Proc. IEEE Computer Society Conference on Computer VisimhRattern Recognition, June 23-25 1999, Ft. Collins, CO4pp—415.

Toward L earning Visual Discrimination Strategies

Justus H. Piater and Roderic A. Grupen
Computer Science Department
University of Massachusetts

Amherst, MA 01003
{piatetgrupent @cs.umass.edu

Abstract large extent, we can learn to make the distinctions demanded

by our environment.
Humans learn strategies for visual discrimination through

interaction with their environment. Discrimination skilhre
refined as demanded by the task at hand, and are not a pr
ori determined by any particular feature set. Tasks are typ'tions of objectshat are built and refined through experience.

ically incompletely specified and evolve COW“”“"’_‘”V- Tr."SOn the other hand, the Differentiation Hypothesis posadat
work presents a general framework for learning visual dis-

imination that add fh h teristi that contrastive relationsare learned that serve to distin-
crimination that addresses some or these charactersics. guish among the items. Psychological evidence argues for
is based on an infinite combinatorial feature space consist:

: L . a strong role of Differentiation learning [10, 13, 16]. What
ng of primitive features ;ych as oriented edgels and texwrexactly the discriminative features are and how they are dis
s!gnatures, and compqsmons th_ereof_. Features are pegre covered is unclear. It appears that feature discovery isc ha
sively s_ampled from .th'S space ina smple—to—complex mar}iroblem even for humans and takes a long time to learn [6]:
ner. A simple recognition procedure queries learned fesgur Neonates can distinguish certain patterns, apparentigcbas
one by one and rules out candidate object classes that do n '

%tn statistical features like spatial intensity varianceon-
sufficiently exhibit the queried feature. Training images a P y

. . N tour density. Infants begin to note simple coarse-level geo
presented sequentially to the learning system, which incre y 9 b 9

; 2 . metric relationships, but perform poorly in the presence of
mentally discovers features for recognition. Experiménta P b poorly P

. ) . distracting cues. They do not consistently pay attention to
resu!ts on two databases of geometric objects illustrage th contours and shapes. At the age of about two years, chil-
applicability of the framework.

dren begin to discover fine-grained details and higher+orde
geometric relationships. Such skills continue to grow over
much of childhood.

How do humans learn recognition skills? Two principal
hypotheses can be identified [10]: According to the Schema
Pypothesis, sensory input is matched to intereplesenta-

1. Introduction _ . iy
Most work in machine recognltlon concentrates on

The extraction of useful information from visual data is Scheéma methods without such a developmental component.
a hard problem. This is true not only for artificial systems: Hence, the performance characteristics of most existing ma
About half of the human brain is devoted directly or indi- Chine vision systems are largely determined a priori by the
rectly to vision [14]. While the precise mechanisms under-d€sign of the features and matching algorithms. Neverthe-
lying human visual perception are still poorly understood, €SS, remarkable efforts have recently led to sophisiicate
there is substantial evidence that human visual learning igtatistical, texture- and shape-based features and riiogn
facilitated by a coupling of perception and action (see [G]algonthms vyh_lch perform |mpreSS|ver well on closed tasks
for a thorough discussion). As we interact with our environ-Where all training data are available at the outset [8, 19}.7,
ment, we learn to pay attention to perceptual cues that are This work is not aimed at improving the recognition per-
behaviorally important. For instance, we learn to recogniz formance achieved by these or any other systems. In con-
and distinguish individual objects and form categoried@n t trast, we present a method for learniigcriminativecapa-
basis of their relevance. Human ability to perceive distinc bilities based on an infinite feature space that can in prin-
tions is not primarily determined by the recognition methodciple express any identifiable distinction between objects
employed by our visual system. The converse is true: To &eatures are learned in a simple-to-complex manner, resem-
This work was supported in part by the National Science Fation under bling the human d.eve|0pmental course as Ou“.med above.
grants CISE/CDA-9703217, IRI-9704530 and IRI-9503687, lapthe Air ~ OUr method is designed for open tasks where visual scenes
Force Research Labs, IFTD (via DARPA) under grant F30602-9D32. are presented sequentially, and the number and nature of the




categories to be learned are not initially known to the sys- b3

tem. g,
The following section introduces the feature space. Sec- reference poiﬁi;«d)l P2\ d,

tion 3 then describes the proposed approach at a high level,
and the following two sections present details of the reéogn
tion and feature discovery algorithms. Experimental rissul
are discussed in Section 6.

o

Figure 1. A geometric feature of order 3, composed

of three primitives. The feature is defined by the an-
gles ¢ and the distances d, and the orientation of
this specific instance is denoted by 8. Each primi-
tive is either an edgel or a texel.

2. Features

In order to learn distinctions at various levels of detail
which are initially unknown, a very large feature space is re
quired, along with a method of generating features from this
space. Since it is practically impossible to make optimal us
of a very large feature set [4], we employ the following two
simplifying strategies [1, 2]: (1) Imposepartial order on
the feature space that categorizes the features into gario
levels of structural complexity. The underlying assumptio

s that strugturqlly_ S‘”.‘p'e feat”fes are easier_to discaner Co-presencasserts the presence of the participating lower-
have Iess_d|scr|m|nat|ve potential than compllca_ted frezatl) order features without making any statement about their ge-
but are still useful for_some aspgcts of the Iearnl_ng prot_)lt_amometric or topological relationship.
(2) Because exhaustive search in feature space is prefibiti Features of any type can be composed into a co-presence
sampldeatures from the feature space, beginning at the Iowf

t level of complexitv. and consider mor histicatad f eature, while only primitive and geometric features can be
estievetot compiexity, and consider more sophisticated fe composed into geometric features. Note that these two types
tures as required. It can be argued that these strategies p

allel those emploved by human infants 3 composition constitute two extremes along a continuum.
- €mploy y L . One could conceivably define a composition that asserts
An obvious way to generate an infinite and partially or-

X . I relaxed geometric or topological relationships betwesn it
dered feature space is through combinatoframitive fea- constituegnts polog P
tures can be composed in various ways to yregher-order '

. Features are computed at various scales, generated by
features, which in turn can be composed. Any type of local . T .
) . R successively subsampling images by factor two. This
image property can potentially serve as a primitive feature_ . . ) :
. . - . chieves a certain degree of scale invariance. Moreover,
In the context of an interactive vision system, this general

. : any compositions of edgels are inherently tolerant to
framework may encompass three-dimensional or tempora ) :
. . . ) ! Changes in scale. For example, the arrangement shown in
cues in addition to conventional image properties. : ; i . .
S Figure 1 applies equally to triangles of various sizes. An-
Our system currently employs two types of primitive fea- : .
i o . : other desirable property of these features is that they tlo no
tures: (1) Anedgelis given by the orientation of a step edge - : . .
. N . . . A rely on explicit contour extraction or segmentation. This
at a given point in the image. This orientatiéris com-

- . S . avoids two difficult, open problems, which should provide
Egig EZ'S;?:X_S;?V%;CE fﬁig?bmw property [5] of ori robustness to various kinds of image degradation.

Two intuitively expressive types of feature compositions
have so far been implemented: &gometricrelations are
iven by the relative angles and distances between the par-
ﬁcipating lower-order features (Figure 1). As long as thes
are rotation-invariant, so is their geometric compositi@)

w/2

tanf = —L (1)
Gt

3. Paradigm

Initially, our imaginary agent does not know anything
where G = a%G(az,y) and Gfﬂ = E%G(:v,y), and  about the visual distinctions it will need to learn, nor does
G(z,y) is a 2-D Gaussian. Intuitively, geometric combi- it possess any recognition skills. It does, however, hage th
nations of edgels characterize aspects of shape [3]. (2) Ability to search the feature space described above foulusef
texelis a vector of responses of multiple oriented Gaussianfeatures. As it interacts with the environment, it encotsite
derivative filters at various scales. At each scale and fovarious visual scenes and notes their different behavieral

each derivativel, a steerable basis consistingdf- 1 fil- evance. It then tries to learn features of these scenes that
ter responses at specific orientations is computed [11]. Inpredict their relevance.
tuitively, a texel expresses local texture charactegstido- We believe that this general scenario captures certain as-

tably, both primitives can be steered to specific orientetio pects of childhood development. In contrast to most current
This property is used to achieve invariance with respect t@pproaches to machine vision, learning is inherently seque
image-plane rotation. tial and open-ended.



In the remainder of the paper, we disregard the interactiventationd;, of the other points of this feature are computed
aspect for simplicity and discuss our system in the contextor & = 2,...,0 using thep andd values of this feature.
of a sequential object recognition scenario. Initiallg #ys-  The strengtls is then given by the product of the strengths
tem does not know anything about specific features or thef the lower-order component features. The strength of an
task. Then, training images are presented one by one, ardigel is given by the response of a Gaussian-derivative fil-
the system is asked to predict the correct class label. Wheter at the desired orientatidh which is computed using the
ever this fails, the system tries to discover new featurat th steering equation
in conjunction with previously learned features, improtge i
capabilities. For the purpose of sampling and evaluatimg ne GY = GY cosf + G7/* sinf (2)

features, the system is capable of storing previously seen lized by th imurG' ing in th
training images, which are then calledample images normalized by the maximurt, response occurring in the

The specific recognition algorithm employed in this work entire image. The strength of a texel is the maximum of zero

is not important; any of a variety of methods can be applied‘.”md the normalized cross-correlation between its response

Since features are sought whenever recognition fails, fea\L{ector and the pattern vector. To achieve rotational iavari

tures are learned that work well with the specific recogni-ance’ before computing the correlation the vector in ques-

tion mechanism. Our preliminary implementation adopts apon is steered to the same orientation as the pattern yector

simple recognition algorithm, which serves to illustrate t \r/vherenthe o??hntaltlﬁ)n 'S; conlwpultid gsmmg tthT l;lr?]t—d(?::lﬁtlvr
interplay between feature selection and recognition. esponses at the larges scale [11]. Some tolera ce ere
ative angle® is granted through the smooth and wide peaks

. of the G¢ (a sum of two sinusoids), and some tolerance in
4. Recognition the distancel is provided by the size of the Gaussian ker-
nels which do not require alignment at pixel accuracy. The
The idea underlying our recognition procedure is that in-strength of a co-presence feature is similarly given by the
dividual features provide varying degrees of evidencein faproduct of the maximum strengths of its constituents.
vor of some Classes, and against some others. As a deSign Rather than asserting a feature at each point in an im-
choice, only the presence of a feature in an unknown imaggge, it is sufficient to consider only a small subset of salien
is considered evidence, not its absence. This should serve boints in the image. As long as not too many points in high-
increase robustness with respect to partial occlusionh®n t contrast areas of the image are missed, the choice of the pre-
other hand, in the absence of other means this implies tha{se saliency function is not critical. We currently employ
the system cannot uniquely discern certain classes. a Canny edge detector with very low thresholds. Note also
We assume here that the learning procedure has providefat thes™* need only be computed once for each image
for us a set of features for recognition, and a set of exampland can then be stored for future use.
images. The recognition procedure queries individual fea- Given a subse€ of candidate classes, the best feature
tures in sequence, and maintains a list of candidate class&g query is one that maximizes the KSD among the exam-
A query of a feature either serves to rule out one or morgle images of these classes. Once the best fegtuaad the
candidate classes, or leaves the candidate list unalt€hed. corresponding cutpoirt are identified, the strengﬂ?j‘x is
goal of recognition is to reduce the list of candidates tocomputed for the queried image.sif.** < c*, then no deci-
length one. sion is made on the basis of this cutpoint, in accordance with
To find the best feature to query, we employ the genthe possibility that the featurg* might actually be present
eralized Kolmogorov-Smirnoff distance (KSD) [15], which but occluded or otherwise weakened in this image. In this
is competitive with the best known decision tree metricscase, the KSD for this feature is recomputed over all can-
Given a variable, it returns a cutpoint that maximizes thedidate cutpoints; < s7*. If s > c*, then we iden-
difference between the class-conditional cumulativeridist tify all classes for which the majority of all example images
butions of this variable. The variable to be queried is the on haves}** < c*, and remove them from the list of candidate
that maximizes this metric among all variables. classes.
Here, the variable associated with a featfiis the maxi- Notice that while up to here our procedure was analogous
mumstrengths’** of this feature in an image. Computation to conventional decision trees, this last step constitutes-
of the maximum strength involves asserting the presence gbr simplification. In decision trees, candidate classes ar
the feature and measuring its strength, at each location isplit across the current cutpoint, whereas we maintain them
the image, at each scale (subsampling level). To assertiatheir entirety. This assumes that the class-conditidaat
geometric featurg’ of ordero at location(i, 71), the local  sities are unimodal and reasonably well separated, which is
orientationd (i1, j1) is first computed using Equation 1. We not generally true in practice. On the other hand, this pro-
now have the location and orientation of the reference pointedure effectively avoids overfitting which in the case of a
of the feature (cf. Figure 1). The coordinatés j) and ori-  potentially infinite, dynamic feature set is more critidah



Table 1. Recognizing a novel image 1. Table 2. Learning a novel image 1.

1. C :={all classes} 1. If I is recognized correctly, stop.

2. f* .= best feature, ¢* the corresponding cutpoint. 2. Add I to the example images and compute the s’7**(I).
If no features left, return C. 3. If I'is recognized correctly, stop.

3. If s3(I) < ¢, re-evaluate this f*, ensuring Else, note C and ksd( fo1a) at the failing recognition step.
Chew < 7 (T). Go to step 2. 4. Generate a candidate fhew-.

4. C = C\ { all classes for which the majority of all 5. If ksd(fnew) > ksd(fola) and s> > cnew, add frew t0
example images has s3*(I;) < c*} the set and go to step 3.

5. If|C] > 1, go to step 2. Otherwise, return C'. 6. If the maximum number of new features is reached,

stop; else go to step 4.

in typical classification problems involving a fixed set cdife
tures: In our problem, almost any two training images carture f,q4 that previously ruled out the true class. Thus, the
be distinguished by some feature, which would have a devKSD achieved byf,,ew, ksd(fnew ), Needs to be greater than
astating effect on the generalization properties of theltes ksd(f,14) among the subse&t of all classes still under con-
ing classifier. Rather, we want to force our system to learrsideration at this stage in the recognition process. In the
better features for which the assumption of unimodality issecond case(' is the set of classes returned by the recog-
as close to true as possible. This restricts the applicabikition procedure, anélsd( f.1a) is taken to be 0.5, which in
ity of the current system to objects that possess characterithe case of two classes corresponds to a split that places the
tic features visible in any pose, a property shared by mognajority of one class below the cutpoint, and the majority
appearance-based recognition schemes which is commondy the other class above. In both cases, the feature must be
overcome by training on multiple object poses. present in imagé to a degree stronger than the cutpoint as-
This procedure is iterated until one of the following sit- sociated withf, ey, i.€. the cutpoint,.,, iS chosen to satisfy
uations occurs: (1) There is only one candidate class lefts?®* (1) > cpew-
which is then returned as the classification. (2) There is no gch aNfaew iS sought by randomly sampling features
candidate left, which means the system is totally unable t¢omimager. This sampling proceeds in stages: First, some
make any statement about the classification. (3) The featuig,mper of new order-2 geometric edgel features and order-
setis exhausted. In this case, the remaining list of catelida 1 texels are generated by randomly choosing points from
classes is returned as possible classifications. In cases 2 a3mong the salient pixels ifi, and noting the two angles;
3,and in case 1if the classification is wrong, the recognitio gnq the distancé, if applicable. To keep the features local,
has failed. In that case a new feature is sought that solvgge distance between two sampled edgels is limited. Next,
the problem, as described in the next section. The entirg)| existing geometric features (i.e. those previouslyried
recognition procedure is summarized in Table 1. Note thajnq those just sampled) are augmented to higher-order ge-
all KSDs and decision thresholds can in principle be prepmetric features. This is done by sampling a new primitive
computed, which allows the construction of a special type._ eqgel or texel — and noting the resultiggandd with re-
of decision tree. In this case, the expected time taken t0 regpect to the reference point of the parent feature. At thd thi
ognize an unknown image is logarithmic in the number ofstage, randomly chosen pairs of previously learned or newly
classes, and does not directly depend on the number of fegampled candidate features are composed into co-presence

tures or the number of stored example images. features. The sampling process is terminated once a fea-
) ture fhew achievesksd(fnew) > ksd(fola) With a cutpoint
5. Feature discovery Caow < S (I), or after a maximum number of composi-

If recognition of an object fails, the image is added to thetIon step§ 'S completeq without _Sl_JcceSS'
set of example images, and th#*<(I) are computed for Ifasmtgb!e fgature is founq, itis added to the set, an(_j.the
all £. Itis then run through the recognition procedure agairfurrent training image is again run through the recognition
because some KSDs may have changed to our advantaggocedure. The properties of the new feature guarantee that
Only if recognition fails again, a new feature is sought. either of the following occurs: (1) The new feature is cho-

What are the properties required of the new feature? WEEN at the stage that previously failed during the recagniti
note that a recognition can fail for one of two reasons: Ej-PrOCess, and the correct class is not ruled out at this stage.
ther the correct class is ruled out at some stage during the) It is chosen at some earlier stage during the recognition
recognition process, or the system runs out of suitable fed2rocess. If the recognition fails again, the feature samgpli
tures and returns a set of possible class labels which cantaiProcess iterates. The feature learning procedure is summa-
the correct one. rized in Table 2.

In the first case, we want to find a featufg.., to be For a brief look at the time complexity, first note that
employed by the recognition procedure in place of the feathe feature composition process involves iterating over al



pre-existing features and newly sampled candidate festur

sayn; in total. Computation oksd( fnew) requires process- <¥ 1‘ 1 ‘i
ing each example image in each class under consideratio| 7
which on average is proportional to the total numberof

accumulated example images. Therefore, learning one newcon6é cube cucon cucy cycu cyl3 cyl6 tub6
feature has a time complexity on the orde2®f yn;, where

a is a small constant giving the maximum number of com- ’"h _/_ } /{

position steps. Since the number of pre-existing featigres |

directly related to the numbet; of accumulated example

images, finding one new feature takes time proportional to

n?. Clearly this is not acceptable for large-scale recognitio

problems. At the very least, suitable heuristics for redgci
both factorsn;y andn; in the complexity term need to be

Figure 2. The synthetic-objecttask: Example views
and examples of features learned.

identified.
B -
To illustrate the operation of our system, we trained it o
two simple supervised object recognition tasks, each con- sphere cone cube

taining example views of simple geometric objects. In one
task, the database consisted of eight synthetic oBjezash

of which was rendered in high quality at 15 different views,
covering 40 horizontal and 20 vertical degrees of the view
ing sphere (Figure 2). For the other task, low-quality insage
were taken of real geometric objects (Figure 3). There were
18 views of a sphere, 19 views of a cone in various posi-
tions, and 16 random views of a cube. The images of the
class “sphere” included spheres of two different sizes, and

the images of the class “cube” contained two cubes that dif- F|gures 2land 3 include some _exqmples of fez;tures fqund
fered in size. during learning. The gray lines indicate the salient points

The learning system was trained on each task as describé'aed for sampling new features. Texels are marked by

above. The images of the training set were iteratively pref'j1 small star, geome"'c relations b_y a solid line, and co-
resence connections by a broken line.

n h m in random order, until either th - . -
sented to the syste andom order, until either the sysD It took between two and five passes through the training

tem had learned the training set perfectly, or until no featu T . ey
9 b Y e%et to learn the training images. Sometimes the training set

was found during an entire pass through the training set ev s not perfectly leamed. which h ned in tw t of
though there were some misclassifications. To learn a ne as not perfectly learned, ch happene 0 outo
n) runs on the synthetic task, and in five runs on the real

feature, first up to 10 new features were sampled (individuata k. The number of accumulated example imaaes varied
texels or pairs of edgels). Then, the set of all geometrie pre, SK. u umu xample images vari

existing and new candidate features was augmented by 0#% t\t/r\:ee:] 3|1tan|::1 4F9 ?g t?ﬁ tsynktheglct\illndrk])thﬁgr;é?; ar][dr32
edgel or texel. Finally, up to the same number of co—presenc% © real task. Forboth tasks, between ¢ a catures

features was generated. Table 3 shows the results obtainﬁ’(éft Lealfa:;giiﬁﬁééugﬁ ggvmvzvt?;iginnly itr)ct)g;thﬁg:f;hﬁ? c\;\;ﬁreer
by 10-fold stratified cross-validation. In all test casd® t y 9 ge.

recognition procedure returned a single class label. words, the other half had been superseded by a better feature

The synthetic objects were learned almost perfectly. Th& tlater stages of training.
real-object task was much harder because objects varied i .
size and were presented in entirely random positions, whic:?' Conclusions and future work
forced the system to find largely pose-invariant features.

o laorithm tends to mistak h ¢ b Adaptive, interactive agents —whether biological or artifi
ur aigorithm tends 1o mistake Spheres 1or Cones because,  janefit from learning those visual distinctions thiat

spheres lack features that distinguish them from a cone Iyc')ut to be relevant for their tasks or behaviors. This learn-

ing down, revealing its circular base. Three out of the fouring process is inherently sequential, never complete, and u

g:zcr:;ist’Z'rf'iqC%%Ze.;mﬁgej are accidental views that hide t%own at the outset. We have presented a framework for
ISt IC Shape. progressive learning of such open-ended visual discrimina
Lhttp://www.cis.plym.ac.uk/cis/levi/lUaRC1S_3D_Archive/8obj set.tar tion tasks. It is based on a combinatorial feature space of

== < TS

Figure 3. The real-object task: Example views and
examples of features learned.




Table 3. Confusion matrices summarizing the newly sampled candidate feature be evaluated on each stored

cross-validated test-set performances. The over- example image. Therefore, our recognition procedure does
all proportion of correct recognitions was 0.96 on not scale well to large problems.
the synthetic objects, and 0.83 on the real objects. An ideal recognition procedure permits sequential accu-

mulation of evidence while avoiding hard decisions. Infor-
classification results on synthetic objects:  sums:  mation theoretic measures can guide a purposive search for
con6 cube cucon cucy cycu cyl3 cyl6 tub6 evidence. The evaluation of the utility of newly sampled fea
con6 15 15 tures can in most cases be approximated. Our current work
cube 15 15 addresses these goals in a system that employs a Bayesian

gzg;m 1 15 14 ig network instead of the decision tree.
cycu 1 14 15
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