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Abstract

The Analysis of biomedical signals has mostly been restricted to traditional

signal processing methods. This article proposes a di�erent approach, applied

to the evaluation of Brainstem Auditory Evoked Potentials (BAEP). An au-

tomatic peak identi�cation method is described which uses criteria applied

by human evaluators in visual analysis. These criteria are de�ned as fuzzy

sets and are combined using fuzzy operations, thus re
ecting the weighting

of di�erent facts by humans. Membership values are interpreted as degrees

of satisfaction which indicate the degree to which a sample satis�es a given

criterion. The system judges its own performance in terms of degrees of relia-

bility. Tests on a large set of clinical data showed a high performance on good

and average quality curves. A substantial drawback was the assignment of too

many peaks in poor potentials. The approaches presented here can easily be

applied to similar one-dimensional (and higher) signal analysis tasks.
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1 Introduction

Biomedical signals are usually analyzed either visually or by means of comput-

ers. In the latter case, signal processing methods are applied, such as Fourier

transform or transformations for feature enhancement and suppression, clus-

tering, and statistical methods. However, it can be very di�cult to charac-

terize the relationship between the computer-based and visual examination

techniques. Consequently, such methods are hard to assess, which is the case

in the evaluation of Brainstem Auditory Evoked Potentials (BAEP). In the

following, a fuzzy set based system for BAEP peak identi�cation is described,

featuring self-assessment of the reliability of its output, and the possibility of

adaptation to specialized objectives. Although the methods are described in

this particular context, they can be extended and likewise applied to other

areas of signal processing.

1.1 Brainstem Auditory Evoked Potentials

For some time now, Brainstem Auditory Evoked Potentials have been success-

fully used in audiometry and neuro-otology, speci�cally in the detection and

localization of sources of hearing impairments. They are obtained by applica-

tion of acoustic (e.g. rectangular) stimuli to one ear. The electric response is

recorded between vertex and mastoid using scalp electrodes. In some cases,

potentials are recorded from both sides (ipsi- and contralateral with respect

to the stimulated ear). In order to obtain a reasonable signal-to-noise-ratio

(SNR), up to several thousand so-called sweeps have to be averaged.

Evoked potentials show both intra- and interindividually reproducable fea-

tures. In this article, �ve typical peaks (1), numbered I through V, are consid-

ered. Most of their diagnostic signi�cance lies in the peak latencies (elapsed

time after the stimulus) and their prominence. Figure 1 shows a distinct BAEP,

recorded on both ipsi- and contralateral sides.

1.2 Automatic BAEP evaluation

Up to now, BAEP are visually evaluated by human experts. Their performance

is based on subjective experience. In order to increase objectivity, numer-

ous computer-based methods have been proposed. Most of these publications

concentrate on one of the two central tasks in BAEP evaluation, namely (a)

detection of an evoked potential, or (b) the determination of peaks.

Woodworth et al. (2), for instance, applied a Matched Filter, trying to

detect the presence of a BAEP after few averaging steps and to identify peak

V. However, as the signal to be recognized had to be known in advance, a
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Figure 1: BAEP with very prominent ipsi- (I{V) and contralateral (II{V)

peaks.



4 Fuzzy Sets for Feature Identi�cation

personal �lter had to be designed for each subject. This disadvantage can be

avoided by using statistical methods, like Bachen (3) who suggested testing

the phase angles of Fourier harmonics for uniformity of distribution.

Another indication of BAEP presence is the reproducability of the averaged

signal which can be tested e.g. through cross-correlation coe�cients (4). In a

thorough investigation (5), several variance ratios and cross-correlation func-

tions were compared. The latter were found to be superior; however, their

results were highly dependent on \typical" features of the potentials.

It was mentioned earlier that the reliability of BAEP detection and peak iden-

ti�cation strongly depends on the SNR. Coppola (6),Wong (7), and others

investigated its in
uence and suggested methods for its estimation. However,

until now peak identi�cation has usually been considered separately. Vari-

ous methods were proposed, like a backpropagation network (8) trained with

visually evaluated data for identifying peak V. Madhavan et al. (9) tried

to identify peaks I through V using a syntactic method. Pratt et al. (10)

enhanced certain features of BAEP while suppressing others, thus improving

identi�cation rates.

The latter two suggestions were combined by Gr

�

onfors (11) who analyzed

the output of several bandpass �lters by an attributed automaton. His algo-

rithm, however, could be fooled by the occurence or absence of certain maxima.

None of these methods tried to assess the reliability of its output; neither did

they attempt to apply criteria similar to those used by human scorers. In

developing the peak determination system presented here, the following goals

were set:

� incorporation of rules and heuristics applied by human experts,

� automatic assessment of the reliability of each peak identi�ed,

� total assessment of the reliability of the set of peaks identi�ed,

� improvement of the peak identi�cation rate in medium-quality potentials

and

� adaptability/trainability of the algorithm.

While most of the previously published methods rely on traditional signal

processing, this algorithm is based on a similar procedure used by many experts

in subjective visual evaluation. Typical rules are hard-wired into the system.

They are evaluated on the basis of fuzzy set theory. (For an introduction, see

e.g. (12).)

An overview of the compontents and their interaction is presented in Fig. 2.



Fuzzy Sets for Feature Identi�cation 5

parameters

search for
candidates of peaks

assignment

(n
ot

 e
va

lu
at

ed
)

id
en

tif
ie

d 
pe

ak
s,

re
lia

bi
lit

y 
m

ea
su

re
s

kn
ow

n 
po

te
nt

ia
ls

(p
re

-e
va

lu
at

ed
)

un
kn

ow
n 

po
te

nt
ia

ls

statistics

tuning

histograms

Figure 2: Components of the peak identi�cation system. The upper half repre-

sents the parameter initialization, the lower the peak identi�cation procedure.

1.3 Subjects and signal recording

This investigation is based on 895 curves obtained from 143 subjects during

several months of clinical routine. Potentials from normal hearing as well

as some hearing impaired subjects were included. All ages were represented.

Strongly pathological potentials were excluded from the test set.

The potentials were recorded on ipsi- and contralateral sides using a com-

mercial unit (Bera Double Scan by H�orni� & Zeisberg). A rectangular pulse

(suction) of duration 100 �s served as the acoustic stimulus, applied to one

ear at a rate of 18 Hz using Holmberg headphones. Electrodes were placed

on vertex (positive), mastoids on either side (negative) and forehead (ground).

The potentials were sampled at 40 kHz in a post-stimulus time window of

0.95{14.95 ms. 2000 so-called sweeps were averaged. Any sweep exeeding

an amplitude threshold of 10 �V was regarded as containing an artifact and

discarded.

2 Rules

In the following, the implemented rules will be explained. The criteria, on

which they are based, are emphasized:

1. A peak is distinguished by its shape, e.g. curve maximum.
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2. Peak V is often marked by its prominent downslope.

3. Similarly, peak V usually is also well established on the contralateral

side, both latencies roughly matching.

4. Typical ranges of inter-peak latencies are adhered to.

5. The peaks appear in typical latency regions which depend on the inten-

sity of the acoustic stimulus.

None of these rules alone is su�cient for reliable BAEP peak identi�cation.

They have to be combined using appropriate weights.

A sample l of an averaged BAEP satis�es a criterion C

i

of a rule i; 1 � i �

5, to a degree of satisfaction �

i

(l) 2 [0; 1] � IR. The value 1 is identi�ed

with \complete satisfaction", 0 with \no satisfaction". In determining the

suitability or reliability �(l) of a sample as a peak, the proposed algorithm,

like a human expert, takes into account the matching degrees of all rules.

The calculation of the matching degrees �

i

are based on the following

Presupposition: The more (less) frequently a certain property of visually

identi�ed peaks is encountered, the better (worse) it satis�es the respec-

tive criterion.

Hence, typical properties are identi�ed with good properties with respect to a

certain criterion. This assumption was found to be adequate, except for the

shape criterion which required special treatment.

2.1 Criteria

Next, the criteria underlying the rules mentioned above will be detailed. Peaks

I, III, and V usually are the most prominent ones and are also most important

for clinical diagnostics. Hence, as they play a major role in the algorithm, we

call them major peaks as opposed to the minor peaks (II and IV).

Shape: This criterion is the only two-dimensional one. It is represented by

the �rst two derivatives d

(1)

(l); d

(2)

(l) of the sample l in consideration.

The ith derivative is computed recursively as follows:

d

(i)

(l) = d

(i�1)

(l + �)� d

(i�1)

(l � �) [1]

The parameter � was, like all parameters mentioned here unless otherwise

noted, adjusted using the method described in Sec. 4. Since each of the

�ve peaks is characterized by typical shapes, this criterion is computed

separately for each peak class (I through V).
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Figure 4: Histogram of the lengths of peak V downslopes as percentage of the

longest downslope in the given BAEP.

Downslope: Typically, peak V is followed by the longest downslope of all

peaks. To human experts, this fact is of great importance for the identi-

�cation of peak V. Here, the length d of the downslope associated with a

point l is de�ned in terms of a point l

min

, its �rst derivative not exceeding

a given threshold t:

l

min

= maxfl

�

� l j d

(1)

(l

�

) � tg [2]

As illustrated in Fig. 3, the length s of the downslope is then de�ned as

the di�erence in amplitude between these two points:

s(l) = d

(0)

(l)� d

(0)

(l

min

) [3]

In order to obtain the amplitude-independent matching degrees �

downslope

(l),

all lengths found within one BAEP are then normalized. A histogram of

the relative downslope lengths is shown in Fig. 4.

Ipsi/contralateral match: Another important feature characterizing peak

V is its occurence in the contralateral potential. Its latency is roughly
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Figure 5: Histogram showing the di�erences of the contralateral from the

ipsilateral peak V latencies.

the same, typically slightly larger than the ipsilateral one. This di�erence

in latency is evaluated by this criterion.

The histogram in Fig. 5 shows typical values.

Distances: The distances between the peaks are important for their identi�-

cation. These typical inter-peak latencies do not depend on the intensity

of the stimulus (13).

This algorithm takes into account the distances of each peak to two

reference peaks. Only major peaks serve as reference peaks, a major

peak's reference peak being the other two (if present) major peaks, a

minor peak's the two neighboring ones.

In order to keep this criterion as weak as possible, the two inter-peak la-

tencies were not regarded as correlated (unlike the shape criterion). They

were calculated separately, and then combined using a paramterized av-

eraging operator. The cases where only one or none of the reference

peaks were available had to be considered separately.

Latencies: In contrast to the inter-peak latencies, the absolute latencies de-

pend on the stimulus intensity. Therefore, a new parameter ilat (intensity-

related latency) was introduced as a function of absolute latency l and

stimulus intensity I:

ilat(I; l) = l � k

1

e

k

2

I

+ k

3

[4]

The parameters k

1

and k

2

were determined by a regression over all peak

V latencies l

V

available in the test data. Parameter k

3

was arbitrarily

chosen such that all ilat-values were positive.
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Figure 6: From a histogram to the degree of satisfaction of a criterion (ex-

ample: Peak V latency after ilat-conversion). Presented are the normalized

histogram, its subdivision into intervals (rectangular graph) and the interpo-

lated histogram representing the degrees of satisfaction.

2.2 Histograms as a basis for degrees of satisfaction

Acceptable values of the criteria were expressed as fuzzy sets. In order to gen-

erate appropriate membership functions, these were derived from histograms

of properties of visually identi�ed peaks in the training data.

Several methods of generating fuzzy membership functions from statistical

data have been proposed (14), most of which regard possibility measures. If,

on the other hand, the requirements imposed on the fuzzy sets and operations

are less restrictive, methods can be chosen arbitrarily. (The relationship be-

tween probability and fuzziness cannot be discussed here; de F

�

eriet (15), for

instance, deals with this matter in depth.) Here, a most obvious method was

chosen, as explained in the following, using the ilat-criterion as an example.

The peak identi�cation program runs in two phases. During the initialization

phase, all peak V latencies contained in the training data are converted into

their corresponding ilat-values. They are inserted into a histogram which is

divided into a small number of intervals (Fig. 6). The width of the intervals

was empirically determined such that the resulting histogram was unimodal

without losing too much accuracy. This histogram, its height normalized to

[0; 1], then forms the membership function of a fuzzy set containing acceptable

ilat-values for peak V.

In the action phase, degrees of satisfaction are calculated for a large number

of samples of a new curve. The latency of a current sample l is �rst converted

into its ilat-value. Then, its degree of satisfaction �

ilat

(l) 2 [0; 1] of this crite-

rion is taken from the normalized histogram mentioned above, applying linear

interpolation between the values of adjacent intervals (Fig. 6).
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Figure 7: Assessment correction of the shape criterion. The grid represents

the segmentation of the two-dimensional shape histogram into intervals. The

third dimension displays the � values obtained by linear interpolation, before

(left) and after (right) the assessment correction as described in Sec. 2.3.

2.3 Special case: Shape criterion

In the case of the shape criterion, the procedure mentioned above is trivially

extended to the two-dimensional case. However, there is one peculiarity about

the shape of a peak: The validity of the Presupposition is restricted. Very

prominent peaks (characterized by highly negative second derivatives) are rare,

leading to low degrees of satisfaction �

shape

(l).

This was compensated by �lling the histogram in the area of negative second

derivative with its maximum value (Fig. 7). The possiblility of explicitly in-

troducing a priori knowledge is one useful feature of fuzzy systems, especially

if used in combination with automatic generation of membership functions.

2.4 Weighting of rules

Appropriate weighting of rules is an important issue in the design of knowledge-

based systems. The pioneer medical expert system MYCIN (16), for instance,

introduced certainty factors which, as a heuristic concept, worked in this case

but appeared inconsistent in other applications.

Fuzzy set membership functions can be appropriately shaped in order to im-

plicitly re
ect the weighting of the underlying rules. Here, this information is

contained in the histograms: Narrow, steep histograms result in very speci�c

rules, corresponding to a high certainty factor when the rule, \�ring" to a

high degree, is combined with a di�erent rule. Accordingly, wide histograms

with gentle slopes represent unspeci�c rules. The downslope criterion of peak

V is an example of a very speci�c rule (cf. Fig. 4), in contrast to the weaker
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criterion of latency match (Fig. 5).

3 Peak identi�cation procedure

Identi�cation of peaks is performed in two steps: First, the quali�cation �

c

(l)

of each sample l is calculated. It indicates the degree to which l seems quali�ed

as a peak. The two latency criteria are not included in this step. An l with

�

c

(l) > 0 we call peak-candidate.

During the second step, candidates are combined in various ways, taking into

account all criteria. The resulting assignments A are associated with peak

quali�cations �

p

(l) and an assignment quali�cation �(A).

3.1 Collection of candidates

A separate list of candidates is established for each of the peaks I through V.

In collecting candidates, a BAEP is scanned sample by sample, calculating

each one's quali�cation:

�

c

(l) = �

shape

(l) [5]

This results in a distribution of suitabilities over latencies. In the following,

only local maxima of this distribution, exeeding a given threshold, are consid-

ered.

This concludes the candidate collection procedure for peaks I{IV.

The quali�cations of the peak V candidates are subject to further processing:

The prominence of the downslope and the ipsi-/contralateral match are consid-

ered. The latter is accomplished by compiling contralateral peak V candidates.

For each ipsilateral candidate, the best contralateral counterpart is found and

the degree of match � calculated. Due to the use of a disjunctive operator, the

better one of the two matching peaks dominates the �nal assessment.

In a nutshell, peak V candidate quali�cations are computed according to the

following rule:

�

c

(l) = (�

shape

(l) ^ �

downslope

(l) _ (ipsilateral)

�

shape

(l

c

) ^ �

downslope

(l

c

)) (contralateral) [6]

^ �

ipsi-/contral.match

(l)

The conjunctive (^) and disjunctive (_) operators represent parametrized t-

norms and t-conorms as proposed by Schweizer and Sklar (17). Their

de�nition covers the entire range from drastic product/sum to min/max oper-

ators, respectively (12). These operators are adjusted separately (cf. Sec. 4).
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3.2 Determination of the best combination

In the second step, the �nal assignment of peaks I{V is selected from a ranked

list of combinations, each of which are built from one (or no) peak from each

of the �ve candidate lists. This procedure can be summarized as follows:

1. Sequentially, all possible combinations of major peak candidates are

formed. Suitability values of the inter-peak latencies �

distances

(l) are cal-

culated into the respective quali�cations:

�

p

(l) = �

c

(l) ^ �

distances

(l) [7]

For each combination, the following steps are performed:

(a) The best minor peak candidates are selected. Again, the �

distances

(l)

are included into their �

p

(l).

(b) Of the resulting combination A, the quality �(A) as a peak as-

signment is calculated. The absolute latency suitabilities of the

proposed peaks are included using a fuzzy conjunctive operator.

2. Finally, all assignments A

i

are sorted in descending order of quality

�(A

i

).

The calculation of the quali�cations of peaks and assignments can be summa-

rized as follows:

�

p

(l) = �

c

(l) ^ �

distances

(l) [8]

�(A) = h(�

p

(l

I

); : : : ; �

p

(l

V

)) ^ h(�

ilat

(l

I

); : : : ; �

ilat

(l

V

)) [9]

h is a parametrized averaging operator. Some additional mechanisms are not

described here. They deal with indistinct or ambiguous peaks which are hard

to identify and thus cannot be categorized.

Peaks, which are found by this procedure, can be fed back into the histograms

(cf. Sec. 2.2), thus updating the fuzzy membership functions and allowing the

system to \learn from experience." Through proper use of this feature, the

system may further improve its performance.

4 Parameter tuning

4.1 Speci�cation of the goal

For the evaluation of an automatic peak identi�cation system, its peak assign-

ments must be compared with those of human experts. In each BAEP of the
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training set, up to �ve ipsilateral peaks and, where applicable, a contralateral

peak V, had been marked by visual evaluation. These peaks we call pre-set,

those that intentionally had not been marked not pre-set.

Peaks assigned by the automatic system are named identi�ed, those not as-

signed not identi�ed.

When the automatically and visually obtained results are compared, each of

the �ve possible peaks falls into exactly one of the following �ve categories of

identi�cation:

1. correct : pre-set and correctly identi�ed

2. correctly not identi�ed : not pre-set and not identi�ed

3. overdetermined : not pre-set but identi�ed

4. underdetermined : pre-set but not identi�ed

5. bad : pre-set and incorrectly identi�ed

A peak was de�ned to be correctly identi�ed if the di�erence between the

automatically and visually determined latencies did not exceed 0.1 ms.

4.2 Algorithm

The parameters of the fuzzy operators (and other system parameters) had to

be �ne-tuned according to the following objectives:

� high number of correct peaks,

� low number of bad peaks,

� low number of underdetermined and

� low number of overdetermined peaks.

A performance index � was de�ned as follows:

� =

n

correct

2n

bad

+ 1=2n

under

+ 
n

over

+ 1

[10]

The values n indicate the numbers of peaks obtained in the given categories.

The term +1 keeps the fraction �nite even in the ideal case. Equation [10] was

empirically determined. Several values of 
 were investigated as discussed in

Sec. 5.4. In the following, its value is assumed to be zero.



14 Fuzzy Sets for Feature Identi�cation

The problem of optimizing the system parameters is thus transformed into

maximizing �, which means the practically unsolvable problem of �nding the

global maximum in a high-dimensional hyper-surface of unknown shape. Such

problems are typically dealt with using non-deterministic methods like Simu-

lated Annealing or Genetic Algorithms. However, the computational cost to

obtain one � value appeared too high.

Therefore, a simpli�ed solution had to be found. In this case, a greedy hill-

climbing algorithm was applied: All parameters were iteratively varied, the

variance shrinking in every iteration. The algorithm terminated when the

variance fell below a given threshold. This diminished the chance of getting

trapped on small local maxima, but in the end lead to a �ne-tuned system.

This step is intended to be performed only once (after the �rst initialization

phase described in Sec. 2.2), while action and initialization phases may be

iterated and typically lead to di�erent fuzzy membership functions, according

to the underlying BAEP data.

5 Results

As summarized in Fig. 8, most peaks were correctly identi�ed. The portions of

the bad and underdetermined peaks were by far the lowest (around 3 %). Few

peaks were correctly not identi�ed (because few had not been pre-set either),

but nearly 14 % were overdetermined. The algorithm obviously had problems

judging the ambivalence or distinctness of a peak.

Signi�cantly more major than minor peaks were correctly identi�ed, whereas

more minor peaks were not identi�ed or overdetermined. This was due to the

fact that the major peaks could be more reliably detected and thus had been

more frequently pre-set than minor peaks.

Table 1 shows the high performance of the system if restricted to veri�able

peaks. Almost all peaks which were both pre-set and identi�ed were correctly

identi�ed. The di�erences in latency, which occurred in these cases, are dis-

played in Fig. 9.

5.1 Subjective judgment of the performance

Generally, prominent peaks received high reliability values �

p

� 1, while indis-

tinctly shaped ones got values near zero. Accordingly, the reliability values �

of the total assignments showed a high intuitive signi�cance: Potentials com-

monly considered unequivocal mostly received clearly higher values than poor

or ambiguous ones.
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Identification categories: peaks I−V
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Figure 8: Performance of the peak identi�cation system. Each bar shows

the portions of peaks belonging to each of the �ve categories of identi�cation

(Sec. 4.1). The bar on the right displays the average across all peaks.

Table 1: Performance of the peak identi�cation system. Only peaks which

were both pre-set and identi�ed are considered. The rows contain the quota

distinguished by peaks; the bottom row displays the arithmetic means. The

values in each row add up to 1.0.

Peak correct bad

I 0.95 0.05

II 0.97 0.03

III 0.98 0.02

IV 0.94 0.06

V 0.94 0.06

all 0.96 0.04
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Figure 9: Accuracy of the automatic peak assignment.

Figures 10{13 present some examples of automatic peak assignments. Pre-set

peaks are marked on the top, identi�ed peaks on the bottom graphs. The

numbers on the right indicate the respective latencies in milliseconds. To their

left, the reliability values �

p

are indicated where appropriate. The bottom

number is the reliability � of the total assignment.

Figure 10 shows a BAEP where peaks IV and V are not clearly separated

(IV-V complex). Still, both were correctly identi�ed. An appropriately low

reliability value was assigned to the ambiguous and poorly shaped peak II.

� = 0:34 indicates a fair reliability of the total peak assignment.

The BAEP shown in Fig. 11 lacks peak I (the obvious maximum appears

too early). Peak IV is wide and round, hence hard to determine precisely,

and therefore received a low reliability. The poor � value resulted from high

absolute latencies.

The main weakness of the proposed algorithm lies in its failure to consequently

disregard poor or ambiguous peaks. In the BAEP shown in Fig. 12, only peak

V had been pre-set. Its location could be veri�ed by its downslope and its

contralateral counterpart (not shown in the �gure). Still, the system suggested

all �ve peaks, even assigning high reliabilities to some of them. However, the

uncertain total assignment was re
ected in the low total reliability.

Well-established potentials, as illustrated in Fig. 13, received high reliabilities

throughout.
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Figure 10: Acceptable assignment and assessment of a IV-V-complex.

Figure 11: Missing peak I.

Figure 12: Problem: low stimulus intensity. Too many peaks were assigned.
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Figure 13: Clearly shaped potential.

5.2 Total assessment �

Figure 14 shows the quality of the total assessment with respect to the cate-

gories of identi�cation. The portion of correct identi�cations grew monotonously

with the total assessment �, while all other categories decreased. Hence, high

values of � reliably indicated correct assignments.

The portions of bad and underdetermined peaks were generally small. Appar-

ently, hardly recognizable peaks with small � fell mainly into the categories

of overdetermined or correctly not identi�ed peaks. This overvation con�rms

that uncertain potentials were generally associated with low values of �, even

if more peaks were automatically identi�ed than an expert would assign (cf.

Fig. 12).

5.3 Peak assessment �

p

The quality of the peak assessment with respect to the �ve categories of iden-

ti�cation is shown in Fig. 15. The runs of the �ve portions resemble those in

Fig. 14. The growing portion of overdetermined peaks from the �rst to the

second interval results from the fact that the �rst interval includes the peaks

not identi�ed, as can be seen in the portions of correctly not identi�ed and

underdetermined peaks.

Again, the portion of badly identi�ed peaks was low and still shrank with
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Figure 14: Signi�cance of the total assessment � with respect to the determi-

nation categories.
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Figure 15: Signi�cance of the Peak Assessment �

p

with respect to the identi-

�cation categories (mean value of peaks I{V).

growing �

p

. Likewise, the number of overdetermined peaks decreased, as is to

be expected in clear curves where almost always all �ve peaks had been pre-set.

The curves show that peaks associated with high �

p

can be regarded as highly

reliable. At a value of �

p

� 0:8, the correct identi�cation rate approaches

100 %.

The graphs presented in Figs. 14 and 15 provide a basis for the interpretation

of total and peak assessments � and �

p

, respectively. For instance, it would

make sense to verbalize the assessment values as shown in Tab. 2.

5.4 Changing the performance assessment

As mentioned above, one major problem of the peak identi�cation system was

its failure to discard ambiguous or poorly shaped peaks. To compensate for
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Table 2: Verbalization of assessment values.

0:0 � � < 0:1 questionable

0:1 � � < 0:2 uncertain

0:2 � � < 0:5 fairly reliable

0:5 � � < 0:8 reliable

0:8 � � � 1:0 certain

Identification categories: γ values
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Figure 16: In
uence of the parameter 
 in the de�nition of � [10]. Only the

averages of all peaks are shown. The leftmost bar, which equals the rightmost

one from Fig. 8, is shown here for convenience.

this, the parameter adjustment algorithm was forced to keep the number of

overdetermined peaks low. This was achieved by assigning a value greater than

zero to 
 [10]. Three values were tried as summarized in Fig. 16.

It can easily be seen that, in fact, the number of overdetermined peaks could

signi�cantly be reduced. Even the number of bad peaks decreased a little,

because the system acted more cautious in assigning peaks. On the other hand,

the number of underdetermined peaks dramatically increased, thus reversing

the problem. It was not possible to keep both of them low. This proves that

further information has to be taken into account in order to reliably detect

and discard uncertain peaks.

In practice, the de�nition of � cannot be changed arbitrarily as the optimiza-

tion process a�ects all parameters. Such changes naturally a�ect the resulting

ranges and distributions of the peak and total assessments and, hence, their

interpretation.
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6 Conclusion

The results illustrate the high performance of fuzzy operations in modelling

human recognition and decision processes. Among medium and well distin-

guished potentials, a high correspondence of automatically identi�ed and vi-

sually determined peak latencies was achieved. The reliability values, allotted

automatically by the system, had a high intuitive signi�cance. They correlated

well with the desired recognition rates and were easily verbalized for intuitive

interpretation.

However, weak and ambiguous potentials were not properly dealt with. Often,

too many peaks were identi�ed, some of them with overestimated reliability

values �

p

. On the other hand, the total assessment � usually indicated a low

reliability in these cases.

Attempts to keep the number of overdetermined peaks low resulted in an overly

cautious behavior, discarding too many peaks. For use in clinical routine, this

problem has to be eliminated by introducing additional criteria such as signal

theoretic SNR estimates.

In the initialization phase, the tuning of parameters allows the adaptation the

system to specialized tasks, e.g. typical pathologic potentials. On the other

hand, if improperly used, this feature can also lead to a badly tuned system,

resulting in failure to deal with the variety of data occuring in routine clinical

use.

The methods presented in this article are suitable for use in other biomedical

signal analysis tasks as well. They can also be extended to two-dimensional

signals and applied to e.g. tumor localization in magnetic resonance images,

as well as technological problems like fault detection in surfaces.
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List of Symbols

= math symbol equals

� math symbol approximates

< math symbol less than

� math symbol less than or equal to

> math symbol greater than

� math symbol greater than or equal to

2 math symbol element of

� math symbol subset of

^ math symbol and

_ math symbol or

j math symbol vertical slash

� math symbol asterisk

1 arabic number one

� greek lowercase letter delta

e latin lowercase letter e (Euler's Constant)

� greek lowercase letter eta


 greek lowercase letter gamma

� greek uppercase letter Gamma

l latin lowercase letter l

I latin uppercase letter I

� greek lowercase letter mu (micro)

n latin lowercase letter n

IR alternate latin uppercase letter R (set of real numbers)

� greek lowercase letter theta

� greek uppercase letter Theta


