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Abstract

Humans learn strategies for visual discrimination through
interaction with their environment. Discrimination skills are
refined as demanded by the task at hand, and are not a pri-
ori determined by any particular feature set. Tasks are typ-
ically incompletely specified and evolve continually. This
work presents a general framework for learning visual dis-
crimination that addresses some of these characteristics.It
is based on an infinite combinatorial feature space consist-
ing of primitive features such as oriented edgels and texture
signatures, and compositions thereof. Features are progres-
sively sampled from this space in a simple-to-complex man-
ner. A simple recognition procedure queries learned features
one by one and rules out candidate object classes that do not
sufficiently exhibit the queried feature. Training images are
presented sequentially to the learning system, which incre-
mentally discovers features for recognition. Experimental
results on two databases of geometric objects illustrate the
applicability of the framework.

1. Introduction

The extraction of useful information from visual data is
a hard problem. This is true not only for artificial systems:
About half of the human brain is devoted directly or indi-
rectly to vision [14]. While the precise mechanisms under-
lying human visual perception are still poorly understood,
there is substantial evidence that human visual learning is
facilitated by a coupling of perception and action (see [6]
for a thorough discussion). As we interact with our environ-
ment, we learn to pay attention to perceptual cues that are
behaviorally important. For instance, we learn to recognize
and distinguish individual objects and form categories on the
basis of their relevance. Human ability to perceive distinc-
tions is not primarily determined by the recognition method
employed by our visual system. The converse is true: To a
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large extent, we can learn to make the distinctions demanded
by our environment.

How do humans learn recognition skills? Two principal
hypotheses can be identified [10]: According to the Schema
Hypothesis, sensory input is matched to internalrepresenta-
tions of objectsthat are built and refined through experience.
On the other hand, the Differentiation Hypothesis postulates
that contrastive relationsare learned that serve to distin-
guish among the items. Psychological evidence argues for
a strong role of Differentiation learning [10, 13, 16]. What
exactly the discriminative features are and how they are dis-
covered is unclear. It appears that feature discovery is a hard
problem even for humans and takes a long time to learn [6]:
Neonates can distinguish certain patterns, apparently based
on statistical features like spatial intensity variance orcon-
tour density. Infants begin to note simple coarse-level geo-
metric relationships, but perform poorly in the presence of
distracting cues. They do not consistently pay attention to
contours and shapes. At the age of about two years, chil-
dren begin to discover fine-grained details and higher-order
geometric relationships. Such skills continue to grow over
much of childhood.

Most work in machine recognition concentrates on
Schema methods without such a developmental component.
Hence, the performance characteristics of most existing ma-
chine vision systems are largely determined a priori by the
design of the features and matching algorithms. Neverthe-
less, remarkable efforts have recently led to sophisticated
statistical, texture- and shape-based features and recognition
algorithms which perform impressively well on closed tasks
where all training data are available at the outset [8, 12, 7,9].

This work is not aimed at improving the recognition per-
formance achieved by these or any other systems. In con-
trast, we present a method for learningdiscriminativecapa-
bilities based on an infinite feature space that can in prin-
ciple express any identifiable distinction between objects.
Features are learned in a simple-to-complex manner, resem-
bling the human developmental course as outlined above.
Our method is designed for open tasks where visual scenes
are presented sequentially, and the number and nature of the



categories to be learned are not initially known to the sys-
tem.

The following section introduces the feature space. Sec-
tion 3 then describes the proposed approach at a high level,
and the following two sections present details of the recogni-
tion and feature discovery algorithms. Experimental results
are discussed in Section 6.

2. Features

In order to learn distinctions at various levels of detail
which are initially unknown, a very large feature space is re-
quired, along with a method of generating features from this
space. Since it is practically impossible to make optimal use
of a very large feature set [4], we employ the following two
simplifying strategies [1, 2]: (1) Impose apartial order on
the feature space that categorizes the features into various
levels of structural complexity. The underlying assumption
is that structurally simple features are easier to discoverand
have less discriminative potential than complicated features,
but are still useful for some aspects of the learning problem.
(2) Because exhaustive search in feature space is prohibitive,
samplefeatures from the feature space, beginning at the low-
est level of complexity, and consider more sophisticated fea-
tures as required. It can be argued that these strategies par-
allel those employed by human infants.

An obvious way to generate an infinite and partially or-
dered feature space is through combinatorics:Primitive fea-
tures can be composed in various ways to yieldhigher-order
features, which in turn can be composed. Any type of local
image property can potentially serve as a primitive feature.
In the context of an interactive vision system, this general
framework may encompass three-dimensional or temporal
cues in addition to conventional image properties.

Our system currently employs two types of primitive fea-
tures: (1) Anedgelis given by the orientation of a step edge
at a given point in the image. This orientation� is com-
puted efficiently using the steerability property [5] of ori-
ented Gaussian-derivative filters:
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G(x; y) is a 2-D Gaussian. Intuitively, geometric combi-
nations of edgels characterize aspects of shape [3]. (2) A
texelis a vector of responses of multiple oriented Gaussian-
derivative filters at various scales. At each scale and for
each derivatived, a steerable basis consisting ofd + 1 fil-
ter responses at specific orientations is computed [11]. In-
tuitively, a texel expresses local texture characteristics. No-
tably, both primitives can be steered to specific orientations.
This property is used to achieve invariance with respect to
image-plane rotation.
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Figure 1. A geometric feature of order 3, composed
of three primitives. The feature is defined by the an-
gles � and the distances d, and the orientation of
this specific instance is denoted by �. Each primi-
tive is either an edgel or a texel.

Two intuitively expressive types of feature compositions
have so far been implemented: (1)Geometricrelations are
given by the relative angles and distances between the par-
ticipating lower-order features (Figure 1). As long as these
are rotation-invariant, so is their geometric composition. (2)
Co-presenceasserts the presence of the participating lower-
order features without making any statement about their ge-
ometric or topological relationship.

Features of any type can be composed into a co-presence
feature, while only primitive and geometric features can be
composed into geometric features. Note that these two types
of composition constitute two extremes along a continuum.
One could conceivably define a composition that asserts
relaxed geometric or topological relationships between its
constituents.

Features are computed at various scales, generated by
successively subsampling images by factor two. This
achieves a certain degree of scale invariance. Moreover,
many compositions of edgels are inherently tolerant to
changes in scale. For example, the arrangement shown in
Figure 1 applies equally to triangles of various sizes. An-
other desirable property of these features is that they do not
rely on explicit contour extraction or segmentation. This
avoids two difficult, open problems, which should provide
robustness to various kinds of image degradation.

3. Paradigm

Initially, our imaginary agent does not know anything
about the visual distinctions it will need to learn, nor does
it possess any recognition skills. It does, however, have the
ability to search the feature space described above for useful
features. As it interacts with the environment, it encounters
various visual scenes and notes their different behavioralrel-
evance. It then tries to learn features of these scenes that
predict their relevance.

We believe that this general scenario captures certain as-
pects of childhood development. In contrast to most current
approaches to machine vision, learning is inherently sequen-
tial and open-ended.



In the remainder of the paper, we disregard the interactive
aspect for simplicity and discuss our system in the context
of a sequential object recognition scenario. Initially, the sys-
tem does not know anything about specific features or the
task. Then, training images are presented one by one, and
the system is asked to predict the correct class label. When-
ever this fails, the system tries to discover new features that,
in conjunction with previously learned features, improve its
capabilities. For the purpose of sampling and evaluating new
features, the system is capable of storing previously seen
training images, which are then calledexample images.

The specific recognition algorithm employed in this work
is not important; any of a variety of methods can be applied.
Since features are sought whenever recognition fails, fea-
tures are learned that work well with the specific recogni-
tion mechanism. Our preliminary implementation adopts a
simple recognition algorithm, which serves to illustrate the
interplay between feature selection and recognition.

4. Recognition

The idea underlying our recognition procedure is that in-
dividual features provide varying degrees of evidence in fa-
vor of some classes, and against some others. As a design
choice, only the presence of a feature in an unknown image
is considered evidence, not its absence. This should serve to
increase robustness with respect to partial occlusion. On the
other hand, in the absence of other means this implies that
the system cannot uniquely discern certain classes.

We assume here that the learning procedure has provided
for us a set of features for recognition, and a set of example
images. The recognition procedure queries individual fea-
tures in sequence, and maintains a list of candidate classes.
A query of a feature either serves to rule out one or more
candidate classes, or leaves the candidate list unaltered.The
goal of recognition is to reduce the list of candidates to
length one.

To find the best feature to query, we employ the gen-
eralized Kolmogorov-Smirnoff distance (KSD) [15], which
is competitive with the best known decision tree metrics.
Given a variable, it returns a cutpoint that maximizes the
difference between the class-conditional cumulative distri-
butions of this variable. The variable to be queried is the one
that maximizes this metric among all variables.

Here, the variable associated with a featuref is the maxi-
mumstrengthsmax

f

of this feature in an image. Computation
of the maximum strength involves asserting the presence of
the feature and measuring its strength, at each location in
the image, at each scale (subsampling level). To assert a
geometric featuref of ordero at location(i

1

; j

1

), the local
orientation�(i

1

; j

1

) is first computed using Equation 1. We
now have the location and orientation of the reference point
of the feature (cf. Figure 1). The coordinates(i

k

; j

k

) and ori-

entations�
k

of the other points of this feature are computed
for k = 2; : : : ; o using the� andd values of this feature.
The strengths

f

is then given by the product of the strengths
of the lower-order component features. The strength of an
edgel is given by the response of a Gaussian-derivative fil-
ter at the desired orientation�, which is computed using the
steering equation
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response occurring in the
entire image. The strength of a texel is the maximum of zero
and the normalized cross-correlation between its response
vector and the pattern vector. To achieve rotational invari-
ance, before computing the correlation the vector in ques-
tion is steered to the same orientation as the pattern vector,
where the orientation is computed using the first-derivative
responses at the largest scale [11]. Some tolerance in the rel-
ative angles� is granted through the smooth and wide peaks
of theG�

1

(a sum of two sinusoids), and some tolerance in
the distanced is provided by the size of the Gaussian ker-
nels which do not require alignment at pixel accuracy. The
strength of a co-presence feature is similarly given by the
product of the maximum strengths of its constituents.

Rather than asserting a feature at each point in an im-
age, it is sufficient to consider only a small subset of salient
points in the image. As long as not too many points in high-
contrast areas of the image are missed, the choice of the pre-
cise saliency function is not critical. We currently employ
a Canny edge detector with very low thresholds. Note also
that thesmax

f

need only be computed once for each image
and can then be stored for future use.

Given a subsetC of candidate classes, the best feature
to query is one that maximizes the KSD among the exam-
ple images of these classes. Once the best featuref

� and the
corresponding cutpoint� are identified, the strengthsmax

f

�

is
computed for the queried image. Ifsmax

f

�

� 

�, then no deci-
sion is made on the basis of this cutpoint, in accordance with
the possibility that the featuref� might actually be present
but occluded or otherwise weakened in this image. In this
case, the KSD for this feature is recomputed over all can-
didate cutpoints

i

< s

max

f

�

. If smax

f

�

> 

�, then we iden-
tify all classes for which the majority of all example images
havesmax

f

�

� 

�, and remove them from the list of candidate
classes.

Notice that while up to here our procedure was analogous
to conventional decision trees, this last step constitutesa ma-
jor simplification. In decision trees, candidate classes are
split across the current cutpoint, whereas we maintain them
in their entirety. This assumes that the class-conditionalden-
sities are unimodal and reasonably well separated, which is
not generally true in practice. On the other hand, this pro-
cedure effectively avoids overfitting which in the case of a
potentially infinite, dynamic feature set is more critical than



Table 1. Recognizing a novel image I .

1. C := fall classesg
2. f

�

:= best feature, � the corresponding cutpoint.
If no features left, return C.

3. If smax

f

�

(I) � 

�, re-evaluate this f�, ensuring


�

new

< s

max

f

�

(I). Go to step 2.
4. C := C n f all classes for which the majority of all

example images has smax

f

�

(I

i

) � 

�

g

5. If jCj > 1, go to step 2. Otherwise, return C.

in typical classification problems involving a fixed set of fea-
tures: In our problem, almost any two training images can
be distinguished by some feature, which would have a dev-
astating effect on the generalization properties of the result-
ing classifier. Rather, we want to force our system to learn
better features for which the assumption of unimodality is
as close to true as possible. This restricts the applicabil-
ity of the current system to objects that possess characteris-
tic features visible in any pose, a property shared by most
appearance-based recognition schemes which is commonly
overcome by training on multiple object poses.

This procedure is iterated until one of the following sit-
uations occurs: (1) There is only one candidate class left,
which is then returned as the classification. (2) There is no
candidate left, which means the system is totally unable to
make any statement about the classification. (3) The feature
set is exhausted. In this case, the remaining list of candidate
classes is returned as possible classifications. In cases 2 and
3, and in case 1 if the classification is wrong, the recognition
has failed. In that case a new feature is sought that solves
the problem, as described in the next section. The entire
recognition procedure is summarized in Table 1. Note that
all KSDs and decision thresholds can in principle be pre-
computed, which allows the construction of a special type
of decision tree. In this case, the expected time taken to rec-
ognize an unknown image is logarithmic in the number of
classes, and does not directly depend on the number of fea-
tures or the number of stored example images.

5. Feature discovery

If recognition of an object fails, the image is added to the
set of example images, and thesmax

f

(I) are computed for
all f . It is then run through the recognition procedure again
because some KSDs may have changed to our advantage.
Only if recognition fails again, a new feature is sought.

What are the properties required of the new feature? We
note that a recognition can fail for one of two reasons: Ei-
ther the correct class is ruled out at some stage during the
recognition process, or the system runs out of suitable fea-
tures and returns a set of possible class labels which contains
the correct one.

In the first case, we want to find a featuref
new

to be
employed by the recognition procedure in place of the fea-

Table 2. Learning a novel image I .

1. If I is recognized correctly, stop.
2. Add I to the example images and compute the s

max

f

(I).
3. If I is recognized correctly, stop.

Else, note C and ksd(f

old

) at the failing recognition step.
4. Generate a candidate f

new

.
5. If ksd(f

new

) > ksd(f

old

) and s

max

f

new

> 

new

, add f

new

to
the set and go to step 3.

6. If the maximum number of new features is reached,
stop; else go to step 4.

turef
old

that previously ruled out the true class. Thus, the
KSD achieved byf

new

, ksd(f
new

), needs to be greater than
ksd(f

old

) among the subsetC of all classes still under con-
sideration at this stage in the recognition process. In the
second case,C is the set of classes returned by the recog-
nition procedure, andksd(f

old

) is taken to be 0.5, which in
the case of two classes corresponds to a split that places the
majority of one class below the cutpoint, and the majority
of the other class above. In both cases, the feature must be
present in imageI to a degree stronger than the cutpoint as-
sociated withf

new

, i.e. the cutpoint
new

is chosen to satisfy
s

max

f

new

(I) > 

new

.

Such anf
new

is sought by randomly sampling features
from imageI . This sampling proceeds in stages: First, some
number of new order-2 geometric edgel features and order-
1 texels are generated by randomly choosing points from
among the salient pixels inI , and noting the two angles�

i

and the distanced, if applicable. To keep the features local,
the distance between two sampled edgels is limited. Next,
all existing geometric features (i.e. those previously learned
and those just sampled) are augmented to higher-order ge-
ometric features. This is done by sampling a new primitive
– edgel or texel – and noting the resulting�

i

andd with re-
spect to the reference point of the parent feature. At the third
stage, randomly chosen pairs of previously learned or newly
sampled candidate features are composed into co-presence
features. The sampling process is terminated once a fea-
ture f

new

achievesksd(f
new

) > ksd(f

old

) with a cutpoint


new

< s

max

f

new

(I), or after a maximum number of composi-
tion steps is completed without success.

If a suitable feature is found, it is added to the set, and the
current training image is again run through the recognition
procedure. The properties of the new feature guarantee that
either of the following occurs: (1) The new feature is cho-
sen at the stage that previously failed during the recognition
process, and the correct class is not ruled out at this stage.
(2) It is chosen at some earlier stage during the recognition
process. If the recognition fails again, the feature sampling
process iterates. The feature learning procedure is summa-
rized in Table 2.

For a brief look at the time complexity, first note that
the feature composition process involves iterating over all



pre-existing features and newly sampled candidate features,
sayn

f

in total. Computation ofksd(f
new

) requires process-
ing each example image in each class under consideration,
which on average is proportional to the total numbern

I

of
accumulated example images. Therefore, learning one new
feature has a time complexity on the order of2

a

n

f

n

I

, where
a is a small constant giving the maximum number of com-
position steps. Since the number of pre-existing features is
directly related to the numbern

I

of accumulated example
images, finding one new feature takes time proportional to
n

2

I

. Clearly this is not acceptable for large-scale recognition
problems. At the very least, suitable heuristics for reducing
both factorsn

f

andn
I

in the complexity term need to be
identified.

6. Examples

To illustrate the operation of our system, we trained it on
two simple supervised object recognition tasks, each con-
taining example views of simple geometric objects. In one
task, the database consisted of eight synthetic objects1, each
of which was rendered in high quality at 15 different views,
covering 40 horizontal and 20 vertical degrees of the view-
ing sphere (Figure 2). For the other task, low-quality images
were taken of real geometric objects (Figure 3). There were
18 views of a sphere, 19 views of a cone in various posi-
tions, and 16 random views of a cube. The images of the
class “sphere” included spheres of two different sizes, and
the images of the class “cube” contained two cubes that dif-
fered in size.

The learning system was trained on each task as described
above. The images of the training set were iteratively pre-
sented to the system in random order, until either the sys-
tem had learned the training set perfectly, or until no feature
was found during an entire pass through the training set even
though there were some misclassifications. To learn a new
feature, first up to 10 new features were sampled (individual
texels or pairs of edgels). Then, the set of all geometric pre-
existing and new candidate features was augmented by one
edgel or texel. Finally, up to the same number of co-presence
features was generated. Table 3 shows the results obtained
by 10-fold stratified cross-validation. In all test cases, the
recognition procedure returned a single class label.

The synthetic objects were learned almost perfectly. The
real-object task was much harder because objects varied in
size and were presented in entirely random positions, which
forced the system to find largely pose-invariant features.
Our algorithm tends to mistake spheres for cones because
spheres lack features that distinguish them from a cone ly-
ing down, revealing its circular base. Three out of the four
misclassified cone images are accidental views that hide the
characteristic conic shape.

1http://www.cis.plym.ac.uk/cis/levi/UoPCIS 3D Archive/8obj set.tar
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Figure 2. The synthetic-object task: Example views
and examples of features learned.
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Figure 3. The real-object task: Example views and
examples of features learned.

Figures 2 and 3 include some examples of features found
during learning. The gray lines indicate the salient points
used for sampling new features. Texels are marked by
a small star, geometric relations by a solid line, and co-
presence connections by a broken line.

It took between two and five passes through the training
set to learn the training images. Sometimes the training set
was not perfectly learned, which happened in two (out of
ten) runs on the synthetic task, and in five runs on the real
task. The number of accumulated example images varied
between 31 and 49 on the synthetic and between 13 and 32
on the real task. For both tasks, between 8 and 23 features
were learned per run. However, only about half of them were
actually consulted on some training or test image. In other
words, the other half had been superseded by a better feature
at later stages of training.

7. Conclusions and future work

Adaptive, interactive agents – whether biological or artifi-
cial – benefit from learning those visual distinctions that turn
out to be relevant for their tasks or behaviors. This learn-
ing process is inherently sequential, never complete, and un-
known at the outset. We have presented a framework for
progressive learning of such open-ended visual discrimina-
tion tasks. It is based on a combinatorial feature space of



Table 3. Confusion matrices summarizing the
cross-validated test-set performances. The over-
all proportion of correct recognitions was 0.96 on
the synthetic objects, and 0.83 on the real objects.

classification results on synthetic objects: sums:
con6 cube cucon cucy cycu cyl3 cyl6 tub6

con6 15 15
cube 15 15
cucon 15 15
cucy 1 14 15
cycu 1 14 15
cyl3 14 1 15
cyl6 1 13 1 15
tub6 15 15
sums: 15 16 17 14 14 14 13 17 120

results on real objects: sums:
sphere cube cone

sphere 14 1 3 18
cube 15 1 16
cone 4 15 19
sums: 14 20 19 53

potentially infinite size. Our framework is general enough
to incorporate any type of localized spatial or temporal im-
age property as feature primitives, and a variety of means for
composing them into higher-order features.

A structural simple-to-complex partial ordering of the
feature space permits feature search in polynomial time.
While simple-to-complex feature sampling is not gener-
ally optimal with respect to any meaningful objective, this
heuristic is intuitively pleasing in that it prefers simplic-
ity over complexity. Assuming that most distinctions be-
tween object classes can be expressed in terms of low-order
features, simple-to-complex sampling expends most effort
in those areas of the feature space where success is most
likely to occur. Psychological data indicate that such a strat-
egy may also be followed during the human developmental
course.

On the downside, our current feature sampling method
is limited in that the search in feature space is essentially
blind. It is only guided by the requirement that a new fea-
ture be present in the scene to be learned, and by simple lo-
cality heuristics. The identification of more focused search
methods would lead to significant improvements in perfor-
mance. Ideally, a system would learn heuristics or optimized
systematic strategies for discovering useful features.

The most serious limitation of our current system is the
simplicity of the recognition procedure. It limits the gen-
eral applicability of our approach in two ways: (a) Sequen-
tial query of features and hard decisions against candidate
classes at each step makes strong assumptions about the na-
ture of the task, which are unrealistic in most interesting
problems; (b) The decision tree approach requires that every

newly sampled candidate feature be evaluated on each stored
example image. Therefore, our recognition procedure does
not scale well to large problems.

An ideal recognition procedure permits sequential accu-
mulation of evidence while avoiding hard decisions. Infor-
mation theoretic measures can guide a purposive search for
evidence. The evaluation of the utility of newly sampled fea-
tures can in most cases be approximated. Our current work
addresses these goals in a system that employs a Bayesian
network instead of the decision tree.
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