randomly extracted from training
images, and a model is constructed by machine learning
based on transformed versions of these (Figure 1). Clas-
sification of a new test image similarly entails extraction
and description of subwindows, and the application of the
learned model to these subwindows. Aggregation of sub-
window predictions is then performed to classify the test
image, as illustrated in Figure 2.
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3.1. Subwindows

Our method extracts a large number of possibly overlap-
ping, square subwindows of random sizes and at random
positions from training images. Each subwindow size is
randomly chosen between 1 × 1 pixels and the minimum
horizontal or vertical size of the current training image. The
position is then randomly chosen so that each subwindow
is fully contained in the image. By randomly selecting a
large number (Nw) of subwindows, we are able to cover
large parts of images very rapidly. This random process is
generic and can be applied to any kind of images. The same
random process is applied to test images.

As shown in Section 4, about 100 random subwindows
are often sufficient to correctly predict the class of a given
test image. Training on about 100000 subwindows yields
good overall recognition performance. This number is still
substantially smaller than exhaustive sampling of all sub-
window sizes and locations.

Subwindows are resized to a fixed scale (16×16 pixels).
Experiments have shown that this normalization results in
robustness to scale changes (see Section 5.4). It allows us
to use generic machine learning methods (see Section 3.2)
that work with fixed-size feature vectors. The resized sub-
windows are transformed to a HSV color space, as this, in
comparison to RGB, results in superior robustness to illu-
mination changes. Each subwindow is thus described by a
feature vector of 768 (= 16×16×3) numerical values. The
same descriptors are used for subwindows obtained from
training and test images.

3.2. Learning

At the learning phase, a model is automatically built us-
ing subwindows extracted from training images. First, each
subwindow is labelled with the class of its parent image.
Then, any supervised machine learning algorithm can be
applied to build a subwindow classification model: neu-
ral network, decision tree, SVMs or ensemble of decision
trees. Here, the input of a machine learning algorithm is
thus a training sample of Nw subwindows, each of which
is described by 768 real-value input variables and a discrete
output class (Figure 1). The learning algorithm should con-
sequently be able to deal efficiently with a large amount of
data, first in terms of the number of subwindows and classes
of images in the training set, but more importantly in terms
of the number of values describing these subwindows.

In this context, we propose to use a particular ensemble
method of decision trees. Ensemble methods improve an
existing learning algorithm by combining the predictions of
several models. They are very effective when used with de-
cision trees that otherwise are often not competitive in terms
of accuracy with other learning algorithms. The method we

will use consists in building many extremely randomized
trees (extra-trees) [4, 5]. The main difference with respect
to other ensemble methods is that the split thresholds at in-
ternal nodes of the decision trees are selected fully at ran-
dom, i.e. not on the basis of any score measure. Each de-
cision tree of the ensemble is then grown until it perfectly
classifies the training sample. Because of the extreme ran-
domization, this method is usually much faster than other
ensemble methods. It was also shown to perform remark-
ably well on a variety of tasks in terms of accuracy [5]. This
high accuracy can be explained in terms of a bias/variance
analysis.
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Figure 1. Learning: Our method first randomly extracts multi-scale
subwindows in training set images, then resizes them and builds an
ensemble of extra-trees.

3.3. Recognition

In our approach, the database of subwindows extracted
from the training images are no longer used after training,
and can be discarded. We only use the learned model to
classify subwindows of a test image. To make a predic-
tion for a test image with an ensemble of extra-trees grown
from subwindows, we simply propagate each test subwin-
dow into each extra-tree of the ensemble. Each extra-tree
assigns one class to each subwindow. Each subwindow thus
receives T votes where T denotes the number of trees in the
ensemble. We then aggregate all the predictions by simply
adding the votes, as illustrated by Figure 2, and we assign
to the image the majority class among the classes assigned
to its subwindows.
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Figure 2. Recognition: Randomly extracted subwindows are prop-
agated through the trees (here T = 5). Votes are aggregated and
the majority class is assigned to the image.

4. Experiments

Our experiments aim at demonstrating the generality
and robustness of our approach based on learning of ran-
dom subwindows. To this end, we tested it on four well-
known and publicly available datasets corresponding to var-
ious classification problems: household objects in a con-
trolled environment (COIL-100), buildings in urban scenes
(ZuBuD), object categories in a controlled environment
(ETH-80), and landscape themes (WANG). The first dataset
exhibits important viewpoint changes. ZuBuD and WANG
contain images with illumination, viewpoint, scale and ori-
entation changes as well as partial occlusions and cluttered
backgrounds. WANG and ETH-80 span large intra-class
variabilities. Our results are directly comparable to the state
of the art, as we stricly follow published protocols. For each
problem and protocol, the parameters of our method are
fixed to Nw = 120000, T = 10, and 100 subwindows are
randomly extracted from each test image. These numbers
were sufficient to produce good results on every dataset.

4.1. COIL-100

COIL-1001 [12] is a dataset of 128 × 128 color images
of 100 different 3D objects with 72 images per object at

1http://www.cs.columbia.edu/CAVE/

pose intervals of 5 degrees. The goal is to classify images
into the correct class among the 100 classes. The best avail-
able results are reported by Matas and Obdrz̆álek [9] who
evaluated the generalisation ability by considering various
training sample sizes. On this dataset, reducing the number
of training views increases perspective distortions between
learned views and images presented during testing.

In this paper, we evalute the robustness to such view-
point changes using two experimental protocols. First, we
selected for the learning sample 18 views of each of the 100
objects, starting with the pose at 0◦ and continuing at inter-
vals of 20◦. Using this protocol, methods in the literature
report error rates from 12.5% to 0.1% [9]. In a second ex-
periment, we selected only one view (the pose at 0◦) in the
training sample while the remaining 71 views are used for
testing. Using this protocol, methods in the literature yield
error rates from 50.1% to 24% [9]. As expected, error rates
increase when the size of the training set decreases.

Using the first protocol (1800 training images and 5400
test images), we obtain an error rate of 0.5% with our
method. Using the second protocol (100 learning images,
7100 test images), we obtain a remarkably low 13.58% er-
ror rate which is the best result known so far. Figure 3 illus-
trates the behavior of the method in presence of viewpoint
changes introduced by the second protocol.
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Figure 3. COIL-100: error rates depending on azimuthal test an-
gle, learning from only one view (0◦).

4.2. ZuBuD

The ZuBuD dataset2 created in April 2003 [13] is a
database of color images of 201 buildings in Zürich. Each
building in the training set is represented by five images ac-
quired at five random arbitrary viewpoints. The training set
thus includes 1005 images, while the test set contains 115
images of a subset of the 201 training buildings. Images
were taken by two different cameras in different seasons
and under different weather conditions, and thus contain a
substantial variety of illumination conditions. Partial occlu-
sions and cluttered backgrounds are naturally present (trees,

2http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: MAX PLANCK INSTITUT. Downloaded on April 30, 2009 at 03:54 from IEEE Xplore.  Restrictions apply.



skies, cars, trams, people, . . . ) as well as scale and orienta-
tion changes due to the position of the photographer. More-
over, training images were captured at 640×480 while test-
ing images are at 320 × 240 pixels.

About five papers have so far reported results on this
dataset that vary from a 59% error rate to 0% [9]. With our
method, we obtain a 4.35% error rate (only 5 images mis-
classified among 115). Figure 4 shows the 5 misclassified
images. The first three images correspond to the same build-
ing but with substantial differences in illumination, orienta-
tion, and viewpoint between training and testing views. The
fourth misclassified test image also represent a strong orien-
tation and viewpoint change as well as some occlusion. The
last misclassified test image is difficult to distinguish even
for a human. For this image, the correct class is ranked sec-
ond by our model, and obtained only one fewer vote (of one
thousand) than the class ranked first.

Figure 4. ZuBuD: misclassified test images (left), training images
of predicted class buildings (middle), training images of correct
buildings (right).

4.3. ETH-80

The Cogvis ETH-80 dataset3 contains 3280 color im-
ages (128 × 128 pixels) of 8 distinct object categories (ap-
ples, pears, tomatoes, cows, dogs, horses, cups, cars). For
each category, 10 different objects are provided. Each ob-
ject is represented by 41 images from viewpoints spaced
equally over the upper viewing hemisphere. The protocol
used by Leibe and Schiele [6] is leave-one-object-out cross-
validation. This means that training is done on all views of

3http://www.vision.ethz.ch/projects/categorization/eth80-db.html

79 objects (a training set of 3239 images), and the test en-
tails the classification of all 41 views of the remaining ob-
ject. Recognition of one test image is considered success-
ful if the correct category label is assigned. The results are
averaged over all 80 possible test objects. Averaged error
rates vary from 35.15% to 13.60% [6]. Our method achieves
25.49% error.

4.4. WANG

The WANG dataset4 is used in the literature [1, 2] to
evaluate image retrieval and image categorization methods.
It consists of 1000 images subdivided into 10 categories,
each represented by 100 images, illustrating the follow-
ing themes: African people and villages, beach, buildings,
buses, dinosaurs, elephants, flowers, horses, mountain and
glaciers, and food. Such common categories exhibits high
intra-class variability. The images are of size 384 × 256
(or 256 × 384). The protocol used to evaluate our method
is a leave-one-out cross-validation. That is, for every im-
age, a model is built by using the remaining 999 images for
the training, ie. we randomly extract Nw subwindows from
the training set of 999 images and build one ensemble of T
trees. The test image is classified by that model. The error
rate is then averaged over the entire database. Error rates
in the literature vary from 62.5% to 15.9% [2]. With our
method, we obtain a result equivalent to the best available
(15.9% error rate).

5. Discussion

In this section, we explain the very good performance of
our method on different tasks by the combination of simple
but well-motivated techniques: random subwindow extrac-
tion (5.1), HSV pixel representation (5.2), and the recent
extra-trees machine learning method (5.3). We propose a
variant of this method for better robustness to orientation
changes (5.5). We also give some information about mem-
ory requirements and computing times (5.6).

5.1 Subwindows

In the object recognition literature, local approaches gen-
erally perform better than global approaches. They are more
robust to varying conditions because these variations can
locally be modelled by simple transformations [9]. These
methods are also more robust to partial occlusions and clut-
tered background. Our approach has the same benefits. In-
deed, the correct classification of all subwindows is not re-
quired to correctly classify one image. For example, for
the ZuBud problem, Figure 5 exhibits one image correctly

4http://wang.ist.psu.edu/docs/related
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classified by our model despite its occluded parts. The fig-
ure also shows individual subwindows that were correctly
classified (first row) and misclassified (second row).

Figure 5. Some subwindows extracted from one test image. Sub-
windows on the first row are correctly classified while those on the
second row are misclassified individually.

Secondly, as an image contains substantial redundancy,
spatial image transformations do not alter all elements of
the feature vectors to the same extent. Many feature vectors
will be left more or less intact by a given image transforma-
tion, resulting in remarkably robust performance to view-
point and orientation changes. Furthermore, robustness to
scale changes is improved by normalizing the subwindow
to a common size of 16 × 16 pixels (see Section 5.4).

The labelling and random extraction of a large num-
ber of subwindows in the training images provides a large
amount of information corresponding to various image re-
gions. Both global and local regions are used. This process
also contrasts with some methods in the literature which are
not able to extract enough regions or interest points when
images are too small or objects are too “simple” (like in the
COIL-100 database). In fact, Mikolajczyk et al. [11] re-
cently concluded that current detectors are complementary
(some being more adapted to structured scenes while oth-
ers to textures) and that all of them should ideally be used
in parallel. We think that in terms of image coverage, the
resulting combination of all these detectors would lead to
a representation of overlapping regions quite similar to our
randomly extracted subwindows.

Finally, with our method, we have observed that accu-
racy is a monotonically increasing function of the number
Nw of subwindows. A larger value of Nw could further
improve the accuracy.

5.2 HSV pixel representation

Since our subwindows are represented in terms of their
raw pixel values (in the form of 768-dimensional feature
vectors), we do not explicitly discard informational con-
tent. To a certain extent, determining which image pixels
discriminate over the entire set of subwindows is implicitly
done by the machine learning algorithm. High-dimensional

feature vectors also allow the algorithm to build a classifier
able to distinguish between a large number of classes. Pixel
representations are not robust per se, but have to rely on the
use of a machine learning algorithm working with a large
number of random subwindows extracted from training im-
ages that exhibit some varying conditions.

The HSV representation is more robust to illumination
changes than the RGB color space because it tends to
largely limit the effects of the most important, practically-
occurring illumination changes to just one of the three
bands. We observed a measurable effect of this phe-
nomenon on classification accuracy. For example, with
the second protocol of COIL-100 experiments, we obtain
20.63% error rate using RGB compared to 13.58% using
HSV. Similar results were observed on other datasets.5

5.3 Extra-trees

Image classification is particularly difficult for tradi-
tional machine learning algorithms (e.g., decision tree in-
duction and nearest-neighbor classifiers) mainly because of
the high number of input variables that describe images (i.e.,
pixels). Indeed, with a high number of variables, these
methods tend to produce very unstable models with low
generalization performance. Moreover, a distance metric
in nearest-neighbor classification can be perturbed by irrel-
evant variables and small pixel-value changes due to mis-
alignment (interest point localization error) or due to other
small transformations (translation, rotation, . . . ).

The success of machine learning techniques in our case
is the combination of two factors. First, recent advances in
machine learning have produced new methods that are able
to handle problems of high dimensionality. Decision tree
ensemble methods, including extra-trees, are among these
new methods. For comparison, using a single, conventional
decision tree instead of an ensemble of trees, we obtain a
19.08% error rate with the second COIL-100 protocol (as
opposed to 13.58% with extra-trees), and 13.91% error rate
(16 test images misclassified) on ZuBuD dataset (as op-
posed to 4.35%). Another key to the success of machine
learning techniques is the classification of random subwin-
dows instead of full images that at the same time increases
the training sample size and decreases the dimensionality.
In comparison, the direct application of extra-trees for the
classification of full images gives an error rate of 32.61%
with the second COIL-100 protocol.

Extra-trees have a high precision (due to their low vari-
ance [5]) and an attractive computational efficiency (see
Section 5.6). However, any other supervised learning al-

5Some experiments were also performed using grey values instead of
color information on COIL-100 with different protocols. Most objects are
still recognized but the results are not as good because some COIL-100
objects are distinguished only by their color.
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gorithm is directly applicable within our random subwin-
dow framework. For example, using Tree Boosting [3],
we get even better results with protocol 2 on COIL-100
(11.38% error rate as opposed to 13.58% using extra-trees),
and equivalent results (4.35% error rate) on ZuBuD. Note
however that Tree Boosting is much slower than extra-trees
for learning.

5.4 Robustness to scale changes

Images from COIL-100 and ETH-80 databases occur at
a fixed scale, but the ZuBuD and WANG datasets contain
images at different sizes or different zoom levels. Further
experiments [8] have shown that the size normalization of
the subwindows improve robustness to such scale changes.
We performed a series of experiments following the COIL-
100 protocol 1 where we built a model from 32×32 training
images and tested it on scaled versions of the test images
ranging from 16×16 to 128×128 pixels. As expected, error
rates are always very similar (close to 0.5%) whatever the
size of the test image. With our earlier method [7], the error
rate with 48 × 48 test images was close to 7% (in RGB).

5.5 Robustness to orientation changes

Our method yields good results on datasets frequently
used in the literature. In the ZuBuD dataset, some natu-
ral orientation changes are introduced by the position of the
photographer and because pictures were taken at different
orientations (landscape or portrait). The same kind of differ-
ences exist in the WANG dataset. However, these datasets
do not include images with substantial rotational changes
between testing and training images so that robustness to
rotation could not be evaluated systematically. Some exper-
iments showed that our method is only robust to small ro-
tation changes [8]. We introduced a variant of our method
where subwindows (from training and testing images) are
randomly rotated before rescaling them to 16 × 16 pixels,
as illustrated in Figure 6. With this variant, we obtain 0.87%
errors on the original COIL-100 protocol 1 and 15.58% on
the COIL-100 protocol 2 which is only slightly inferior to
the variant without rotated subwindows. To evaluate the
robustness of this variant, we used COIL-100 protocol 1
where we applied image-plane rotation to test images. The
model built from original images was tested on rotated ver-
sions of the test images. Results for rotations between 0◦

and 135◦ are reported in Table 1. This variant is thus quite
robust to rotational changes. With our earlier method [7],
the error rate for ra = 45◦ was more than 30% (in RGB).

5.6 Some notes on implementation

Our current implementation cannot be considered op-
timal but some indications can be given about memory

Rotation 2D subwindows with random rotation
ra = 0◦ 0.87%
ra = 45◦ 1.56%
ra = 90◦ 1.24%
ra = 135◦ 2.56%

Table 1. Error rates with 2D rotated test images for COIL-100 pro-
tocol 1: test images are rotated by ra degrees.

C1 C2 C3

C1 C1 C1 C1 C1 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3

Figure 6. An adaptation of our method for a better robustness to
orientation changes. subwindows of random sizes are extracted
as stated before, then randomly rotated, then resized in 16 × 16
pixels.

and running-time requirements. With our method, origi-
nal training images and their subwindows are not necessary
to classify new images after the construction of the model.
Only ensembles of trees are used for recognition. If the
subwindows are in main memory, training T = 10 extra-
trees takes about 6m30s on a Pentium IV 2.4Ghz processor
on the ZuBuD problem. In comparison, building T = 10
boosted trees takes about 25h. For this problem, storing the
resulting ensemble of T = 10 trees on disk require about
12Mb which should be compared to 488Mb for storing the
1005 PNG training images. On average, one extra-tree has
about 148025 nodes for this problem. The prediction of one
test subwindow with one extra-tree requires on average less
than 20 tests (each of which involves comparing the value
of a pixel to a threshold) 6.

To classify one unseen image, the number of operations
is thus multiplied by T and by the number of subwindows
extracted (100 in our experiments). The addition of all votes
and maximum search is negligible. Furthermore, extraction
of one subwindow is very fast because of its random nature.
The variant with rotated subwindows involves more oper-
ations to apply random transformations, but the number of

6The average is 18.26. It was calculated over the 115000 propagations
(100 subwindows for each of the 115 test images, each subwindow propa-
gated to T = 10 trees). Depending of the subwindow, the minimum depth
was 9, the maximum was 32.
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subwindows extracted in a test image is quite low. Note that
the method is flexible as one can extract fewer subwindows
and use fewer extra-trees if a specific tradeoff between ac-
curacy and computing times is desired.

In terms of scalability, larger data sets would lead to the
extraction of more subwindows (larger Nw). The extrac-
tion of these subwindows is very fast and extra-trees scale
very well with Nw. The complexity of the tree induction
algorithm is of order O(NwlogNw). The size of the extra-
trees may grow substantially with larger numbers of images
and classes, but the test of one random subwindow remains
O(logNw).

6. Summary and conclusions

In this paper, we proposed a novel image classification
method. Its main steps are the random extraction of sub-
windows, their transformation to normalize their represen-
tation, and the supervised automatic learning of a clas-
sifier based on ensembles of decision trees operating di-
rectly on the pixel values. The method has been evalu-
ated on 4 publicly-available datasets corresponding to vari-
ous image classification tasks. These datasets contain im-
ages representing widely varying conditions: occlusions,
cluttered background, illumination, viewpoint, orientation
and scale changes. These databases contain up to 205 dif-
ferent classes. The last two datasets correspond to im-
age categorization problems with high intra-class variabil-
ity. Our method yields good results and it is particularly
attractive in terms of computational efficiency. Further-
more, it is generic and fully automatic: The same frame-
work (extraction, representation, learning and recognition
steps) could be directly applied to any image classification
problem without any parameter adaptation.

For future work, it would now be interesting to perform
a comparative study with other machine-learning methods
(e.g. Tree Boosting or SVMs) and other techniques for ex-
tracting image regions. We think that such a comparison
is the next important step for practical image classifica-
tion, following analyses such as those by Mikolajczyk et
al. [10, 11] that compare region detectors and local descrip-
tors. In terms of applications, our method will be evalu-
ated on bigger databases in terms of the number of images
and/or classes and with images which exhibits higher intra-
class variability and heavily cluttered backgrounds (such as
Caltech-1017 or Butterflies8 datasets).
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