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Abstract. We present an approach to non-rigid object tracking designed to han-
dle textured objects in crowded scenes captured by non-static cameras. For this
purpose, groups of low-level features are combined into a model describing both
the shape and the appearance of the object. This results in remarkable robustness
to severe partial occlusions, since overlapping objects are unlikely to be indis-
tinguishable in appearance, configuration and velocity all at the same time. The
model is learnt incrementally and adapts to varying illumination conditions and
target shape and appearance, and is thus applicable to any kind of object. Results
on real-world sequences demonstrate the performance of the proposed tracker.
The algorithm is implemented with the aim of achieving near real-time perfor-
mance.

1 Introduction
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Typical object tracking applications include video surveillance for security or be-
haviour analysis, traffic-monitoring, sports analysis and human body tracking. In this
work we develop a model-based technique able to cope with non-rigid objects in crow-
ded scenes, involving many interacting targets with frequent mutual occlusions. We use
single-view video streams taken by non-static cameras, which poses serious difficulties
to tracking systems based on background models.

Many tracking approaches are based on more or less elaborate variants of back-
ground subtraction [1]. They can easily handle only static cameras, and object labels
cannot be preserved throughout occlusions, except by using high-level scene interpreta-
tion algorithms. Most model-based object tracking methods use a fixed object represen-
tation, a so-called template, that describes the appearance or the shape of the tracked
object. Most of these are based on colour histograms [2,3]. Such approaches tend to
have problems with richly textured objects or multiple interacting objects having simi-
lar global appearance. Few convincing attempts have been made that track objects using
feature points, although it is generally accepted that point-based methods should have
some interesting properties. Some basic point-based solutions were developed by Ar-
naud and Mémin [4] by combining a Rao-Blackwellized particle filter with a model
consisting of a noisy, planar cloud of points, and by Bevilacqua et al. [5] who perform
smart point grouping based on self-organising maps. More sophisticated approaches
include the work by Leordeanu and Collins [6] where feature pairs are coupled based
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on their pairwise statistics, by Tang and Tao [7] where objects are modelled adaptively
with an attributed relational graph, and by Mathes and Piater [8], where point distribu-
tion models are learnt non-incrementally for tracking planar objects.

In our approach, each tracked object is described by a point distribution model [9]
using feature vectors for local appearance instead of raw texture information. Such
a model combines local appearance information with global shape information. The
model is learnt incrementally and continuously, enabling it to accommodate to appear-
ance and illumination changes. Point features tend to flicker in noisy image sequences
or disappear due to occlusions, but as long as a reasonable subset of all the model points
is visible in each frame, tracking can be performed reliably. The model can dynamically
add good new features or remove bad old features. During occlusion by other tracked
objects, model updating is disabled, rendering our tracker even more robust. Point land-
marking is performed automatically, so that user interaction is only required to initialise
the tracker in the first frame.

The following section explains how we extract interest points and how we describe
their local appearance. Section 3 introduces the concept of point distribution manifolds,
and Section 4 explains how they can be used for tracking purposes. Experimental results
are given in Section 5.

2 Interest Points and Local Appearance

We concentrate on sparse sets of local features because they are well-suited for non-
rigid objects and tend to yield methods particularly robust to partial occlusions. Local
features are extracted by a colour version [10] of a scale-space, grey-scale Harris corner
detector [11]. This is illustrated in Fig. 1. On each detected interest point we describe
the local appearance by the 11-dimensional feature vector

v = (x, y, r, g, b, rx, ry, gx, gy, bx, by)T , (1)

where v ∈ V with V ⊂ R11. V is called the feature space. v corresponds to the
first-order local jet enhanced by the interest point position. Using colour images and
a rotationally variant descriptor yields enough discriminative power to obtain reliable
point matchings between frames.

3 Point Distribution Manifolds

When using interest points to track objects, a natural approach is to use point distribu-
tion models, which are statistical models of shape and/or appearance. The shape of an
object can be interpreted as all geometric information that remains when location, scale
and rotational effects have been removed. Instead of using raw texture information, we
describe the shape and appearance by constructing our model from a set of feature vec-
tors that correspond to interest points that may lie anywhere on the object. Thus, each
shape is represented by a vector
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Fig. 1. Soccer player performing out-of-plane rotation (frames 0, 28 and 48).

Fig. 2. Projection onto the three principal components of a non-linear low-dimensional
manifold corresponding to the normalised shapes of the rotating soccer player of Fig. 1.

that is simply a concatenation of all the feature vectors extracted from the object in a
given frame. These shape vectors lie in an 11N -dimensional space, and more precisely
on a low-dimensional, non-linear manifoldM embedded in this high-dimensional spa-
ce, because the interest points on a real non-rigid object are strongly correlated. The
shape and dimensionality of M depend on the nature of the object deformations. Fig-
ure 2 shows the projection onto the three principal components of a typical manifold
obtained for a rotating soccer player. It illustrates the potentially non-linear nature of
the manifold.

3.1 Matching Interest Points

If M is sampled densely enough and if we assume that it is locally linear, new shapes
can be generated by linear interpolation of neighbouring shapes. Shapes within the im-
age are denoted by the letter X, whereas shapes that are part of the model are denoted
by the letter Y. Let us suppose we have used the model to generate a shape Y superim-
posed onto the current video frame. In order to test if the current set of points X̃ taken
from the image is a valid shape, the points from the image, indexed by i, and the points
from the model, indexed by j, have to be brought into correspondence. To do so, we
compute a maximum-gain matching by using the Hungarian method [12]. We use the
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gain function

g(vi
X̃

,vj
Y ) = 1−

d(vi
X̃

,vj
Y )

θ
, (3)

where d(vi
X̃

,vj
Y ) is the distance between feature vectors vi

X̃
and vj

Y . All edges with
negative weights are ignored, meaning that matchings with distances greater than θ are
impossible. In this way, θ acts as a gating threshold for d. The squared distance d2

between two N -sized vectors is computed as:

d2(x,y) = (x− y)T Σ−1(x− y), (4)

where Σ is the covariance matrix estimated from all interest points belonging to M.
For computational reasons, the cross-correlations in Σ are assumed to be equal to 0,
in order to avoid costly matrix inversions. Once the matchings have been performed,
the interest points of X̃ can be rearranged so that they are in the same order as their
correspondences in Y. This new vector will be denoted by X. In general, not all the
points from X̃ (resp. Y) have a correspondence in Y (resp. X̃). For this reason, we will
have two vectors of equal size with missing elements, denoted by X• and Y•.

3.2 Image-to-model and model-to-image similarity

Before adding a shape to the manifold M, it is centred to the origin and scaled such
that the mean distance of its points to the origin is equal to 1. This operation defines
a similarity transform T = Ttx,ty,s,α that maps a shape from the manifold to the
image reference frame. The inverse transform T−1 can be used to map it back to the
manifold. The translation and scaling are only applied to the x and y elements of the
feature vectors, whereas the rotation must also be applied to the derivatives of the colour
channels. Shapes in the image reference frame are denoted by upper-case letters (e.g.
X), while the shapes in the model reference frame are denoted by lower-case letters
(e.g. x). Thus we have x• = T−1(X•).

3.3 Computing the Weights

The model is used to reconstruct a shape as similar as possible to the current, rearranged
and reprojected image shape x•. Our approach is similar to one popularly used for
locally linear embedding [13]. We begin by identifying the K nearest neighbours yi of
x• onM by applying the distance d defined earlier on the non-missing elements of x•.
Reconstruction errors are measured by the cost function

ε(w) =

∣∣∣∣∣x• −
K∑

i=1

wiy•i

∣∣∣∣∣
2

, (5)

which is the squared distance between the image shape and its reconstruction and where
again only the non-missing dimensions are considered. The weights wi summarise the
contribution of the ith model shape to the reconstruction. They are computed by min-
imising the cost function subject to two constraints: First, the image shape is recon-
structed only from its neighbours, enforcing wi = 0 if yi does not belong to this set;
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Fig. 3. A car and a soccer player with their current interest points (in white) and model
points (in red) superimposed.

second, the weights must sum to one:
∑

i wi = 1, thus enforcing the invariance to
translation in the manifold space. The optimal weights subject to these constraints are
found by solving the linear system of equations∑

j

cijwj = 1, ∀i, (6)

where cij are the elements of the local covariance matrix defined by

cij = (x• − y•i )T (x• − y•j ). (7)

For details on these calculations, see Appendix A of Saul and Roweis [13]. The weights
are constrained to be larger than a small negative threshold to generate only shapes close
to the convex hull of the K neighbouring shapes. We take K = 13 in our experiments.

3.4 Shape Generation

If we assume that the manifold is locally linear, then we can predict the position of
missing points. We compute the K nearest neighbours and the corresponding weights
of the current image shape using only the dimensions corresponding to the model points
that could be matched to image points, as described in the previous section. These same
weights can then be used to predict the missing feature vectors, generating a complete
vector x equal to x•, but with the missing values filled in by the corresponding values
of

∑
wiyi. This is a very important step in our method because it solves the problem

of flickering feature points. The generated shape y = x is then added to the manifold.
Due to opaque objects rotating in depth or object deformations, some feature points

become hidden because they move behind the object. When generating shapes from
the model, such hidden points should not be projected into the image. Therefore, for
every feature point of every shape on the manifold there is a flag that indicates whether
that point was visible at the moment the shape was added to the manifold. When we
generate a new shape, a point is taken to be visible if among the K neighbouring shapes
at least one flag is set. Figure 3 shows a car and a soccer player with the image interest
points (in white) and the model points (in red) superimposed.
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4 Tracking

4.1 Cleaning the Manifold

To make the model adaptive to changing object appearance or shape, we need a mech-
anism to add and remove points from it. Points appear and disappear usually when an
object performs out-of-plane rotations or undergoes strong non-rigid deformations.

We call new points all those feature points in the current frame that cannot be
matched to a model point. Each of these points is added to the model and matched
to image points from frame to frame, but is not yet used to update the model param-
eters. This happens only when the point has proven to be stable, meaning that it has
been matched a minimum number of times. We call these the active points. A similar
methodology is applied to inactive points, which are model points that have not been
matched for some time.

As we are interested in tracking objects in crowded scenes, our model was designed
to be very robust to occlusions. Nevertheless, due to its incremental nature, bad points
(points not belonging to the object) could be added to the model, especially if the back-
ground is very cluttered or the occluding object has similar velocity and/or appearance.
The addition and deletion of points are therefore disabled as soon as the regions of
interest of the two objects intersect each other.

In some situations (cluttered background or occluding object not being tracked), it
still happens that a bad point is likely to be added to the model. We therefore discard
points that lie too far from the 4-dimensional Gaussian cluster N formed by the 4-D
points q = (x, y, vx, vy), where (vx, vy) is the velocity vector of (x, y). This means
that we consider as outliers those points for which d2(q,N ) > γ2 and

d2(q,N ) = (q− µ)T Σ−1
N (q− µ), (8)

where µ is the mean vector and ΣN is the covariance matrix of N . We use γ = 3.0.
This is analogous to the gating commonly used with Kalman filtering.

For computational reasons it is not possible to add new shapes indefinitely. We
therefore generally limit the size of the manifold to a maximum of 30 shapes. When
this limit is reached, the oldest shape is simply discarded. Keeping more than 30 shapes
on the manifold doesn’t improve the tracking results considerably.

4.2 Kalman Filtering

A Kalman filter is applied to the model-to-image similarity parameters. In our state
vector p = (tx, ty, s, α, vx, vy) ∈ R6, the position is governed by a first-order process
(constant-velocity model), whereas s and α are governed by a zeroth-order process,
giving pt = Apt−1 + ut−1, where A is the state transition matrix. The corresponding
measurement vector z = (tx, ty, s, α) ∈ R4 is provided by zt = Hpt + vt, where H
is the measurement matrix. The random vectors ut and vt represent the process and
measurement noise at time t respectively. They are assumed to be independent of each
other, white and with normal probability distributions. In soccer or video surveillance
the filter is tuned in order to allow only slow variations of scale and angle. In sequences
with more chaotic movements, the scale and the angle can be made more flexible.
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4.3 The Algorithm

Tracking is performed by applying the following algorithm to each frame:

1. In the current frame (time t), extract interest points that lie inside the ROI from
the previous frame, giving the current shape X̃t. The ROI is equal to the smallest
rectangle enclosing the model shape from the previous frame plus a small border.

2. Project the model shape from the previous frame into the current frame by using the
predicted similarity resulting from the previous time update of the Kalman filter:
Yt−1 = T̂t−1(yt−1).

3. Match the points of Yt−1 with the points of X̃t. This defines a vector X̃•
t and a

vector Y•
t−1 containing only the matched (and active) points of X̃t and Yt−1. Let

X•
t be the rearranged version of X̃•

t .
4. Compute the new similarity Tt that minimises |X•

t −Tt(y•t−1)|2.
5. Compute the K nearest neighbours of x•t = T−1

t (X•
t ) onM and the corresponding

weight vector wt.
6. Use these weights wt to complete x•t in order to generate what is the most probable

current image shape xt.
7. Add this completed shape yt = xt to the manifold.
8. Use the computed similarity Tt as measurement for the Kalman filter and do a time

update which gives T̂t.
9. Clean the manifold as described in Section 4.1.

Our method can be directly applied to sequences that do not contain many back-
ground feature points. If the background is highly cluttered, meaning that it gives rise
to large numbers of feature points, a pre-filtering stage may be required, e.g. to re-
move all static points in the case of a static camera or to remove all the image-to-model
homography inliers in the case of a moving camera. This approach is different from
traditional background subtraction, because it is performed only locally and does not
require a background model.

5 Results

We present tracking results on several challenging video sequences taken from a soccer
game and from the PETS 2001 video surveillance data. Objects can be correctly tracked
through scale, appearance and shape changes, as long as they exhibit sufficient texture.
The tracker is not specific to people, but can also be used to track cars for example.
Object labels are not lost during severe partial occlusions, even if the interacting targets
look very similar. In all the examples, user interaction is only required in the first frame
in order to initialise the targets to be tracked.

Example 1 is a difficult 150-frame sequence taken from a soccer game. The camera
performs rotations and zooms whereas the players undergo drastic non-rigid deforma-
tions and very rapid movements, causing motion blur in some subsequences. In this
sequence, four players are tracked. If their regions of interest intersect, their respective
model learning is disabled, indicated by a red region of interest. The size of the regions
of interest automatically adapts to the target size. The trackers are not disturbed by the
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000 120

Fig. 4. Example 1: Global views of the sequence, illustrating the camera movement.
The camera and the players perform fast movements, which causes some motion blur.

050 070 090

110 130 150

Fig. 5. Example 1: Local enlargements of interesting keyframes of the sequence.

partial occlusions. Figure 4 shows four keyframes of the sequence to illustrate the cam-
era movements. Figure 5 contains six enlargements from another subset of keyframes
of the same sequence.

Example 2, illustrated in Fig. 6, is similar to the previous one, but with much more
severe occlusions. The occlusions in this example are typical occlusions our tracker
is able to handle without confusing target labels. In this sequence, five soccer players
and the referee are tracked. Between frames 060 and 110 there is a very complicated
occlusion situation between the referee and 3 other players, which is correctly handled
by the tracker.

Example 3 illustrates the ability of our tracker to handle appearance and scale
changes. A person walking away from the camera is correctly tracked for more than
300 frames. Three keyframes of this sequence are shown in Fig. 7. After frame 290,
the tracker fails, mainly for two reasons: First, the target becomes very small and no
longer generates enough interest points; secondly, in its current form, our algorithm
still has some problems with very slowly-moving targets in front of highly cluttered
backgrounds. A possible solution to this problem might be to eliminate static interest
points (required only locally, inside the region of interest) in the case of a static camera
or the inter-frame homography inliers in the case of a rotating and zooming camera.
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000 050 070

080 110 150

Fig. 6. Example 2: 160-frame soccer sequence with 6 tracked targets undergoing com-
plex mutual occlusions. Each player is correctly tracked throughout the sequence with-
out labels being lost. Frame 000 is the frame in which the targets are initialised.

000 150 290

Fig. 7. Example 3: three representative frames from a 320-frame sequence taken from
video surveillance. The tracked person undergoes strong appearance and scale changes.

All experiments were performed on a 1.7 GHz Celeron processor. Our current, non-
optimised implementation runs at around 1.5 to 3.0 frames per second, depending on
the image sizes (704 × 576 for the soccer sequences and 768 × 576 for the PETS
sequences), and linearly in the number of tracked targets. The tracking itself is very fast;
the current bottleneck of our implementation is the Harris detector, which can be sped
up dramatically using efficient implementations. The speed of each tracker depends on
the maximum number of shapes on the manifold and on the number of interest points
per shape.

6 Conclusion

We presented a novel, robust approach to tracking non-rigid, textured objects in crowded
scenes. An incremental model is learnt that combines groups of feature points. This al-
lows us to handle highly non-rigid targets such as running people. Our method behaves
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very well during partial occlusions in that target labels are generally preserved, and the
objects’ centres of gravity are correctly predicted. This latter property is essential for
metric applications where the target position has to be mapped to the ground plane.

Our method is robust, because it takes into account the local appearance and the
spatial configurations of feature points. It is highly unlikely that two targets look exactly
the same, move at the same speed and are very close together. As the model is learnt
automatically and incrementally, we can track any kind of object.

In contrast to histogram-based methods, our method works with any kind of object
texture and can even handle objects that look similar to the background or to other
tracked objects. Another advantage over background-subtraction methods is that we
can easily work with non-static cameras. Our method does not necessarily work well
with untextured objects, as it is based on feature points, although in many situations
there are enough border points. Due to the incremental nature of our tracker, slowly-
moving targets in front of cluttered backgrounds can also be lost. We will address this
problem by efficient methods for removing background points.
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