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Abstract

In this paper, we compare five tree-based
machine learning methods within our recent
generic image-classification framework based
on random extraction and classification of
subwindows. We evaluate them on three
publicly available object-recognition datasets
(COIL-100, ETH-80, and ZuBuD). Our com-
parison shows that this general and concep-
tually simple framework yields good results
when combined with ensembles of decision
trees, especially when using Tree Boosting
or Extra-Trees. The latter is particularly at-
tractive in terms of computational efficiency.

1. Introduction

Object recognition is an important problem within im-
age classification, which appears in many application
domains. In the object recognition literature, local
approaches generally perform better than global ap-
proaches. They are more robust to varying conditions
because these variations can locally be modelled by
simple transformations (Matas & Obdrzalek, 2004).
These methods are also more robust to partial occlu-
sions and cluttered backgrounds. Indeed, the correct
classification of all local features is not required to cor-
rectly classify one image. These methods are generally
based on region detectors (Mikolajczyk et al., 2005)
and local descriptors (Mikolajczyk & Schmid, 2005)
combined with nearest-neighbor matching.

In this paper, we compare five tree-based machine
learning methods within the generic image classifi-
cation framework that we proposed in earlier work
(Marée et al., 2005). It is based on random extraction
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of subwindows (square patches) and their classification
by decision trees.

2. Framework

In this section, we briefly describe the framework pro-
posed by (Marée et al., 2005). During the training
phase, subwindows are randomly extracted from train-
ing images (2.1), and a model is constructed by ma-
chine learning (2.2) based on transformed versions of
these (Figure 1). Classification of a new test image
(2.3) similarly entails extraction and description of
subwindows, and the application of the learned model
to these subwindows. Aggregation of subwindow pre-
dictions is then performed to classify the test image,
as illustrated in Figure 2. In this paper, we evaluate
various tree-based methods for learning a model.

2.1. Subwindows

The method extracts a large number of possibly over-
lapping, square subwindows of random sizes and at
random positions from training images. Each subwin-
dow size is randomly chosen between 1 x 1 pixels and
the minimum horizontal or vertical size of the current
training image. The position is then randomly cho-
sen so that each subwindow is fully contained in the
image. By randomly selecting a large number (IV,,)
of subwindows, one is able to cover large parts of im-
ages very rapidly. This random process is generic and
can be applied to any kind of images. The same ran-
dom process is applied to test images. Subwindows
are resized to a fixed scale (16 x 16 pixels) and trans-
formed to a HSV color space. Each subwindow is thus
described by a feature vector of 768 numerical val-
ues. The same descriptors are used for subwindows
obtained from training and test images.



1LJ€CIsS1011 1rees and rnandolin sudwindaows 10r Upject necoginition

=]

s ﬁuﬂﬂmﬂg
EH;' =

%Eﬂ
1

g H
c1 c2
HHE XS EMLEME D
clcicz2cz2cz2cz2cz2ec3c3c3c3cs
T1 T2 T3 T4 T5

Figure 1. Learning: the framework first randomly extracts
multi-scale subwindows from training-set images, then re-
sizes them and builds an ensemble of decision trees.

2.2. Learning

At the learning phase, a model is automatically built
using subwindows extracted from training images.
First, each subwindow is labelled with the class of its
parent image. Then, any supervised machine learning
algorithm can be applied to build a subwindow classi-
fication model. Here, the input of a machine learning
algorithm is thus a training sample of N,, subwindows,
each of which is described by 768 real-valued input
variables and a discrete output class (Figure 1). The
learning algorithm should consequently be able to deal
efficiently with a large amount of data, first in terms
of the number of subwindows and classes of images in
the training set, but more importantly in terms of the
number of values describing these subwindows.

In this context, we compare five tree-based meth-
ods: one single-tree method based on CART
(Breiman et al., 1984), and four ensemble meth-
ods: Bagging (Breiman, 1996), Boosting (Freund &
Robert Schapire, 1996), Random Forests (Breiman,
2001), and Extra-Trees (Geurts, 2002). Extra-Trees
only were originally used by (Marée et al., 2005).

2.3. Recognition

In this approach, the learned model is used to classify
subwindows of a test image. To make a prediction for a
test image with an ensemble of trees grown from sub-
windows, each subwindow is simply propagated into
each tree of the ensemble. Each tree outputs condi-
tional class probability estimates for each subwindow.
Each subwindow thus receives T' class probability es-
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Figure 2. Recognition: randomly-extracted subwindows
are propagated through the trees (here 7' = 5). Votes are
aggregated and the majority class is assigned to the image.

timate vectors where T denotes the number of trees
in the ensemble. All the predictions are then aver-
aged and the class corresponding to the largest aggre-
gated probability estimate is assigned to the image.
Note that we will simply consider that one single tree
method is a particular case where T' = 1.

3. Experiments

Our experiments aim at comparing decision tree meth-
ods within our random subwindow framework (Marée
et al., 2005). To this end, we compare these meth-
ods on three well-known and publicly available object
recognition datasets: household objects in a controlled
environment (COIL-100), object categories in a con-
trolled environment (ETH-80), and buildings in urban
scenes (ZuBuD). The first dataset exhibits substantial
viewpoint changes. The second dataset also exhibits
higher intra-class variability. The third dataset con-
tains images with illumination, viewpoint, scale and
orientation changes as well as partial occlusions and
cluttered backgrounds.

3.1. Parameters

For each problem and protocol, the parameters of the
framework were fixed to N,, = 120000 learning sub-
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windows, T" = 25 trees, and Ny test = 100 subwin-
dows are randomly extracted from each test image.
In (Marée et al., 2005), the parameters were fixed to
N, = 120000, T" = 10, and Ny test = 100. Ensem-
ble methods are influenced by the number of trees T'
that are aggregated. Usually, the more trees are aggre-
gated, the better the accuracy. We will further evalu-
ate the influence of these parameters in Section 4.

For each machine learning method within the frame-
work, the values of several parameters need to be fixed.
In our experiments, single decision trees are fully de-
veloped, i.e. without using any pruning method. The
score used to evaluate tests during the induction is
the score proposed by (Wehenkel, 1997) which is a
particular normalization of the information gain. Oth-
erwise our algorithm is similar to the CART method
(Breiman et al., 1984).

Random Forests depends on an additional parameter
k which is the number of attributes randomly selected
at each test node. In our experiments, its value was
fixed to the default value suggested by the author of
the algorithm which is the square root of the total
number of attributes. According to (Breiman, 2001)
this value usually gives error rates very close to the
optimum.

With the latest variant of Extra-Trees (Geurts et al.,
2005), the parameter k is the number of attributes
randomly selected at each test node. We fixed it to
the default value which is the square root of the total
number of attributes. The main differences with Ran-
dom Forests are that the algorithm randomizes also
cut-point choice while splitting a tree node and grows
the tree from the whole learning set while Random
Forests uses bootstrap sampling.

Boosting does not depend on another parameter but it
nevertheless requires that the learning algorithm does
not give perfect models on the learning sample (so as to
provide some misclassified instances). Hence, with this
method, we used with decision trees the stop-splitting
criterion described by (Wehenkel, 1997). It uses a hy-
pothesis test based on the G? statistic to determine
the significance of a test. In our experiments, we fixed
the nondetection risk a to 0.005.

3.2. COIL-100

COIL-100! (Murase & Nayar, 1995) is a dataset of
128 x 128 color images of 100 different 3D objects
(boxes, bottles, cups, miniature cars, etc.). Each ob-
ject was placed on a motorized turntable and images
were captured by a fixed camera at pose intervals of

Mttp://www.cs.columbia.edu/CAVE/
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Figure 3. COIL-100: some subwindows randomly ex-
tracted from a test image and resized to 16 x 16 pixels.

5°, corresponding to 72 images per object. Given a
new image, the goal is to identify the target object in
it.

On this dataset, reducing the number of train-
ing views increases perspective distortions between
learned views and images presented during testing. In
this paper, we evaluate the robustness to viewpoint
changes using only one view (the pose at 0°) in the
training sample while the remaining 71 views are used
for testing. Using this protocol, methods in the lit-
erature yield error rates from 50.1% to 24% (Matas
& Obdrzélek, 2004). Our results using this protocol
(100 learning images, 7100 test images) are reported
in Table 1. Tree Boosting is the best method for this
problem, followed by Extra-Trees, Tree Bagging, and
Random Forests. One decision tree has a higher er-
ror rate. Examples of subwindows randomly extracted
and resized to 16 x 16 pixels are given in Figure 3.

3.3. ETH-80

The Cogvis ETH-80 dataset? contains 3280 color im-
ages (128 x 128 pixels) of 8 distinct object categories
(apples, pears, tomatoes, cows, dogs, horses, cups,
cars). For each category, 10 different objects are pro-
vided. Each object is represented by 41 images from
different viewpoints.

In our experiments, we used for each category 9 objects
in the learning set (8%9*41 = 2952 images), and the re-
maining objects in the test set (8%1x41 = 328 images).
We evaluate the methods on 10 different partitions,
and the mean error rate is reported in Table 1. Here,
Extra-Trees are slightly inferior while Tree Boosting
and Tree Bagging are slightly better than other meth-
ods.3

*http://www.vision.ethz.ch/projects/
categorization/eth80-db.html

3We observed that the adjustment of the Extra-Tree
parameter k to the half of the total number of attributes,
instead of the square root, yields a 20.85% mean error rate.

Such improvements might also be obtained for Random
Forests.
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Table 1. Classification error rates (in %) of all methods
on COIL-100, ETH-80, ZuBuD (T' = 25, N, = 120000,
Ny test = 100)).

METHODS COIL-100 ETH-80 ZuBuD

RW+SINGLE TREE 19.20 22.04 10.43

RW +EXTRA-TREES 11.53 22.74 4.35

RW+R. FORESTS 13.06 21.31 4.35

RW-+BAGGING 12.77 20.34 3.48

RW-+BoOSTING 10.75 20.27 3.48
3.4. ZuBuD

The ZuBuD dataset* (Shao et al., 2003) is a database
of color images of 201 buildings in Ziirich. Each build-
ing in the training set is represented by five images
acquired at five random arbitrary viewpoints. The
training set thus includes 1005 images, while the test
set contains 115 images of a subset of the 201 buildings.
Images were taken by two different cameras in different
seasons and under different weather conditions, and
thus contain a substantial variety of illumination con-
ditions. Partial occlusions and cluttered background
are naturally present (trees, skies, cars, trams, people,

..) as well as scale and orientation changes due to
the position of the photographer. Moreover, training
images were captured at 640 x 480 while testing images
are at 320 x 240 pixels.

About five papers have so far reported results on this
dataset that vary from a 59% error rate to 0% (Matas
& Obdrzdlek, 2004). Our results are reported in Table
1. Due to the small size of the test set, the difference
between the methods is not dramatic and only one im-
age makes the difference between the two best ensem-
ble methods (Tree Boosting, Tree Bagging) and the
two others (Extra-Trees and Random Forests). One
single decision tree is again inferior. Figure 4 shows
the 5 images misclassified by Extra-Trees and Ran-
dom Forests, while the last one is correctly classified
by Tree Boosting and Tree Bagging. For this last im-
age, the correct class is ranked second by Extra-Trees
and Random Forests.

4. Discussion

The good performance of this framework was ex-
plained by (Marée et al., 2005) by the combination of
simple but well-motivated techniques: random multi-

‘http://www.vision.ee.ethz.ch/showroom/zubud/
index.en.html

Figure 4. ZuBuD: misclassified test images (left), training
images of predicted class buildings (middle), training im-
ages of correct buildings (right).

scale subwindow extraction, HSV pixel representation
and recent advances in machine learning that have pro-
duced new methods that are able to handle problems
of high dimensionality.

For real-world applications, it may be useful to tune
the framework parameters if a specific tradeoff be-
tween accuracy, memory usage and computing times
is desired. Then, in this section, we discuss the in-
fluence of the framework parameters (4.1, 4.2, 4.3) on
the ZuBuD problem which exhibits real-world images,
and we present some complexity results (4.4).

4.1. Variation of N,

Figure 5 shows that the error rate decreases monotoni-
cally with number of learning subwindows (for a given
number of trees (I = 25) and a given number of test
subwindows (N test = 100)). For all methods, we ob-
serve that using IV,, = 60000 subwindows already gives
good results, and that N,, = 180000 does not improve
accuracy, except for one single decision tree.

4.2. Variation of T

Figure 6 shows that the error rate decreases monoton-
ically with the number of trees, for a given number of
training subwindows (IV,, = 120000) and test subwin-
dows (Ny,test = 100). We observe that using 7' = 10
trees is already sufficient for this problem for all en-
semble methods.
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Figure 5. ZuBuD: error rate with increasing number of
training subwindows.
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Figure 6. ZuBuD: error rate with increasing number of
trees.

4.3. Variation of Ny, tcst

Figure 7 shows that the number of test subwindows
also influences the error rate in a monotonic way, for a
given number of training subwindows (N,, = 120000)
and a given number of trees (T' = 25). We observe that
using Ny test = 25 is already sufficient for this problem
with ensemble methods, but the aggregation of more
subwindows is needed for a single decision tree.
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Figure 7. ZuBuD: error rate with increasing number of test
subwindows.

4.4. Some notes on complexity

Our current implementation cannot be considered op-
timal but some indications can be given about memory
and running-time requirements. With this framework,

Table 2. ZuBuD: average tree complexity and learning
time.

METHODS CMPLX  LEARNING TIME
RW-+SINGLE TREE 92687 3ua36M308
RW-+EXTRA-TREES 148080 14M05s
RW+RANDOM FORESTS 77451 2H14Mb4S
RW-+BAGGING 63285 53H35M46S
RW+BoosTING 28040 54H21M31s

original training images and their subwindows are not
necessary to classify new images after the construction
of the model, contrary to classification methods based
on nearest neighbors. Here, only the ensemble of trees
is used for recognition.

Learning times for one single decision tree and ensem-
bles of T' = 25 trees are reported in Table 2, consider-
ing that subwindows are in main memory. The com-
plexity of tree-based method induction algorithm is of
order O(N,logN,,). Extra-Trees are particularly fast
due to their extreme randomization of both attributes
and cut-points while splitting a tree node. Single tree
complexity (number of nodes) is also given in Table 2
as a basic indication of memory usage.

To classify a new image, we observed that the predic-
tion of one test subwindow with one tree requires on
average less than 20 tests (each of which involves com-
paring the value of a pixel to a threshold), as reported
in Table 3°. The minimum and maximum depths are
also given. To classify one unseen image, the num-
ber of operations is thus multiplied by 7', the number
of trees, and by Ny test, the number of subwindows
extracted. The time to add all votes and search the
maximum is negligible. Furthermore, extraction of one
subwindow is very fast because of its random nature.

On this problem, we have also observed that pruning
Extra-Trees could substantially reduce their complex-
ity (downto a tree complexity average of 25191 with
the same stop-splitting criterion as Tree Boosting, thus
giving an average test depth of 15.4) while keeping the
same accuracy. In practical applications where pre-
diction times are essential, the use of pruning is thus
certainly worth exploring.

5The average tree depth was calculated empirically over
the 287500 propagations (100 subwindows for each of the
115 test images, propagated through 7' = 25 trees), except

for one single decision tree and for Tree Boosting (because
the algorithm stopped after T' = 21 trees).
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Table 3. ZuBuD: average subwindow test depth.

METHODS DEPTH MIN MAX
RW+SINGLE TREE 16.59 9 29
RW+EXTRA-TREES 18.26 8 34
RW-+RANDOM FORESTS 16.44 7 33
RW+BAGGING 15.98 8 34
RW-+BoOSTING 15.04 6 28

5. Conclusions

In this paper, we compared 5 tree-based machine
learning methods within a recent and generic frame-
work for image classification (Marée et al., 2005). Its
main steps are the random extraction of subwindows,
their transformation to normalize their representation,
and the supervised automatic learning of a classifier
based on (ensembles of) decision tree(s) operating di-
rectly on the pixel values. We evaluated the tree-
based methods on 3 publicly-available object recog-
nition datasets. Our study shows that this general
and conceptually simple framework yields good results
for object recognition tasks when combined with en-
sembles of decision trees. Extra-Trees are particularly
attractive in terms of computational efficiency dur-
ing learning, and are competitive with other ensem-
ble methods in terms of accuracy. This method with
its default parameter allows to evaluate very quickly
the framework on any new dataset.® However, if the
main objective of a particular task is to obtain the best
error rate whatever the learning time, Tree Boosting
appears to be a better choice. Tuning the parameters
(such as the value of k in Extra-Trees, or the stop-
splitting criterion) might further improve the results.

For future work, it would be interesting to perform a
comparative study with SVMs. The framework should
also be evaluated on bigger databases in terms of the
number of images and/or classes and with images that
exhibit higher intra-class variability and heavily clut-
tered backgrounds (such as the Caltech-1017, Birds, or
Butterflies® datasets).
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