
Non-Rigid Object Tracker Based On a Robust Combination
of Parametric Active Contour and Point Distribution Model

Joanna Isabelle Olszewskaa, Tom Mathesb, Christophe De Vleeschouwera, Justus Piaterb and
Benoit Macqa
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bUniversité de Liège (ULg), Institut Montefiore, B28, B-4000 Liège

ABSTRACT

Our study considers the development of a reliable tracker for non-rigid objects evolving on cluttered background
in crowded scenes captured by moving cameras. For this purpose, we propose an original method that combines
two approaches, respectively based on parametric active contours (PAC) and on point distribution model (PDM).
The PAC tracker relies on an effective and efficient implementation of contour convergence mechanism to bring a
smooth contour to the edges of the target in real-time. The PDM approach collects feature points in the region
delineated by the PAC tracker to build and update a model of the target in term of a feature point distribution.
Formally, when a novel frame is considered, its feature points are matched with the PDM model. The matching
information is used to initialize the novel PAC, whose convergence identify the points that are relevant to update
the PDM for the next frame. Hence, the two approaches complement each others. The a priori information
provided by the PDM makes the system robust towards occlusions, while the deformation of the PAC increases
its robustness towards target appearance changes. Simulations on real-world video sequences demonstrate the
performance of our approach.
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1. INTRODUCTION

In the recent years, interest on object tracking has shown up in applications like medical imaging, video surveil-
lance or sport event analysis. In such context, the main difficulties to face with are (i) real-time tracking, (ii)
non-rigid targets, (iii) occluded situations, (iv) no assumptions on the background, (v) non-static cameras, (vi)
scale changes with perspective distortion, zoom effects or blurring.

For this purpose, conventional tracking methods based on a single primitive like contour or interest points, do
not often meet the entire set of requirements. For example, the active contour based method presented in section
2, can deal with most of our specifications except in case of wide target occlusions. In contrast, the interest point
approach presented in section 3, supports occlusions but fails in front of target appearance changes.

Hence in difficult situations, combining several types of primitive like active contours and feature points could
fill in the lack of the individual methods, as shown in recent papers1.2 These works predict the target trajectory,
based on the matching of feature points between consecutive frames.

As two important contributions, our PAC/PDM combination, presented in section 4, proposes both an original
way to drive the initialization of the PAC based on feature points matching, and a dynamic and adaptive update
of the underlying target PDM. On the one hand, when a novel frame is considered, PAC initialization relies on
the matching of the feature points extracted in the novel frame with the points handled by PDM. On the other
hand, the target PDM is updated based on the feedback provided by the PAC convergence mechanism, i.e. only
points that are inside the contour are considered to update the PDM.

Tracking results of the proposed system are presented in section 5.
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2. PARAMETRIC ACTIVE CONTOUR METHOD

Active contours are deformable models whose shape evolution is controlled by internal forces and external forces
using energy minimization.3

For a parameterized active contour r(s) = [x(s), y(s)], the energy functional can be written as

EPAC =
∫ 1

0

Eint(r(s))ds +
∫ 1

0

Eext(r(s))ds (1)

The internal force defines its physical properties like elasticity (α) or rigidity (β) and acts as a smoothness
constraint.

Eint =
(α |rs(s)|2 + β |rss(s)|2)

2
(2)

The external force deforms the contour from the initial position to the feature of interest such as edges, in an
image.4 Since they are deformable and intrinsically smooth, the active contours offer a highly capable tracker
for non-rigid objects.

The user’s interaction is limited to the initialization of the target in the first frame of a sequence, illustrated in
Figure 1 (a). Thus for the next frames, rather than explicitly incorporating a temporal energy term in Eq. 1 like
in Bouaynaya and Schonfeld,5 the contour is defined as follows. When the PAC tracker is used alone, without
PDM, the initial contour is set to be equal to the contour computed on the previous frame. Once combined with
the PDM, the PAC tracker is initialized on the PDM-based matching or on the previous PAC, according to the
obtained PDM match confidence (see Section 4).

In a novel incoming frame, given an initial contour, the PAC tracker evolves in three steps.

• First, B-splines6 are used to define a smoothed contour based on a limited number of sampling points.

• Second, an image gradient is computed7 and diffused to define the external force applied to the contour,
minimizing the following energy functional8

Eext =
∫ ∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇f |2 |v −∇f |2 dxdy (3)

where v(x, y) = [u(x, y), v(x, y)] is the Gradient Vector Flow (GVF) vector field, f the edge map and µ
the diffusion parameter, controlling the tradeoff between the first and the second term.

• Third, the active contour is evolving, based on the given internal (rigidity, elasticity) and external forces
(Gradient Vector Flow).

Our methodology and implementation choices are meeting the real-time constraint.

Regarding the PAC tracker, our main contribution consists in combining smoothed contour description (B-
splines) with a bidirectional contour convergence force (GVF) in a coherent tracking framework. In this way,
the coupling of these two components ensures a precise contour tracking without introducing any shape energy
term5 into Eq. 1.

Moreover, our PAC tracker enables a real-time implementation by decreasing evolution process computational
complexity, while surrounding the target object accurately. In contrast, Park et al.2 achieves accurate description
at heavy computational cost using watershed segmentation, while Gouet and Lameyre1 uses a unidirectional
contour evolution and coarse contour representation to reach real-time performances.

The designed PAC tracker deals efficiently with non-rigid object tracking, as shown in Figure 1 (b), even
in presence of unexpected target behaviors, illumination changes and camera movements resulting in non-static
background or scaling effects. However, active contour suffers in presence of severe occlusions. In Section 4, we



(a) Contour initialization (b) Contour convergence

Figure 1. Soccer player tracking using only the PAC tracker in a frame

explain how to circumvent that limitation based on the use of a learned appearance model of the object to track.
We now explain how to formalize that a priori knowledge based on point distribution models.

3. POINT DISTRIBUTION MODEL

The point distribution model (PDM) considered in this work, uses simple feature vectors to describe object
appearance as described in Mathes et Piater,9 rather than raw texture information like in Cootes et al.10 Local
features are extracted by a Harris corner detector applied to an initial region-of-interest as in Figure 2 (a). The
sparse sets of features are well-suited for non-rigid objects and tend to yield methods particularly robust to
partial occlusions.

In the first frame of a sequence, the PDM tracking algorithm is initialized manually. Thus for the next
frames, the region-of-interest is defined as follows. When the PDM tracker is running without PAC, the initial
region-of-interest is defined by the smallest rectangle enclosing the model shape from the current frame plus a
small border, considering target displacement. Once combined with the PAC, the PDM tracker is initialized
based on the PAC obtained in the previous frame (see Section 4).

For each detected interest point in the region-of-interest as illustrated in Figure 2 (a), a feature vector
a describes its local appearance11 and corresponds to the first-order local jet, which approximates the point
neighborhood by a set of image derivatives, enhanced by the interest point position.

a = (x, y, r, g, b, rx, ry, gx, gy, bx, by)T (4)

where a ∈ A with A called feature space and A ⊂ R11.

The feature vectors of a particular frame are concatenated into a shape vector.

x = (a1
x

T
,a2

x
T
, ...,aM

x

T
)T (5)

A collection of these shapes generates a point distribution model, which represents the current model of the
object, as shown in Figure 2 (b). The PDM combines thus local appearance information with global shape
information.

The points from these learned shapes are matched to current image points using the Hungarian method .12

These matchings are then used to attract the shape model to the new image measurement.



(a) Current interest points (in white) (b) Model points (in red)

Figure 2. Soccer player tracking using only the PDM in a frame

In practice, point features tend to flicker in noisy image sequences or disappear due to out-of-plane rotations
or occlusions, but as long as a reasonable subset of all the points is visible in each frame, tracking can be per-
formed reliably. The missing points are predicted by the model.

To enable accommodation to object changes, the model has to be learnt incrementally and continuously.
The adopted method has the capability to dynamically adds novel relevant points and removes obsolete ones.
However, deciding about the relevance or non-relevance of a point extracted in the current frame is not obvious.
In Section 4, we explain how the information provided by the PAC tracker supports that decision.

4. COMBINED TRACKER

The combined tracker is composed of two trackers running in parallel and a control level on top of them. The
control level enables an exchange of information between these two individual trackers. The essence of the
combination is to take basically the strong points of the PAC and PDM trackers, relying on their complementary
advantages. The resulting new tracker is more robust, as it survives even if one of the trackers fails.

Principle After feature vector computation and shape vector generation as explained in Section 3, the PDM
is obtained like in Figure 3 (a). Next, the PAC is initialized based on the PDM as shown in Figure 3 (b).
After convergence, the PAC system delineates accurately the region of interest wherein the target object is lying
(see Figure 3 (c)). Then, at the control level, the result provided by the PAC tracker feeds the PDM tracker
by providing it with an information about the confidence to give to the feature points extracted in the current
image, based on whether or not these points belong to the region defined by the contour. Hence, PAC convergence
process supports the PDM updates as illustrated in Figure 3 (d).

Algorithm Information exchange between the two trackers is performed by applying the following algorithm
to each frame i and given an initial region-of-interest (ROI) AINIT .

1. Extraction of interest points that lie into the region-of-interest, defined by

• AINIT , for the first frame;

• an enhanced rectangle enclosing the model shape from the previous frame Ai−1
PDM , in occluded situa-

tions;



(a) PDM computation (b) PDM-based-on PAC initialization

(c) PAC convergence (d) PAC-based-on PDM update

Figure 3. Illustration of the PAC-PDM combination for one frame

• the active contour from the previous frame Ai−1
PAC , in all other cases.

2. Matching every model point with the best nearby interest point extracted in the step 1 and obtaining only
the matched feature vectors.

3. Computing the nearest neighbours of these features vectors and obtaining new feature vectors.

4. First update of the PDM, by adding new relevant feature vectors found in step 3, leading to the most
probable target object shape.

5. • If M ≥ 3 then initialization of the PAC based on the point model. The region-of-interest Ai
PDM is

defined by an enhanced rectangle enclosing the model shape from the current frame.

• Else initialization of the PAC based on the contour founded in the previous frame A(i−1)
PAC .

6. Convergence of the PAC and determination of the precise and accurate region-of-interest Ai
PAC

7. Second update of the PDM, by removing the feature vectors corresponding to the interest points not lying
inside the Ai

PAC

Occlusions In case of partial occlusions or cluttered background, the PAC tracker could be unstable. In
that case, the a priori model defined by the PDM tracker is helpful. Indeed, after occlusion or within the
cluttered background, matching the feature points extracted on the current frame with the PDM features provides



information about feature point displacement. Thus, at the level control, the a priori information provided by
the PDM tracker is used to keep the whole system on track and to initialize the current frame contour, in case
of occlusions or cluttered background.

In this work, occlusions are detected when the region-of-interests of two different objects are intersecting each
other. This approach is more robust to appearance changes rather than considering as an occluded situation, a
case of poor matches between the interest points extracted in consecutive frames like Gouet and Lameyre work.1

Moreover to increase the robustness of the tracker, the PDM update is disabled during occlusions. Indeed,
no feature vectors are added into the model or removed. On the other hand, the multiple possibilities of tracker
initialization in the algorithm prevent the whole tracking system drifting. In fact, the combined tracker can still
operate even if one of the tracker has failed, and the latter one can be properly reinitialized.

Hence, PAC and PDM complements each others. Indeed, the PAC tracker does not include any prior knowl-
edge, to preserve flexibility in cases of unexpected target deformation. In contrast, the PDM tracker relies on a
priori models of the object, to support occlusions and cluttered backgrounds. Moreover, for sports applications
like soccer, PDM gives only the player’s center of gravity while the PAC provides additional information like
player feet’s position.

5. RESULTS

We have tested all the presented trackers on soccer and video-surveillance sequences. In Figure 5, we present
results of our combined tracker on a 1000 frame soccer sequence.

The PAC tracker works successfully in situations where target appearance changes (Figure 5, frames 202,
506, 655, 891, 926), for example due to player fall, out-of-plane rotation or severe deformations.

On the other hand, the PDM approach is robust to partial occlusions because only a subset of the object
points need to be visible in order to constrain the model parameters. Thus the combined tracker deal well with
such situations as illustrated in Figure 5 frame 702, where a second player is crossing the target player.

Figure 4 illustrates for some particular frames of the sequence, tracking before, during and after a full
occlusion.

When an occlusion is occurring like in Figure 4 (a), the PAC tracker starts to be initialized based on the PDM
as explained in the algorithm of Section 4, without updating the model. Moreover, no points are added into
the PDM. For the case of full occlusion as shown in Figure 4 (b), the combined tracker could successfully track
the target object by incorporating into the PDM tracker, a Kalman filter to predict the target object trajectory.
After the full occlusion, only matches between the current extracted points and the model points initialize the
PAC tracker, until the occluded situation is entirely finished like in Figure 4 (c). In this case, the PAC provides
again information to update the PDM and new shapes could be learned.

The combined tracker could deal with situations such like occlusions, out-of-plane rotations, illumination
changes.

6. CONCLUSIONS

The paper proposes a new way to combine the active contour and interest point tracking approaches. The
information exchange like PAC convergence results or points matching information, between the trackers increases
robustness of the combined tracker. Thus, the combined tracker can still operate even if one of the tracker has
failed, and the latter one can be properly reinitialized. The method has been validated for usual situations



(a) Before occlusion (b) During full occlusion (c) After occlusion

Figure 4. Soccer player tracking in a full occlusion case

occurring in non-rigid object tracking as well as challenging ones like occlusions. The developed algorithms are
robust and amenable to real-time implementation.
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Figure 5. Soccer player tracking during 1000 frames


