
Active Learning of Manipulation Sequences

David Martı́nez1, Guillem Alenyà1, Pablo Jiménez1, Carme Torras1,
Jürgen Rossmann2, Nils Wantia2, Eren Erdal Aksoy3, Simon Haller4, Justus Piater4

Abstract— We describe a system allowing a robot to learn
goal-directed manipulation sequences such as steps of an
assembly task. Learning is based on a free mix of exploration
and instruction by an external teacher, and may be active in
the sense that the system tests actions to maximize learning
progress and asks the teacher if needed. The main component
is a symbolic planning engine that operates on learned rules,
defined by actions and their pre- and postconditions. Learned
by model-based reinforcement learning, rules are immediately
available for planning. Thus, there are no distinct learning and
application phases. We show how dynamic plans, replanned
after every action if necessary, can be used for automatic
execution of manipulation sequences, for monitoring of ob-
served manipulation sequences, or a mix of the two, all while
extending and refining the rule base on the fly. Quantitative
results indicate fast convergence using few training examples,
and highly effective teacher intervention at early stages of
learning.

I. INTRODUCTION

To this day, industrial robots almost always execute pre-
programmed motor sequences, grasp and manipulate work-
pieces in fixed sequences, and follow preprogrammed trajec-
tories. This requires a carefully controlled setup and costly
programming. Modern applications such as manufacturing
and service robotics require simple programming, e.g. by hu-
man demonstration, and should perform robustly in variable
environments.

In this work, we describe a system that learns flexible
manipulation sequences by a combination of observation
and exploration. The centerpiece is a symbolic reasoning
engine, referred to as the Decision Maker (DM), which
represents manipulation sequences in terms of simple, object-
level manipulations such as open door, extract tray, or insert
peg. We assume that the robot is capable of executing these
manipulations by virtue of appropriate object recognition,
pose estimation, grasping and motion skills. Our innovation
lies in the automatic, incremental acquisition of rules by
the DM, allowing it to flexibly synthesize manipulation
sequences that result in a desired outcome, to reactively
replan in case of unexpected disturbances, and to monitor
observed action sequences for correctness.

A rule is characterized by a manipulation, a set of pre-
conditions, and a description of the outcome. These are

1IRI (UPC-CSIC), Llorens i Artigas 4–6, 08028 Barcelona, Spain
dmartinez,galenya,pjimenez,ctorras@iri.upc.edu

2MMI, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
rossmann,Wantia@mmi.rwth-aachen.de

3Inst. Physics-3 & BCCN, University of Göttingen, Friedrich-Hund-
Platz 1, 37077 Göttingen, Germany eaksoye@physik3.gwdg.de

4IIS, IFI, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck,
Austria Simon.Haller,Justus.Piater@uibk.ac.at

Fig. 1. System Overview

incrementally learned and refined by observing a teacher
performing manipulations while keeping track of the state
of the workspace. In addition, learning can be active in
that the DM can take the initiative and suggest or trigger
next actions in the manipulation sequence. During learning,
rules, preconditions and outcome descriptions will typically
be incomplete, which will cause some suggested actions to
fail. This yields the addition of new rules or the refinement
of existing rules. Notably, our procedure does not require
a deterministic environment, but explicitly takes uncertainty
into account. The end result is a rule set allowing the DM
to generate a variety of plans, all leading to the same goal
state.

Figure 1 presents an overview of the system. The robotic
actor and its environment are simulated in Virtual Real-
ity (VR)1. The evolution of the manipulation sequence is
extracted and represented in the form of so-called Seman-
tic Event Chains [2], [3]. From these, the Manipulation-
Recognition module extracts plausible actions in progress
and recognizes completed actions. This information, plus
additional state communicated by the VR system, is used by
the Decision Maker to assess the state of the environment
and to learn and refine rules.

II. RELATED WORK

Many tasks in human environments can be modelled as the
execution of a sequence of different actions. To introduce

1In this paper we focus on the interactive learning and planning. The
system, as described, is also applicable to a real robotic setting, which is
currently work in progress.

-RXIVREXMSREP�'SRJIVIRGI�SR�6SFSXMGW�ERH�%YXSQEXMSR��-'6%������
l������-)))��8LMW�GST]�MW�MRXIRHIH�JSV�TIVWSREP�YWI�SRP]��7II�LXXT���MIII\TPSVI�MIII�SVK��JSV�XLI�TYFPMWLIH�ZIVWMSR�

flexibility in the way robots are taught to perform such
actions, different learning and cognitive frameworks have
been introduced. The challenge is now to learn such actions
in a manner that they can be exploited afterwards in a logic
planning framework to produce plans that solve given tasks.

Most existing machine learning techniques are designed to
work off-line, i.e. they require the samples for learning to be
available in advance, typically use an iterative process that
requires a significant amount of data and computation [17],
and usually require a complete, manual specification of the
problem in advance, like for example classical symbolic
planning algorithms [5].

To become more flexible some authors have proposed
learning frameworks to automatically learn different parts
of the problem. Yang et al. [18] propose a framework where
the preconditions of each action (under which circumstances
an action can be executed) can be learnt using experience.
However, it still requires the careful specification of the rest
of the problem.

Recently, Sung et al. [13] propose to generate universal
plans as sequences of primitive actions. Their selection takes
into account environmental parameters and the current state
in a parametrized form, and consequently tries to generalize
the plans to unseen scenarios. This approach needs to define
accurately the set of attributes for each of the involved
objects, and more importantly, the effects and requirements
of each action in advance.

Zhuo el al. [19] propose a method to refine a model with
incomplete preconditions and effects of the actions using a
MAX-SAT algorithm for learning. In their approach a set of
valid partial plans in the unknown domain is required to find
the solution.

Model-based reinforcement learning (RL) [7] allows learn-
ing with a limited amount of experiences. In the KWIK RL
framework [10] a method to learn the probabilities associated
to a set of given action effects using linear regression has
been proposed [15], and also an extension to learn the action
effects themselves [14]. To reduce the number of actions
required in model-based RL, a compact representation of the
model using relational rules can be used. Lang et al. proposed
REX [9], a relational reinforcement learning algorithm that
uses relational generalization with the well known R-max [4]
and E3 [6] algorithms to minimize the amount of exploration
required.

In contrast to the above, we propose a complete framework
for learning action rules on-line, starting with an empty rule
base. The introduction of a teacher is needed in such a system
where there is no previous knowledge. Teachers have already
been used to supervise the learning process [16]. However,
teacher time is usually very valuable. Therefore we give the
system the ability to request the help of the teacher just
whenever it is needed. In both cases, the introduction of a
teacher improves the efficiency of the learning [1] because
the number of learning iterations required to gather enough
knowledge to complete the required task is decreased. We
propose the REX-D algorithm, an extension of the REX al-
gorithm with the inclusion of teacher demonstration requests.

III. FROM SIGNALS TO SYMBOLS

Observed actions give rise to a continuous sensory stream,
which has to be translated into a symbolic form suitable for
the Decision Maker. This is the role of the “SEC generation”
and “Manipulation recognition” modules described in this
section.

In this work, we focus on reasoning about manipulations
as represented by dynamic relations between objects. To
this end, we here avoid the compounding challenges of
observation and execution of real-world actions, and work
within a Virtual-Reality environment. However, in principle,
the VR system can be replaced by real-world sensing (e.g.
using RGB-D cameras) and acting (robots and humans),
while leaving the other modules largely unchanged. We
address this in current work.

A. Semantic Event Chains

In the setup of Fig. 1, the VR system represents the
environment as a dynamic state space. Each state includes
identity, pose, and spatial information about objects and the
hand present in the scene, and is updated dynamically during
the manipulation.

The state information is first represented by a graph: nodes
correspond to object centers (which may include a human
hand), and edges indicate whether two objects touch each
other or not. The touching relation is directly derived from
the spatial information embedded in state descriptors. In this
way, a manipulation sequence is described by a sequence of
graphs.

Using an exact graph matching technique, the “SEC
generation” module drops successive identical graphs (i.e.,
it deletes all graphs isomorphic to its predecessor). Thus,
each remaining graph represents a “key frame” in the
manipulation sequence, characterized by a change in the
visible object set or in relations between objects. From these
remaining graphs, we form a so-called Semantic Event Chain
(SEC), which is a matrix where rows are possible pairwise
object touching relations, and columns describe the scene
configuration when a new graph has occurred. A SEC is
an attractive descriptor for manipulation actions since it
is invariant to the particular objects used, to the precise
object poses observed, and to the actual trajectories followed.
Moreover, it is robust to a considerable amount of clutter
nodes and edges that are unrelated to the action of interest.
All these aspects are allowed to vary, and still the same
SEC is observed and captures the “essence of the action”, as
demonstrated with diverse sets of real actions in our earlier
work [2], [3].

B. Manipulation Recognition

The manipulation actions considered by the Decision
Maker are all representable by sequences of changing object-
object relations. For example, insert peg A into object
B involves the following sequence of exhaustive touching
relations, as illustrated in Fig. 2:

1) Peg and Object touch the table. The Hand is visible.

Fig. 2. Touching relations that define key-frame Scene Graphs (center row)
that compose a Semantic Event Chain (the matrix at the bottom) representing
a peg-in-hole manipulation.

2) The Hand touches the Peg, and the Object touches the
table.

3) The Hand has released the Peg, which touches the
Object, which in turn touches the table.

This corresponds to a characteristic triple of columns in a
SEC. The role of the “Manipulation recognition” module is
to parse an incoming, continuous SEC (without indication
when a manipulation begins or ends) into a sequence of
known (and unknown) manipulations in an online, incre-
mental fashion, and to feed them to the Decision Maker for
learning and online planning.

The “Manipulation recognition” module possesses a
database of model SECs, each corresponding to one ma-
nipulation. Each model SEC contains three SEC columns
(corresponding to keyframes) describing the atomic actions
that have to appear in sequence for that specific manipu-
lation. Online recognition of manipulations is done in two
steps. The first step consists in matching the current SEC
column, received from the SEC generation module, to all
model SECs. The second step keeps track of the state of
advancement of each model manipulation, and determines
whether one or more manipulations have completed.

At the first step, the current SEC column, describing
the change in spatial relationships between scene segments
observed at the current time step t, is compared to all
keyframes k of each model SEC m. A match score s

(t)
m,k

for each of these comparisons is calculated as the proportion
of inter-segment relations (row entries of SEC columns)
that match between the current SEC column and the model
keyframe.

To implement the second step, a state counter c
(t)
m is

associated with each model SEC m that gives the highest
keyframe k compatible with the sequence of observed atomic
actions so far. Initially, all state counters are set to zero. Then,
for each manipulation model m,

c(t)m = argmax
k≤c(t−1)

m +1

{
s

(t)
m,k = 1

}
. (1)

This allows the state to advance keyframe by keyframe (cor-
responding to a correct progression without skipping atomic
actions), or to be reset to an earlier state (corresponding
to a recoverable step backwards in the sequence of atomic
actions).

A manipulation m is recognized whenever c(t)m = K for
a model SEC consisting of K atomic actions. An unknown
state is signaled if there is no match between the current SEC
column and any model SEC, i.e., s(t)

m,k < 1 for all m and all
k. As soon as the first keyframe is matched thereafter, i.e.,
s

(t)
m,k = 1 for at least one (m, k), an unknown manipulation

is reported for the preceding, unknown sequence of atomic
actions.

IV. THE DECISION MAKER

The centerpiece of our system is a decision making module
(cf. Fig. 1) that allows a robot to iteratively learn to execute
multi-goal, human-like tasks with the guidance of a human
teacher. During the task execution, the robot incrementally
learns new behaviours, becoming more autonomous up to
the point that human guidance is no longer required. This
framework is suitable to train robots to execute a wide
spectrum of human-like tasks without the burden of coding
the behaviours in advance or recoding the behaviours after
any non-stationarities of the environments.

The Decision Maker receives experiences in the form of
recognized manipulations (Sec. III-B), plus additional state
information received directly from the VR system (Sec. V).
It produces plans in terms of action sequences, which are
used in two distinct modes of operation that differ in the use
of these functions and in the roles of the human user:
• Learning and execution: The DM has to complete the

tasks it is assigned, starting with no prior knowledge
about the scenario. It has to request demonstrations,
learn the model and plan action sequences until it
completes the tasks.

• Monitoring: The decision maker verifies a task exe-
cuted by an user. It recommends actions to be taken,
and informs the user whether she is successfully ap-
proaching to the goal or not.

A. Learning and execution

The decision maker starts with no prior knowledge about
the actions that can be executed and has to learn them in
order to complete the tasks assigned to it. It can request
help from a teacher, who then demonstrates a suitable action
for the current state. Moreover, we would like our system to
learn with just a small number of actions and requiring few
demonstrations from the teacher. Therefore we propose the
REX-D algorithm that extends REX [9] with the option to
request demonstrations from a teacher.

1) The model: The REX-D algorithm builds upon a
Markov decision process (MDP) that decides which action
a to execute in the current state s to maximize the expected
sum of rewards, using a learned transition model P (s′ | s, a).

The model is represented as a set of rules Γ that define the
preconditions and effects of the actions. As we want to tackle

stochastic environments, we are using Noisy Indeterministic
Deictic (NID) rules [11]. A NID rule r is defined as

ar(χ) : φr(χ)→

pr,1 : Ωr,1(χ)

...
pr,nr

: Ωr,nr
(χ)

pr,0 : Ωr,0

, (2)

where
• ar is the action that the rule represents,
• φr(χ) are the preconditions for the rule to be applicable,
• Ωr,i are the effects defining the set of state predicates

that are changed with probability pr,i when the rule is
applied,

• Ωr,0 is the noisy effect that represents any other, un-
modeled, rare and complex effects,

• χ is the set of variables of the rule.
A NID rule represents one action, while each action may
be represented by several rules. All the rules defining one
action have disjoint preconditions φra,i

∧ φra,j
= ∅ | ∀i, j.

Therefore, each state-action pair (s, a) is covered by just one
rule r.

2) REX-D: The system can take two different strategies.
One is to explore the state space to improve the model
and achieve better rewards in the long term; the other is
to exploit by executing the actions that maximize the reward
with the current learned model. REX-D (Algorithm 1) has
many similarities with the E3 version of REX [9]. It explores
the state space until it reaches a known state. Once in a
known state, it plans using a MDP with the known parts of
the model, and if a plan is found it executes it (exploitation).
However, unlike REX, when no plan is found in a known
state, instead of using planned exploration, REX-D requests
a demonstration from the teacher. This has two advantages:
• Addition of new actions as needed: Actions do not have

to be defined at the outset. When no solution exists with
the set of actions available, a teacher demonstration is
requested and a new action can be taught.

• Improved learning time: The original REX algorithm
uses the planned exploration step to select which parts
of state space to explore. As the state space is usually
very large, a lot of exploration may be needed until a so-
lution is found. Nevertheless, the teacher demonstrates
optimal actions which already lead the system to those
parts of the state space that will incur high rewards.

Below the different parts of the algorithm are presented:
3) Counting function for exploration: Lang et al. [9]

propose a solution for the exploration-exploitation dilemma
in relational worlds, taking advantage of the relational repre-
sentation to reduce the number of samples before considering
a state as known. They use the following context-based
density formula for state-action pairs:

k(s, a) =
∑
r∈Γ

|E(r)| I(r = rs,a), (3)

where |E(r)| counts the number of experiences that cover
the rule, and I(·) is a function which is 1 if the argument
evaluates to true and 0 otherwise.

Algorithm 1 REX-D
Input: Reward function R, confidence threshold ζ

1: Set of experiences E = ∅
2: Rule set Γ = ∅
3: t = 0
4: Observe state st
5: loop
6: Update Γ according to E
7: if ∀a ∈ A : k(st, a) ≥ ζ then . If state is known
8: Plan from st using Γ
9: if found plan then

10: at = first action of the plan
11: else
12: Request demonstration
13: at = action demonstrated
14: end if
15: else
16: at = argmina k(st, a)
17: end if
18: Execute at
19: Observe new state st+1

20: Add (st, at, st+1) to E
21: t = t+ 1
22: end loop

4) The learner: The approach of Pasula et al. [11] is used
to obtain the rule sets. It is a greedy algorithm that generates
NID rules to explain past experiences of action executions.
It optimizes the trade-off between the rules’ accuracy and
complexity, obtaining models that are compact and tractable.
Note that this learner requires the state to be fully observable.

5) The planner: The probabilistic planner PRADA [8] is
used to generate action sequences to maximize the expected
reward given a state and a NID rule set. It can obtain
solutions for stochastic environments in a limited amount
of time.

B. Monitoring

The user performs a sequence of actions while being
monitored by the system. The system has been previously
trained and is able at each moment to compute the optimal
plan to reach the goal from the current world state. Each
action executed by the user is validated as compatible with
the current optimal plan or as diverging from optimality but
still being recoverable. The latter means that the system is
able to compute an alternative plan to reach the goal from
the present world state, although this new plan has a larger
number of steps than the optimal plan prior to execution of
this action. Unrecoverable world states may also arise. Here,
the planner is unable to find a plan to reach the goal, and the
user is informed of this dead end. Algorithm 2 summarizes
the monitoring mode of operation.

C. Teacher interactions

In both scenarios, learning and monitoring, the system
has to recognize the actions executed by the user. During

Algorithm 2 Monitoring
Input: Goal oriented reward function R, model Γ

1: t = 0
2: Previous plan pt = ∅
3: loop
4: t = t+ 1
5: Observe state st
6: Plan from st using Γ
7: if plan pt is found then
8: Recommend first action of pt
9: if R(pt) > R(pt−1) then

10: Signal good progress
11: else
12: Signal bad progress
13: end if
14: else
15: Signal dead end
16: end if
17: end loop

learning, when a demonstration is requested the action has
to be recognized either as new or as already known. When
monitoring, status signals are emitted after the user has
executed an action. The manipulation recognition module
continuously checks for new actions, and informs the de-
cision maker when a new action gets executed.

V. THE VR SYSTEM

Virtual Reality plays the role of the world whose states are
captured by perception and where state-modifying actions
take place. To this end, the VR environment provides a
dynamic representational space corresponding to the experi-
mental settings (LABEX and AUTAS, see Section VI) which
can be interactively modified. State descriptors, basically in
terms of objects identifiers, poses and touching relations,
are fed both to the SEC generation module and the DM. In
turn, the DM provides action commands that are interpreted
and executed in the VR environment (Figure 1). For further
details on this system, please refer to [12].

The VR hardware consists of a multi-screen stereoscopic
rear projection installation including three projectors and the
corresponding rendering and managing servers. Interaction
is achieved by using a wireless dataglove together with an
ultrasonic tracking system for absolute positional tracking
of the dataglove basis at the wrist. The dataglove, which is
equipped with resistive bend-sensing technology to provide
detailed readings of joint angles, keeps track of finger and
wrist inclinations and sends these data to the VR system via
a Bluetooth connection.

The basic structure of the underlying active object-oriented
database is an extended scene graph (not to be confused with
the equally-named but distinct concept introduced in Sec. III-
A). The nodes in the graph represent single objects with
their children being the constituents of the parent object,
and with the root node representing the whole scene. The
nodes contain the information to render the associated parts

of the scene, simple spatial relations and geometries in its
most basic form. Extensions are active properties added to a
node in order to extend its capabilities.

The changing world state is updated in the database thanks
to its ability of signaling changes made to its data. An
advanced scripting language (SOML) supports the access
to functions and properties of the core system and all
components. SOML is capable of defining its own classes
with interfaces for properties and functions. From the user’s
point of view, the most relevant function of SOML scripts
is to execute the actions determined by the DM, taking
temporarily control over the system and performing all
the necessary state changes, taking care of the involved
kinematics, and displaying the corresponding animations.

The user, equipped with polarized glasses for visual 3D
immersion and wearing on the right hand the data glove
described above, is able to interact with the scene, by
touching and grasping the existing objects, moving them
around, and releasing (or dropping) them. To this end, the
VR system evaluates the data streams from the tracking
system and the data glove and transforms them into the
coordinate system of the scene, providing the 3D position
and the orientation of the hand as well as finger postures,
with respect to the same reference frame the virtual scene is
referred to. Thus hand poses and collisions between the hand
and other objects in the scene can be interpreted, enabling
in this way to recognize grasping and releasing gestures. A
virtual representation of the hand is displayed on screen, thus
allowing for real time interactions with the virtual objects
that are displayed and providing the user with a powerful
clue for guiding their manipulative actions. With these tools,
the user is able to grasp and release (or drop) objects in the
scene in a very natural and intuitive way.

The system works either in teaching or in execution mode.
In the first mode, a sequence of actions is performed by the
user, who acts as a teacher that demonstrates actions to the
system. During this phase, the user remains in control of the
hand, which is symbolized by a natural human skin color of
the virtual hand. In the second working mode, the system
tries to plan with the rules learned so far and to execute the
actions that are produced by the DM. Once the DM comes up
with an action, the color of the virtual hand turns blue, thus
signaling automatic execution. Control of the virtual hand is
taken away from the user and the requested action is carried
out automatically. If the DM reaches a dead end and does not
know how to proceed (recall Section IV), control is returned
to the human teacher, and the skin color of the virtual hand
returns to a natural tone. At this moment, the user is able to
perform the next action, and the DM refines its rule-base, as
explained above.

VI. EXPERIMENTS PERFORMED ON THE VR PLATFORM

A. LABEX: Monitoring of Human Performance

The LABEX scenario represents a laboratory environment
in the International Space Station (ISS) where a scientific
experiment takes place. The setting includes two cupboards,
one of which should remain closed as long as possible in

order to keep the temperature constant (TCU), and the other
one has compartments at different temperatures (STO), plus
some experimental containers (EC) which can be transported
on trays from and to the cupboards and the global deposit
(see Figure 3).

Fig. 3. LABEX scenario

Possible actions in this scenario include mainly opening
and closing the doors of the cupboards, displacing the trays
and extracting or inserting the ECs in the trays. The system
is not intended for automatic execution of the actions, but
for monitoring human performance along the experiments.
The LABEX setting fits quite well to test the monitoring
capabilities of the IntellAct system as the human operators
in the ISS have to comply with well-defined sequences of
actions in the laboratory with no room for interpretation and
divergence.

The user, virtually situated in the Columbus module of the
ISS, performs a set of manipulating actions. As described
in Section V, the use of the dataglove enables detection of
grasping and releasing gestures and thus interpretation of
door opening and closing, tray transporting and EC handling
actions in a natural way. As long as the user adheres to a
trained sequence as the one above, a green traffic light ap-
pearing on one side of the scene signals correct performance.
Non-optimal but still recoverable actions trigger a yellow
traffic light. It is the task of the DM to produce a new plan
that is still capable of reaching the goal from the current
situation created by this action. If no such plan can found,
i.e., if the goal cannot be reached anymore, for example by
dropping an EC out of reach, the traffic light turns red.

B. AUTAS: Learning Assembly Sequences

The AUTAS scenario consists of the Cranfield assembly
benchmark, whose parts are depicted in Figure 4.

The sequence in which the parts have to be assembled is
conditioned by the precedence constraints in the assembly.
These constraints have to be learned from sequences leading
to successful completions of the assembly.

The user is virtually immersed in an industrial envi-
ronment, and stands before a table with the parts of the

Fig. 4. Cranfield assembly parts

assembly scattered around. First the user demonstrates a
whole assembly sequence by using the dataglove to grasp the
individual parts and putting them into place. At this point, the
rule learning module of the DM has learned a first set of rules
which are usually far from being correctly defined, mainly
as for their respective preconditions. The system then enters
a rule-refinement/planning/execution loop (we consider the
perception of the new states implicitly in this loop), where
the DM makes a new plan with the available rules, executes
the first action of this plan, and if it fails because the
action is not yet applicable to the current state it requires
intervention by the teacher. The user performs the action
that should be executed at this point and the learning module
updates the rule base by introducing additional preconditions
to the affected rule. Figure 5 presents an example of the
first two executions of this loop after the teacher’s initial
demonstration of the whole sequence.

Fig. 5. Demonstration of the whole sequence of the teacher and the two
first rule-refinement/planning/execution loops. Failed actions are displayed
in red.

Furthermore, the learning module allows also to update
the rule probability based on the observed action outcome.
This enables the probabilistic planner to use this probability
to select the next action.

C. Experimental results

We have conducted experiments in the two aforementioned
modalities and settings. LABEX has been mainly used for
automatic monitoring of human activity, which admits a
qualitative evaluation (please refer to the videos). On the
contrary, learning assembly sequences can also be evaluated
quantitatively in terms of the number of requested teacher’s

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Episode

A
c
ti
o
n
s

REX

REX−D

REX−D teacher requests

Fig. 6. Deterministic AUTAS scenario. REX-D starts with no prior
knowledge, while REX starts with the list of actions available (but not
their effects nor preconditions). The results show the mean and standard
deviations obtained over 100 runs.

demonstrations. Thus we concentrate here on presenting
results for different experiments performed in the AUTAS
scenario.

We emulate the functioning of a real robotic system by
incorporating failures in the execution of an action. The
source of such failures is either related to perception noise
(i.e., during the segmentation and recognition processes,
consisting in misidentified parts or in missing objects) or
to action noise (during robot execution, e.g. failed grasps
or insertions, dropped parts, or dead ends). In all cases,
the result is that the outcome of an action is not as ex-
pected, and additional demonstrations by the teacher may
be required to learn the task. Figure 6 shows the number
of actions required to complete the Cranfield test in the
deterministic case, whereas in Figure 7 the stochastic case
is presented, with a success ratio for each action of 60%.
REX-D clearly outperforms REX during the initial steps,
where teacher demonstrations can save a lot of exploration
actions. Moreover, the stochastic case also shows other
improvements of having demonstration requests in complex
problems. When the system doesn’t know how to overcome
unexpected results from an action, the teacher can provide
an optimal demonstration that leads to the important part of
the state space, while REX may have to explore suboptimal
paths. Also note that the REX-D algorithm requires just a
few teacher interactions after the first episode, which means
that exploring is usually enough to complete the model, and
only special cases require further help.

The the system can cope with execution contingencies that
require new actions to be taught, and that enable probabilistic
planning. For example, while typically a peg is expected to
be found in a vertical position (as a result of a previous
positioning operation on the table), it might incidentally be
horizontal. In such cases, new actions can be taught such as
“put vertical” or “grasp horizontal”, and alternative action
courses with different success probability may arise.

Teaching new actions also enables recovery from dead
ends such as a premature placement of the separator
before the corresponding pegs have been placed (“re-
move separator”). Figure 8 illustrates the results obtained

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Episode

A
c
ti
o
n
s

REX

REX−D

REX−D teacher requests

Fig. 7. Noisy AUTAS scenario. Actions have a success ratio of 60%. REX-
D starts with no prior knowledge, while REX starts with the list of actions
available (but not their effects nor preconditions). The decision maker was
limited to executing 100 actions per episode. The results show the mean
and standard deviations obtained over 100 runs.

2 4 6 8 10 121 3 5 7 9 11
0

5

10

15

20

25

30

Episode

A
c
ti
o
n
s

Actions

Optimal
Teacher requests

Fig. 8. AUTAS scenario. Episodes 1–4 show the standard AUTAS scenario.
Episodes 5–8 exhibit a peg in an horizontal position, which has to be
repositioned vertically before placing it. Episodes 9–12 start with the
separator and no pegs placed, so the robot has to remove the separator
in order to place the pegs, and then place the separator again. Therefore,
during episodes 5–12 an additional action has to be performed. The learner
starts with no prior knowledge. The results show the mean and standard
deviations obtained over 50 runs.

for different variants of the task, requiring the teaching of
the two aforementioned new actions (the first four episodes
correspond to the standard Cranfield scenario, the next four
to the case where a peg lies initially in a horizontal position
and the new repositioning action has to be learned, and the
last four to the case of separator placement without pegs). Of
course, non-recoverable dead ends like unreachable objects
or occlusions need to be recognized as such.

Having the teacher in the loop permits the further special-
ization of previously-taught actions. For example, depending
on the available workspace, some types of grasps that are
otherwise recommended for stability reasons are no longer
possible: in Figure 9, the previous placement of the pendulum
does not allow the separator to be placed while holding it at
its center; it has to be held at one side. This gives rise to two
specializations of “placeseparator()”, as shown in Figure 10.

VII. CONCLUSIONS

A system that allows a robot to learn manipulation tasks
has been presented. It includes a Decision Maker for the

Fig. 9. While assembling the Cranfield benchmark, the pendulum has
been placed before the separator. If the latter is grasped around the center
as shown on the left, the fingers of the gripper would collide with the
pendulum. Thus, it has to be grasped at one side, as shown on the right.

Fig. 10. The two grasp-conditioned specializations of the “placeseparator()”
action. Observe the different preconditions, as well as the different success
probabilities.

high-level learning and reasoning, a SEC module that ob-
tains information about manipulations being executed, and a
Manipulation Recognition module that recognizes the actions
performed by the robot or a person. All these modules have
been integrated in a way allowing a teacher to interact with
the system to demonstrate how to execute various tasks. We
have shown how the system can learn new tasks, execute
the required manipulations to complete them, cope with
unexpected contingencies, and monitor a person executing an
already learned task. While the environment and the robotic
effector are currently simulated in virtual reality, this work is
targeted at real robotic platforms, which is work in progress.

The decision maker uses the novel REX-D algorithm, a
relational reinforcement learning method that can request
demonstrations from a teacher. This allows the decision
maker to start with no previous knowledge about the actions
available, as demonstrations of them are requested whenever
they are needed. Moreover the combination of learning
relational models and the help of having demonstration
requests allows learning with just a small number of action
executions.

We have shown that the system can also be used to monitor
user actions once it has learned the task. Using the SECs and
the manipulation recognition module, actions executed by the
user are recognized, and the decision maker is able to give
recommendations based on the current state, and to signal
warnings whenever the actions are not leading to the goal.

Videos illustrating the system and showcasing key features
can be found at http://www.iri.upc.edu/groups/
perception/ALOMS/.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies)
under grant agreement no. 269959, IntellAct. D. Martı́nez is
also supported by the Spanish Ministry of Education, Culture
and Sport via a FPU doctoral grant (FPU12-04173).

REFERENCES

[1] A. Agostini, C. Torras, and F. Wörgötter. Integrating Task Planning and
Interactive Learning for Robots to Work in Human Environments. In
International Joint Conference on Artificial Intelligence, pages 2386–
2391, 2011.

[2] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and
F. Wörgötter. Learning the semantics of object-action relations by
observation. International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[3] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen. Categorizing
object-action relations from semantic scene graphs. In International
Conference on Robotics and Automation (ICRA), pages 398–405,
2010.

[4] R. Brafman and M. Tennenholtz. R-max-a general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine
Learning Research, 3:213–231, 2003.

[5] L. P. Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion
planning in the now. In International Conference on Robotics and
Automation, 2011.

[6] M. Kearns and S. Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[7] J. Kober and J. Peters. Reinforcement learning in robotics: a survey.
International Journal of Robotics Research, pages 579–610, 2012.

[8] T. Lang and M. Toussaint. Planning with noisy probabilistic relational
rules. Journal of Artificial Intelligence Research, 39:1–49, 2010.

[9] T. Lang, M. Toussaint, and K. Kersting. Exploration in relational
domains for model-based reinforcement learning. Journal of Machine
Learning Research, 13:3691–3734, 2012.

[10] L. Li, M. Littman, T. Walsh, and A. Strehl. Knows what it knows: a
framework for self-aware learning. Machine learning, 82(3):399–443,
2011.

[11] H. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence
Research, 29, 2007.

[12] J. Rossmann, C. Schlette, and N. Wantia. Virtual Reality in the Loop –
Providing an Interface for an Intelligent Rule Learning and Planning
System. In Semantics, Identification and Control of Robot-Human-
Environment Interaction (Workshop at the International Conference
on Robotics and Automation), 2013, pages 60–65, 2013.

[13] J. Sung, B. Selman, and A. Saxena. Learning sequences of controllers
for complex manipulation tasks. In International Conference on
Machine Learning, 2013.

[14] T. Walsh. Efficient learning of relational models for sequential
decision making. PhD thesis, Rutgers, The State University of New
Jersey, 2010.

[15] T. Walsh, I. Szita, C. Diuk, and M. Littman. Exploring compact
reinforcement-learning representations with linear regression. In
Conference on Uncertainty in Artificial Intelligence, pages 591–598,
2009.

[16] T. J. Walsh, K. Subramanian, M. L. Littman, and C. Diuk. Generalizing
apprenticeship learning across hypothesis classes. In International
Conference on Machine Learning, pages 1119–1126, 2010.

[17] T.J. Walsh and M.L. Littman. Efficient learning of action schemas
and web-service descriptions. In AAAI Conference on Artificial
Intelligence, pages 714–719, 2008.

[18] Q. Yang, K. Wu, and Y. Jiang. Learning action models from plan
examples using weighted max-sat. Artificial Intelligence, 171, 2007.

[19] H. H. Zhuo, T. Nguyen, and S. Kambhampati. Refining incomplete
planning domain models through plan traces. In International Joint
Conference on Artificial Intelligence, 2013.

