
Int. J. Pattern Recognition and Arti�cial Intelligence 13(2), 1999.

c

 World Scienti�c.

This is a draft version. Please consult the original publication for accurate reference.

Interactively Training Pixel Classi�ers

Justus H. Piater, Edward M. Riseman, and Paul E. Utgo�

January 19, 1999

Computer Science Department

University of Massachusetts

Amherst, MA 01003

Phone: (413) 545-3143

Fax: (413) 545-1249

Email: piater@cs.umass.edu

Abstract | For typical classi�cation tasks, all training data are prepared

in advance and are supplied to the classi�er all at once. This is unnecessarily

expensive and incurs over�tting problems, since the individual contributions

of the training instances to the classi�er are not known. We address this

by proposing an interactive incremental framework for image classi�er con-

struction, where small numbers of training examples are supplied at each

user interaction. After incorporating new training instances, the classi�er

immediately reclassi�es the image to provide the user with instant feedback.

This allows the user to choose additional informative training pixels from

among the currently misclassi�ed ones. Using a realistic terrain classi�ca-

tion task, we demonstrate the potential of our method to generate small

and accurate decision tree classi�ers from surprisingly few training examples

while avoiding overspecialization. We also briefly discuss the novel concept of

hierarchical classi�cation, where higher-level classi�ers take as input the out-

put of lower-level classi�ers. We present preliminary results indicating that

within our interactive framework, this is a practical approach to exploiting

spatial relationships for classi�cation.

Keywords: interactive image classi�er construction, incremental decision

trees, human e�ort, over�tting.

1 Introduction

As advances are made in technology for machine learning, one can expect

to see this technology incorporated in tools for constructing decision mak-

ing components of larger systems that non-specialists build. In particular,

pixel classi�ers are an important component of many vision applications,

e.g. texture-based segmentation [9, 1], image understanding [3, 14], object

recognition [12], obstacle detection [15], and geoscience [5, 4].

Despite these abundant applications, the construction of high-performance

pixel classi�ers usually involves substantial cost in terms of human e�ort. A

traditional procedure for classi�er construction is illustrated in Figure 1: A

number of training instances (i.e. completely or partially hand-labeled im-

ages) are selected and supplied to a classi�er construction system. The re-

sulting classi�er is then evaluated, typically by comparing its output with

ground truth data and assessing its accuracy. If the performance is not sat-

isfactory, some parameters of the system are changed, such as the feature set

or the training set, or the classi�er construction algorithm. Then, the entire

procedure is repeated | often a time-consuming and tedious task.

build evaluate
classifier

good? done

classifier

no

train. insts.

yes

raw image,
classes

select

Figure 1: Traditional classi�er construction.

It is well known that the appropriateness of the training set has a great

inuence on the performance of a classi�er. For this reason, signi�cant e�ort

is traditionally put into the construction of the training set. This work is

concerned with e�cient selection of informative training instances. In the

case of image pixel classi�cation, substantial cost is incurred by the require-

ment to provide by hand the correct labels for the training pixels. Therefore,

one would like to be able to provide a small number of well chosen train-

ing instances relatively quickly, at no loss of classi�cation accuracy, or even

improved performance [21].

2

There are other bene�ts of keeping the training set small. For example,

a typical decision tree classi�er will make every attempt to place training

instances of di�erent classes in separate leaf nodes, as long as they are dis-

cernible based on their feature vectors. However, in most practical appli-

cations the distributions of di�erent classes overlap in feature space, which

leads to overly specialized and very complicated decision trees with poor

generalization properties. This is typically addressed by elaborate pruning

algorithms that try to detect overspecialization and then simplify the deci-

sion tree. Such pruning reduces the classi�cation accuracy on the training

set to some degree, but in practice the accuracy on independent test data

often increases. Other types of classi�ers address this problem di�erently,

e.g. by drawing maximum-likelihood boundaries between classes in feature

space. To generate optimal classi�ers, such algorithms require a su�ciently

large number of training instances whose distributions in feature space meet

the statistical assumptions made by the algorithm. In many practical appli-

cations this requirement cannot be met.

Consequently, it would be bene�cial to select a small number of informa-

tive training instances that are known to be typical representatives of their

class, rather than a large number from an unknown distribution. In the case

of decision tree classi�ers, such a procedure should ideally eliminate the need

for pruning altogether.

Intuitively, an informative training example is one that is of signi�cance

to the classi�cation process. If a large number of training examples is chosen

a priori, as is usually done, then the contribution of the individual instances is

not known. Evidently, if one knew how to choose the instances appropriately,

a very similar classi�cation performance could be achieved with much fewer

training examples.

In this paper, we are not addressing the general problem of selecting

optimal sets of training instances. Instead, we propose to supply training

instances incrementally, which is motivated by the following consideration:

If one could know where the classi�er currently makes mistakes, one could

generate an informative instance by providing a correct label for a currently

misclassi�ed pixel. We arrive at an interactive system for e�cient construc-

tion (in terms of human involvement) of pixel classi�ers. In our system, the

o�-line iterative procedure (Figure 1) is replaced by an interactive incremen-

tal Teacher-Learner paradigm (Figure 2), which we call ITL. The Teacher

is a human domain expert who operates a graphical user interface. He can

select images for training and, for any image, select and label small clusters

3

of pixels. The Learner is a computer program that operates through a well-

de�ned communication interface with the Teacher's interface. The Learner

can receive images and training instances, and can quickly produce a classi-

�er and labels for the pixels of the current training image, according to the

most recent classi�er.

feedback

instances
training

visualadding classes

done

raw image

incrementally updates classifier,selects training instances,
correcting errors, reclassifies image

Teacher Learner

Figure 2: The Incremental Teacher/Learner framework (ITL): interactive,

incremental classi�er construction.

A fundamental aspect of this model is that it is incremental. The Teacher

does not need to provide a large number of instances that may or may not be

informative. Instead, each time the user provides a new instance, the Learner

rapidly revises its classi�er as necessary, and then recomputes the class labels

for all pixels of the image. This lets the user see the misclassi�ed pixels with

almost no delay. He can immediately respond by providing correct labels

for one or more of them, which are passed as new training examples to the

classi�er. In this sense, we call a newly supplied training instance informative

if and only if it is misclassi�ed by the current classi�er.

2 Incremental Decision Trees

This work is primarily concerned with e�ective selection of training instances.

Another important issue in classi�er construction is the selection of a fea-

ture set. It is known that increasing the size of a feature set can adversely

a�ect classi�er performance [8]. Selection of an optimal feature subset from

a given universe of features has been shown to be infeasible in practice [10].

Classi�ers that utilize all available features (such as neural networks, nearest-

neighbor clusterers, linear machines) are particularly sensitive to redundant

4

and noisy features. Therefore, they prefer very large training sets. This moti-

vates the use of a univariate decision tree classi�er which consults only a sin-

gle feature at each decision node. Only useful features are incorporated into

the tree, and features of little discriminative power are disregarded entirely.

\Useful" here refers to the ability of the classi�er to classify the training set

correctly. If over�tting is e�ectively avoided by proper selection of training

instances, then the resulting decision tree may not require all available fea-

tures. One is still left with the problem of selecting representative training

instances that will cause the tree induction algorithm to select those features

that will result in good generalization. Thus, we have not solved the feature

selection problem, but by employing an interactive decision tree paradigm

we can address it in terms of training instance selection.

With ITL, the user presents training instances sequentially to the classi-

�er construction system, and expects the classi�er to incorporate each new

training example very quickly. Thus, the system requires a classi�er that can

be rebuilt or incrementally upgraded very quickly, without unlearning previ-

ously learned instances. This rules out many classi�ers, e.g. neural networks

which converge relatively slowly and require a large number of training ex-

ample presentations. Decision trees, on the other hand, are known for their

computational e�ciency.

An early incremental decision tree algorithm was proposed by Crawford

[7] based on CART [2]. When a new training instance would cause a new

test to be picked at a decision node, the entire subtree rooted at this node

is discarded and rebuilt based on the corresponding subset of the training

examples. Lovell and Bradley [17] constructed another partially incremental

decision tree algorithm, the \Multiscale Classi�er". It works by adjusting

decision thresholds and, if necessary, splitting leaves by introducing new de-

cision nodes. Because all the data seen are not stored in the tree, these

adjustments may cause previously processed instances to be classi�ed in-

correctly. Therefore, these instances must be presented to the decision tree

again, which in turn may cause alterations of the tree. The method re�nes

the tree incrementally, and the result is dependent on the order of the training

instances.

Utgo�'s Incremental Tree Inducer ITI [25, 26] solves this problem by

storing all data relevant for restructuring a decision tree within the nodes

[22]. It can accept and incorporate training instances serially without needing

to rebuild the tree repeatedly. Another desirable characteristic is that it

produces the same tree for the same accumulated set of training instances,

5

regardless of the order in which they are received.

1

It can also operate in

conventional batch mode, where the full set of training instances is made

available at once. The classi�cation accuracy is statistically indistinguishable

[26] from that of C4.5 [20], which is widely considered one of the leading

decision tree algorithms.

Each decision node in ITI de�nes a cut point of a tested numeric vari-

able, or a comparison of a symbolic variable. Each numeric decision node

maintains a sorted list of all values of that variable encountered in the in-

stances. Each of these values is tagged by the corresponding class label(s).

For each pair of adjacent values of di�erent classes, the midpoint of the two

values de�nes a possible cut point. The legal cut points and the merit of

each one can be computed e�ciently during a single pass over the sorted list

of tagged values. Similarly, each symbolic decision node keeps track of how

many instances of each value of the respective variable are encountered.

When a new training instance is added, it works its way down the tree

until it ends up in a leaf, storing its values of the variables tested at each

decision node along the way. If the leaf has the correct class label, then the

instance is simply added to the leaf node. Otherwise, this node is turned

into a decision node that classi�es all instances already stored here plus the

new one correctly.

Then, each decision node encountered by this training instance is revisited

for the purpose of making sure that the \best test" is installed at each node,

according to some metric. This can be computed from the information stored

at each decision node and its children. Proceeding from root to leaf ensures

that the resulting tree is optimal with respect to the given metric.

One drawback of univariate decision trees like ITI is that decision bound-

aries best described by functions of multiple features must be approximated

by multiple univariate decisions. Nevertheless, for ITL, the computational

e�ciency of ITI (in terms of tree revision and instance classi�cation) and

relatively good generalization properties make it an excellent system. It

achieves a very quick feedback loop, consisting of receiving a new training

instance, updating the classi�er, and reclassifying the image. This allows ITI

to function in close to real time, ensuring the e�ectiveness of the human in

the loop.

1

Note however that in this application the �nal decision tree will generally depend on

the order in which the user supplied the training instances, since their selection by the

user depends on the feedback received from the classi�er.

6

To maximize the utility to the user, pixels near the location of the lat-

est training pixel are (re)classi�ed �rst and displayed by our graphic user

interface. Note that this does not involve any distance computations, since

the distances are implicitly given by the location of the pixels in the image.

The user can select new training pixels at any time, without waiting for the

classi�cation process to complete, which facilitates very rapid training even

on large images.

3 Qualitative Examples

This section walks through an example session. The initial training image

is the one shown in Figure 10. The goal is to learn to classify pixels as one

of sky, roof, brick, or foliage. Pixels that belong to another region

type, e.g. pavement, are not of interest. In this example, none of these

pixels will be labeled by the teacher, and will therefore never serve as a

training instance. Six features are used, which are the raw red/green/blue

measurements of a pixel, and the variances of each in a 3�3 window centered

around that pixel. Each mouse click of the teacher produces a 3� 3 square

of training instances of a speci�c class that are used to update the learner's

decision tree. Immediately, the Learner begins to reclassify the image using

the updated tree. Figure 11 shows various intermediate stages of training

performed on a subimage.

When the teacher points to a pixel and labels it as a training instance,

the eight adjoining pixels are also included as well, producing a total of nine

training instances per click. Thus, the teacher clicks on a 3�3 `square' rather

than a pixel, and nine training pixels are produced at once. The discussion

below is in terms of clicking on a `square', which is a simple way of saying

that one clicks a 3� 3 set of pixels.

Figure 11b shows the classi�cation result after labeling just one square

of each of two classes, sky and roof. The sky is already almost perfectly

separated from the rest of the image. In Figures 11c and d, one square of

each of the remaining two classes is added. While the addition of brick (c)

again results in good generalization, things become more complicated when a

sample of the foliage class is added (d). This occurs in this image because

foliage and roof are mainly characterized by large variances within the

RGB intensities rather than the colors themselves, and thus hard to separate.

The image in Figure 11i contains several contradictory training instances

7

that belong to di�erent classes (foliage and roof) but are characterized

by identical feature vectors (RGB values and variances). Thus, they are

indistinguishable using the given feature set, which is not surprising | even

for a human, many low-contrast textured areas in roof and foliage are di�cult

to discern. Consequently, perfect classi�cation is not achievable given these

features, and classi�er training is stopped at this point.

The results of Figure 11i on the entire image are shown in Figure 12a.

Note that many areas outside the trained subimage are poorly classi�ed. For

example, large parts of the left of the house and the brick wall are labeled

as roof, and most of the bush on the right is labeled as brick. However,

very little additional training is needed to eliminate most misclassi�cations

in all parts of the image, as shown in Figure 12b. This is a huge gain over

exhaustive o�-line labeling. In a typical application involving training on

multiple images, only the �rst image will require substantial training. On

subsequent images, the amount of training required will generally decline as

illustrated here (see also Section 5.1).

Figure 13a shows an enlarged subimage of Figure 12b. Note that the

lower part of the chimney is surrounded by a border belonging to the roof

class, which is clearly a misclassi�cation. This is because the system has

learned that the roof is mainly characterized by its variance; therefore many

cluttered and contrasted areas are classi�ed as roof. However, after training

on just one incorrect square of the sky class as shown in Figure 13b, almost

all of the border around the chimney becomes classi�ed correctly. In the

same way, other misclassi�cations can be corrected, as long as the features are

su�ciently discriminant. This process is signi�cantly faster than exhaustively

applying the correct labels by hand.

How well does the system work? In terms of accuracy and e�cient pro-

duction of well chosen training instances, the system performs very nicely.

Because the tree generalizes well, it is not necessary to make a large number

of corrections. The error-driven point-click loop can be very productive. It is

much more satisfying to build a pixel classi�cation component by correcting

its mistakes than it is to generate large amounts of training data without

knowing which are informative.

In terms of computational e�ciency, ITI produced small trees that were

highly e�cient classi�ers. The learner classi�es a small image of about 200�

200 = 40; 000 pixels in a few seconds. This rate is linear in the number of

pixels in an image, and largely independent of the number of features (if they

are pre-computed o�-line).

8

In the examples above, a mouse-click by the teacher generated nine train-

ing instances (the pixels in a 3 by 3 square region). If these squares are bigger,

fewer mouse-clicks will generally be needed unless the covered regions are very

uniform. On the other hand, the learner will spend more time processing that

many more training instances. This issue of how many training examples to

generate per mouse click will be discussed in more detail in Section 4.

While learning is very fast in the early stages of training, the later stages

usually involve much re�nement. As errors are corrected in one part of the

image, others appear in di�erent locations. This usually goes on for some

number of iterations. On the other hand, inspection of the decision tree will

reveal when contradictory training instances indicate that the discriminatory

power of the features is reached. This is the case when impure leaves occur,

i.e. leaves which contain training examples which do not all belong to the

same class.

By choosing appropriate training examples, one can, to some extent, bias

the classi�er to avoid certain types of errors while tolerating others. For

example, in the illustrations above it was not possible to separate roof

from foliage completely. If the teacher were more concerned about correct

classi�cation of the roof than the tree, he could give the learner more training

examples of roof which would increase the accuracy on roof at the expense

of more misclassi�cations of pixels belonging to the tree as roof.

4 Quantitative Results

We now compare the performance of our ITL classi�er with a previously

published classi�cation result by Wang et al. [27]. We chose this example

because it uses state-of-the-art techniques, the task is realistic, and their

data include ground truth.

Wang et al. considered a monochromatic aerial image (1,936,789 pixels)

of a rural area in Ft. Hood, Texas (Figure 14a). The goal was to build a pixel

classi�er to recognize the four terrain classes bare ground (road, river bed),

foliage (trees, shrubs), grass, and shadow. Their most e�ective feature

set consisted of 12 co-occurrence features (angular second moment, contrast,

and entropy at four angular orientations each [13]), four three-dimensional

features [27], and the gray value. The co-occurrence features employed have

previously been claimed to be highly e�ective for classi�cation [6, 9, 18, 28].

The 3D features are generated during stereo processing of a calibrated image

9

pair [23] and were recently shown to be highly discriminative in this task

[27]. The Foley-Sammon Transform (FST [11]) was employed as a classi�er.

FST is a linear discriminant method that is considered e�ective [16, 28].

As a training set, Wang et al. used four homogeneous square regions of

di�erent sizes: 99�99 (foliage), 75�75 (grass), 37�37 (bare ground),

and 11�11 (shadow). This was one of their best training sets found after

extensive experimentation. The 16916 training pixels constitute less than

1% of the entire image. Ground truth was generated by hand. The achieved

classi�cation accuracy was 83.4% [27].

To provide a baseline of the performance of ITI with respect to FST on

this task, we ran ITI in conventional batch mode on the same input data

as described above, using the full training set of 16916 pixels. ITI achieved

a classi�cation accuracy of 86.3% (86.4% using ITI's pruning mechanism),

outperforming FST.

We then trained various classi�ers interactively on these data using ITL.

The intermediate decision trees resulting from each mouse click were saved

and subsequently used to generate performance curves. The training sessions

di�ered in the number of training examples generated by each mouse click.

We will discuss cases where each mouse click generated either 1, 9, or 61

training pixels (arranged roughly in the shape of a circular disc centered at

the mouse pointer), and one case where the user applied broad strokes to

\paint" larger areas with training pixels, thus generating a variable number

of training examples per interaction (about 1000 on average).

Figure 3 shows learning curves for example sessions of 1 and 9 training

pixels per mouse click. Good classi�cation accuracy was achieved after very

few mouse clicks. For the cases of 61 pixels per mouse click and the \paint"

mode, learning curves are depicted in Figure 4. Our initial results indi-

cate that higher accuracy can be achieved sooner if more training pixels are

supplied per user interaction. On the downside, the classi�cation algorithm

needs to keep around this increasing number of training examples if they are

not to be unlearned (which is the case here). This sets a limit to the number

of training examples that can be managed fast enough for productive user

interaction. Because of this limit, the \paint" mode learning curve shown in

Figure 4 was discontinued after 16 user interactions.

None of the interactively generated classi�ers quite reached or exceeded

the accuracy of the batch-generated ITI classi�er using Wang et al.'s training

set of 16916 pixels. This shows that continued training should yield further

improvement in the long run. In the light of the \paint" mode run which

10

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of mouse clicks

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

batch trained ITI classifier
squares of 9 training pixels
single training pixels
random training pixels (avg)

Figure 3: Learning curves obtained during interactive training of a classi�er.

Each mouse click generated either a 3 � 3 square of training pixels, or a

single training pixel. The ITI batch classi�er trained on Wang et al.'s 16916

training pixels and an average of 100 runs with randomly selected training

pixels are also shown. For the latter curve, each training pixel was picked

from each class with equal probability as a human might do, even if a class

is rare.

11

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of mouse clicks

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

batch trained ITI classifier
squares of 9 training pixels
circles of 61 training pixels
large sweeps of training pixels

Figure 4: Learning curves obtained during interactive training of a classi�er.

In one case, each user interaction consisted of a single mouse click generating

a patch of 61 training pixels; in another case, the user applied broad strokes

generating large numbers of training pixels at once. The �rst section of the

9-pixel curve from Figure 3 is reproduced here for comparison; recall that it

attained its maximum at 30 mouse clicks.

12

resulted in a similar number of training instances (15497 at the end of the

run), it also gives evidence that Wang et al.'s training data were carefully

selected for high accuracy.

However, one must bear in mind that the evaluation is done on a single

image which was used for both training and testing. Continuing to select

training instances from this image will presumably lead to a very specialized

classi�er with poor generalization properties for other images. This is likely

to be the case with the preselected training set. We have not been able to

verify this presumption for lack of suitable classi�cation data with ground

truth. We shall discuss a related experiment below in Section 5.1.

This specialization/generalization conict is well illustrated by a brief

analysis of some of the resulting decision trees. Table 1 shows that batch

training on the large preselected training set produced a large tree which

employed nearly all available features, even after pruning. In comparison,

the interactively trained classi�ers were all very small, with the exception of

the \paint" mode run, and used only small subsets of the available features,

at very little loss in classi�cation accuracy (see also Figure 14). Undoubtedly

the complex trees achieved a marginally greater accuracy by accounting for

a large number of exceptions that cannot be expected to generalize to other

(similar) images. Therefore it would be better to ignore these exceptions

during training. In contrast, the simple classi�ers achieved good results be-

cause their very few training pixels were selected in an informed manner.

Pruning of the batch-generated classi�er managed to cut the number of tree

nodes in half, but the the resulting tree is still much larger than the smaller

interactively trained classi�ers, while only marginally more accurate.

interactive batch

full, pruned full, pruned

pixels / click: 1 9 61 \paint"

mouse clicks: 19 30 12 11

training instances: 19 270 732 11394 16916

% correct: 84.0 85.1 84.8 85.7 85.7 86.3 86.4

tree nodes: 9 25 13 79 73 143 71

features used (of 17): 3 7 5 15 15 15 15

Table 1: Summary of classi�cation results using ITI.

In all of our experiments where few (one or nine) training pixels were

13

generated per mouse click, ITI's pruning algorithm left the decision trees

unchanged. This is in agreement with our intuition that the training exam-

ples are selected because they are informative and, by choice of the user,

typical representatives of their class. On the other hand, if larger numbers of

training pixels are selected at each user interaction, redundant and atypical

examples are inadvertently included. This leads to larger decision trees, and

pruning becomes an issue. We found that in the 61-pixel and \paint" modes,

pruning began to take e�ect in cutting down the size of the trees (Figure 5).

However, the classi�cation accuracy was in no case noticeably a�ected by

pruning.

0 5 10 15 20
0

50

100

150

200

250

Number of mouse clicks

T
re

e
si

ze
 (

no

de
s)

batch trained ITI classifier
circles of 61 training pixels
"paint" mode

Figure 5: Decision tree sizes during interactive training. The upper curve of

a corresponding pair of curves shows the fully grown tree, whereas the lower

curve shows its pruned version.

Figure 5 shows how the decision trees, pruned and unpruned, change in

size during these two training sessions. As just discussed, pruning starts to

have a noticeable e�ect when the number of training examples grows large.

A comparison of the \paint"-mode classi�er with the batch-trained classi�er

is interesting: After 11 user interactions, both classi�ers are about equally

accurate (Table 1). At this point, they have seen a comparable number of

14

training examples (11394 vs. 16916), and the pruned versions of their trees

are of about the same size. However, in contrast to the batch trained tree, the

unpruned version of the interactively trained tree is only marginally larger

than the pruned one. The presumed reason is that this classi�er was trained

on examples which were carefully chosen to be informative and represen-

tative. As training is continued even further, an increasing number of less

typical examples is introduced because those are the ones that are left mis-

classi�ed. Consequently, the sizes of the pruned and unpruned trees diverge,

yet their accuracy ceases to increase.

The preceding paragraphs emphasized the importance of informative train-

ing examples. For comparison with uninformed selection of training pixels,

Figure 3 includes a learning curve of a classi�er trained by randomly selected

training pixels, regardless of whether a newly chosen training pixel is misclas-

si�ed by the current classi�er. This curve rises much more slowly than the

interactively built classi�ers. Clearly, informed selection of training examples

can facilitate the rapid construction of simple decision tree classi�ers.

It is also interesting to note that there is a component of human skill in

selecting useful training examples. Figure 6 depicts a learning curve created

by selecting training pixels at random from among currently misclassi�ed

pixels only. This implies that each new training pixel alters the classi�er

and is therefore informative according to our de�nition. In fact, this learn-

ing curve rises somewhat faster than if pixels are selected purely at random.

However, it still does not even come close to a learning curve trained by a

human teacher. At some point { after about 40 training pixels { the curves

cross. (Even though there is much variability in the random learning curves,

this phenomenon is statistically signi�cant.) A plausible explanation for this

is that after this point, most \typical" representatives of a class are already

classi�ed correctly, and forcing the algorithm to select a currently misclas-

si�ed pixel causes overspecialization by including atypical \exceptions" into

the tree.

This explanation carries over to the interactively trained classi�ers. Note

in Figures 3 and 4 that after a certain number of user interactions, the accu-

racy ceases to increase or even decreases with further training. We suggest

that this is probably signi�cant and is due to the fact that since the user will

predominantly select training examples from among currently misclassi�ed

pixels, an increasing number of atypical examples will be selected.

15

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of training pixels

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Any random training pixels
Misclassified random training pixels

Figure 6: Learning curves for incrementally trained classi�ers using randomly

selected training pixels. Each curve represents an average of 100 individual

runs. The dash-dotted curve is identical to the one shown in Figure 3. The

95% con�dence intervals are around 0.02, the standard deviations around

0.1.

16

5 Discussion and Future Work

The results presented in the preceding section suggest that incremental selec-

tion of informative training instances has great potential to create small de-

cision trees from relatively few training examples. The availability of ground

truth permitted monitoring of the training process and the selection of the

best classi�er. In most applications of pixel classi�ers, ground truth is not

available and must be manually prepared for the training of classi�ers. As

mentioned in the Introduction, the reduction of this expensive process was

one of the motivations for our interactive approach. Without ground truth

available, it is not straightforward to monitor the training process and eval-

uate classi�cation accuracy as described in the previous section. Therefore,

applications requiring accurate assessment of classi�er performance on large

amounts of test data do not take full advantage of the ITL approach, unless

ground truth data are already available | but this is true of any classi�er.

The advantages of ITL come fully into play when quick classi�cation results

are desired, and subjective visual assessment of classi�cation accuracy is suf-

�cient. In such situations, the cost associated with classi�er construction is

greatly reduced because ground truth only needs to be speci�ed for a small

number of training instances.

An open issue is when to stop training. The results discussed above

indicated that the best performing classi�ers are obtained in early stages of

training, before over�tting becomes an issue, and that with much further

training the overall accuracy begins to deteriorate. Unfortunately, detecting

this requires the availability of ground truth. In the preceding section, we

identi�ed several related cues to the issues associated with over�tting that do

not rely on ground truth. For example, by monitoring the behavior of various

classi�er characteristics such as tree growth rate, the occurrence of impure

leaves, the impact of pruning on various tree characteristics, or the number

of pixels that change their class label as a result of applying an additional

set of training examples, it should be possible to derive a recommendation

of when to stop training. This problem deserves further investigation.

The present discussion has been centered at the intuitive notion of the

user training the classi�er by correcting its mistakes. Here, training pixels

are selected from among currently misclassi�ed pixels. However, ITI may

also alter a decision tree in response to a training pixel that is currently

classi�ed correctly. This may increase or decrease the overall accuracy of

the classi�er. It may well be that such training pixels are required in order

17

to exceed the baseline performance of the batch-trained ITI classi�er in the

previous section. This issue has not been investigated yet. It is unclear how

to select \good" training instances that are not currently misclassi�ed.

This error-correcting training paradigm also raises a theoretical question

in pattern classi�cation: Classi�ers usually make the assumption that train-

ing and test instances are drawn from the same distribution. This is generally

not true if training examples are selected in the way we propose: Training

pixels are not randomly chosen from the population of pixels in an image.

On the other hand, since the user will select training examples with the aim

to improve overall performance, it may be that with continuing training the

distribution of training pixels will begin to resemble a random sample of the

population of image pixels. We do not know how serious this discrepancy is,

and what its implications on the training process are. This is a subject of

future study.

Together with a suitable user interface, the ITL framework achieves very

fast turnaround times between labeling training pixels and feedback from

the updated classi�er. According to our experience, the constraining factor

now is the ability of the user to discern how individual pixels should be

labeled. This is a matter of visualization. To aid the user, we are currently

experimenting with animated 3-D y-through visualization, which provides

the user with terrain relief in addition to color information.

We have already indicated several open questions introduced by the ITL

paradigm. To give a avor of the variety of novel possibilities opened up by

ITL, we will now discuss two examples of our current work in some detail.

5.1 Sequential Training on a Set of Images

In many applications, one wants to consider a set of training images in se-

quence, without going back to images considered earlier. For example, to

classify a video stream, one would train a classi�er on one frame at a time,

one after the other. The ITL framework suggests itself as a useful tool for

such a purpose, since it allows the user to supply training instances one at

a time, correcting errors and re�ning the classi�er. When classi�er perfor-

mance is satisfactory on one frame, the next frame is displayed, and training

resumes. For reasonably constrained video data, we expect the training pro-

cess to converge in the sense that as more frames are processed, the amount

of training required on a frame will decrease. In the limit, no corrections are

necessary at all, and the classi�er can run stand-alone.

18

For lack of appropriate video data with ground truth, we did a preliminary

experiment using the same dataset as in Section 4. Here, the large image

was split into 10 subimages of size 400� 400 which we shu�ed to obtain a

sequence. Since all of the subimages stem from the same image, they are

likely to be more similar than images from a real sequence. On the other

hand, local terrain characteristics vary enough across the large spatial extent

to demonstrate our point.

A classi�er was then interactively trained on one subimage at a time:

Initially, the Learner knows nothing, i.e. the classi�er is empty. Each mouse

click creates a single training instance. The learner receives it, updates its

classi�er, and begins to reclassify the current image. As soon as the Teacher

observes misclassi�cations, she/he can choose to provide another training

example. This procedure is repeated until the Teacher is satis�ed with the

Learner's performance. Then, training continues with the next subimage.

For later analysis of the training process, each decision tree updated as

the result of a mouse click was saved to a �le. At the end of the session,

the saved decision trees were used o�-line to evaluate the accuracy of the

decision tree after each mouse click by comparing the classi�cation results

on the entire image with Wang et al.'s ground truth data. The results for

two separate training sessions (using di�erent subimage permutations) are

plotted in Figure 7.

In both cases, excellent classi�er accuracy was achieved after very few

mouse clicks. Most training was performed on the �rst few images. In

subsequent images, little or no corrections were necessary. Furthermore, the

amount of change in the learning curve introduced by the application of a

single training pixel decreases with training, as expected. Both observations

indicate well-behaved convergence of this incremental training procedure.

This needs to be con�rmed on actual video image sequences.

However, the accuracy did not increase monotonically, and training on

an atypical subimage can decrease the overall accuracy. This is the case for

one particular subimage which appears as #6 in Sequence 1 and as #2 in

Sequence 2. Notice in Figure 7 that this subimage is the only one where

training did not result in a local improvement of the full image classi�cation

accuracy.

Table 2 summarizes some qualities of the best and last classi�ers obtained

during these two training sessions. Like in the previous section (cf. Table 1),

the decision trees were very small yet accurate.

19

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of training instances

F
ul

l i
m

ag
e

cl
as

si
fic

at
io

n
ac

cu
ra

cy

2 3 4 5 6 7

2 3 8

Sequence 1
Sequence 2

Figure 7: Classi�er behavior during interactive training. The �rst part of

each curve corresponds to the initial training, which is done on image 1

within each sequence. The numbers next to the graph mark new training

images: Digit k next to a curve indicates that the user switched to subimage

k prior to selecting this training instance. In Sequence 1 (top digits), no

training instances were supplied for subimages 8{10; in Sequence 2 (bottom

digits), none were supplied for subimages 4{7 and 9{10.

Sequence 1 Sequence 2

Classi�er: best �nal best �nal

Training instances: 14 32 22 31

% correct: 85.6 82.8 85.2 85.0

tree nodes: 9 17 13 15

features used (of 17): 4 7 4 5

Table 2: Summary of classi�cation results after training on two image

streams. In both sequences, the best classi�er was attained during train-

ing on the second image in the sequence (cf. Figure 7).

20

5.2 Recognition of Simple Objects

Beyond the traditional classi�cation problem described so far, our interactive

method opens up additional possibilities. For example, we have introduced

the concept of hierarchical classi�cation [19]. The idea is that classi�cation

can be applied to the labels produced by lower-level classi�ers. The classi-

�ers are trained from the bottom up: First, an ordinary pixel classi�er c

1

is

trained, and produces a label image C

1

. Then, a classi�er c

2

is trained to

classify C

1

to produce C

2

(Figure 8). In general, a classi�er c

n

is trained

on any features computed of classi�cation results output by any lower-level

classi�er. This is useful, for example, to extract spatial information from an

image.

We obtained initial results on a task involving the recognition of black-

back sea gulls on aerial photographs (Figure 15). On these images, the gulls

are characterized by the adjacency of black and white blobs of characteristic

sizes. Thus, the c

1

classi�er is trained to label the appropriate black and

white areas, such that the proportion of false negatives is small, even at the

expense of many false positives. Then, a c

2

classi�er is trained to recognize

adjacent black and white blobs of the right sizes.

An example result [19] is shown in Figure 9. Here, the base level classi�er

c

1

employed commonly used color-based and statistical texture features. The

c

2

classi�er operated on two types of features computed on C

1

, both of which

consider a window centered at the pixel in question:

� The adjacency feature counts the numbers of occurrences of two given

class labels, and returns their product. This returns a large value if

and only if both labels are abundantly present near the current pixel.

� The clutter feature counts the number of vertical and horizontal label

discontinuities between adjacent pixels. This returns small values only

for rather uniformly classi�ed regions.

Note that the window must be somewhat larger than the size of the structure

sought after, since the maximum value returned by a feature is bounded by

this window size.

In our example, the most important feature turned out to be an adjacency

feature that returned the product of the numbers of pixels labeled by c

1

as

\black" and \white" within a 5�5 window. This intuitively expresses the

fact that, for our purposes, gulls are composed of black backs and white

heads.

21

c
f

2

2
2

f1

f3
3

1

f2 c

1

2

1

f
F

F

F

F

F

C

C

AImage 1

Figure 8: The concept of hierarchical classi�cation: The output of one clas-

si�cation system serves as the input to another one. This can in principle be

extended to any number of hierarchies. The feature extractors f typically

di�er from level to level, and generate feature planes F . A unique classi�er

c is trained at each level, generating a label image C, which is one of the

inputs at the next level.

Many other nonstandard features in the hierarchy of classi�ers are possi-

ble. Besides spatial relationships, they may express a variety of other char-

acteristics. For instance, we are experimenting with features expressing the

con�dence in labels assigned at lower hierarchies.

We believe that this is only the tip of the iceberg of applications of interac-

tive image classi�cation. Many of these concepts are currently being applied

in a large-scale environmental monitoring project in cooperation with the

Department of Forestry of Wildlife Management at the University of Mas-

sachusetts at Amherst, which attempts to reproduce, extend, and simplify

existing work in ground use mapping [24].

6 Conclusion

We have demonstrated a new interactive methodology for training of pixel

classi�ers. It is a very e�ective tool for selecting few but informative training

instances, which helps reduce human labor and produces simple and accurate

classi�ers, while reducing the over�tting problem. These �ndings need to

be further evaluated on more data. We also indicated further perspectives

22

C

1

C

2

T

r

a

i

n

i

n

g

I

m

a

g

e

l

i

g

h

t

-

g

u

l

l

d

a

r

k

-

g

u

l

l

n

o

t

-

g

u

l

l

g

u

l

l

n

o

t

-

g

u

l

l

T

e

s

t

I

m

a

g

e

Figure 9: Results of hierarchical classi�cation for black-back seagull localiza-

tion (cf. Figure 15). Shown are the label images C

1

and C

2

for the disjoint

training and test images. After cleaning up the C

2

results shown using a

straightforward morphological opening operation, all gulls are found in both

images with no false positives.

23

opened up by the ITL paradigm. We believe that the seagull detection

example barely scratches the surface of potential applications of hierarchical

classi�cation. This is an area of continuing research in our laboratory.

Real-time feedback provided through a suitable user interface allows rapid

training, on the order of a few minutes in our realistic examples. The e�-

ciency of the feedback loop is not limited by the size of the training image.

To build interactive learning systems that update their parameters in

real time, incremental learning algorithms are bene�cial. The ITI classi�er

was chosen because of its capability to incorporate training instances incre-

mentally, and because of the implicit feature selection property of decision

trees. While it works well in our applications, more experiments with this

and other classi�cation algorithms will be performed on more complex tasks.

Fast incremental learning algorithms are an open area of research with many

potential applications for interactive learning systems.

Acknowledgments

The sample implementation makes use of the o�cial ITI distribution which

is accessible over the Internet at http://www-ml.cs.umass.edu/iti/. We

thank X. Wang for providing the feature �les and ground truth data for the

Ft. Hood imagery. This research has been supported in part by the Ad-

vanced Research Projects Agency (via Army Research Labs) under contracts

DAAL02-91-K-0047 and DACA76-97-K-0005, by the Army Research O�ce

(via ARL) under grant number DAAG55-97-1-0026, by the National Science

Foundation under grants IRI-9222766 and EIA-9726401, and by the National

Fish and Wildlife Foundation under project #98-089. We would also like to

thank two anonymous reviewers for their thoughtful comments that helped

improve the paper.

References

[1] M. Blume and D. R. Ballard, \Image annotation based on learning vec-

tor quantization and localized Haar wavelet transform features," Proc.

SPIE 3077 181{190, 1997.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classi�cation

and regression trees, Wadsworth&Brooks, Paci�c Grove, CA, 1984.

24

[3] N. W. Campbell, W. P. J. Mackeown, B. T. Thomas, and T. Troscianko,

\Interpreting image databases by region classi�cation," Pattern Recog-

nition 30 555{563, April 1997.

[4] G. A. Carpenter, M. N. Gjaja, S. Gopal, and C. E. Woodcock, \ART

neural networks for remote sensing: vegetation classi�cation from Land-

sat TM and terrain data," IEEE Trans. Geoscience and Remote Sensing

35 308{325, March 1997.

[5] J. R. Carr, \Spectral and textural classi�cation of single and multiple

band digital images," Computers & Geosciences 22 849{865, October

1996.

[6] R. Conners and C. Harlow, \A theoretical comparison of texture algo-

rithms," IEEE Trans. Pattern Anal. Machine Intell. 2 204{222, 1980.

[7] S. L. Crawford, \Extensions to the CART algorithm," Int. J. Man-

Machine Studies 31 197{217, 1989.

[8] P. A. Devijver and J. Kittler, Pattern recognition: a statistical approach,

Prentice-Hall, Englewood Cli�s, 1982.

[9] J. du Buf, M. Kardan, and M. Spann, \Texture feature performance for

image segmentation," Pattern Recognition 23 291{309, 1990.

[10] J. J. Ferri, P. Pudil, M. Hatef, and J. Kittler, \Comparative study of

techniques for large-scale feature selection," in Pattern Recognition in

Practice IV, eds. E. S. Gelsema and L. N. Kanal, Elsevier Science B.V.,

1994, pp. 403{413.

[11] J. D. Foley and J. Sammon, Jr., \An optimal set of discriminant vec-

tors," IEEE Trans. on Computers 24 281{289, 1975.

[12] W. Hafner and O. Munkelt, \Using color for detecting persons in image

sequences," Pattern Recognition and Image Analysis 7 47{52, 1997.

[13] R. Haralick, K. Shanmugam, and I. Dinstein, \Textural features for

image classi�cation," IEEE Trans. Systems, Man, and Cybernetics 3

610{621, 1973.

25

[14] M.-P. D. Jolly and A. Gupta, \Color and texture fusion: application to

aerial image segmentation and GIS updating," in IEEE Workshop on

Applications of Computer Vision, 1996, pp. 2{7.

[15] D. Langer and T. Jochem, \Fusing radar and vision for detecting, clas-

sifying and avoiding roadway obstacles," in Proc. IEEE Intelligent Ve-

hicles Symposium, September 1996, pp. 333{338.

[16] K. Liu, Y. Cheng, and J. Yang, \Algebraic feature extraction for im-

age recognition based on an optimal discriminant criterion," Pattern

Recognition 26 903{911, 1993.

[17] B. C. Lovell and A. P. Bradley, \The multiscale classi�er," IEEE Trans.

Pattern Anal. Machine Intell. 18 124{137, 1996.

[18] P. Ohanian and R. Dubes, \Performance evaluation for four classes of

textural features," Pattern Recognition 25 819{833, 1992.

[19] J. H. Piater, E. M. Riseman, and P. E. Utgo�, \Interactive training of

pixel classi�ers opens new possibilities," in ISPRS ComIII Symposium

on Object Recognition and Scene Classi�cation from Multispectral and

Multisensor Pixels, Columbus, OH, July 1998, International Archives of

Photogrammetry and Remote Sensing.

[20] J. R. Quinlan, Programs for machine learning, Morgan Kaufmann, 1993.

[21] S. Salzberg, A. Delcher, D. Heath, and S. Kasif, \Best-case results for

nearest-neighbor learning," IEEE Trans. Pattern Anal. Machine Intell.

17 599{608, June 1995.

[22] J. C. Schlimmer and D. Fisher, \A case study of incremental concept

induction," in Proc. Fifth Nat. Conf. on Arti�cial Intelligence, Morgan

Kaufmann, Philadelphia, PA, 1986, pp. 496{501.

[23] H. Schultz, \Terrain reconstruction from widely separated images,"

Proc. SPIE 2486 113{123, 1995.

[24] D. M. Slaymaker, K. M. L. Jones, C. R. Gri�n, and J. T. Finn, \Map-

ping deciduous forests in southern New England using aerial videogra-

phy and hyperclustered multi-temporal Landsat TM imagery," in Gap

Analysis, A Landscape Approach to Biodiversity Planning, American

26

Society for Photogrammetry and Remote Sensing, Bethesda, Maryland,

pp. 87{101 and 308{312, 1996.

[25] P. E. Utgo�, \An improved algorithm for incremental induction of deci-

sion trees," in Machine Learning: Proc. 11th Int. Conf., Morgan Kauf-

mann, 1994, pp. 318{325.

[26] P. E. Utgo�, N. C. Berkman, and J. A. Clouse, \Decision tree induc-

tion based on e�cient tree restructuring," Machine Learning 29 5{44,

October 1997.

[27] X. Wang, F. Stolle, H. Schultz, E. M. Riseman, and A. R. Hanson,

\Using three-dimensional features to improve terrain classi�cation," in

Proc. Computer Vision and Pattern Recognition, June 1997, pp. 915{

920.

[28] J. Weszka, C. Dyer, and A. Rosenfeld, \A comparative study of texture

measures for terrain classi�cation," IEEE Trans. Systems, Man, and

Cybernetics 6 269{285, 1976.

27

Figure 10: Example image (515 by 346 pixels)

28

a b c

d e f

g h i

Figure 11: An example training session on a subimage (112 by 115 pixels)

of Figure 10. Image (a) shows the original image. In the following images,

the class labels are represented by mnemonic (but otherwise meaningless)

colors: sky blue, roof red, brick yellow, and foliage green. The tiny

white squares represent 3 � 3 blobs of training instances provided by the

Teacher's mouse clicks. Images (b){(d) show the results after adding one set

of training instances for each class, and (e){(i) are snapshots during some

re�ning.

29

a

b

Figure 12: Results on the entire image (Fig. 10): (a) using the classi�er from

Figure 11i, (b) after adding a few additional squares of training instances.

Note that the tree trunk was labeled as foliage, and that several areas were

ignored during training, e.g. the windows and the pavement.

a b

Figure 13: Generalization example. The border of misclassi�ed pixels around

the chimney (a) is almost entirely removed by adding one training square of

the sky class (b).

30

a

 ��

b c

Figure 14: Ft. Hood scene (a, 1803� 1591 pixels) and classi�cation results

using ITI, overlaid on the gray scale image: (b) Batch training on the same

training set as in Wang et al.; (c) interactive incremental training. The class

label of a pixel is visualized by generating a false color, where the hue corre-

sponds to the class, and the intensity corresponds to the gray scale intensity

of the underlying image. No classi�cation results are provided for the training

pixels, which in image b appear as gray squares. The two classi�cation re-

sults are very similar; di�erences mainly occur in regions that are ambiguous

even to a human.

31

Figure 15: Aerial photographs showing sections of an island o� the coast of

Maine. Yellow circles indicate black-back seagulls. The left image (275�258

pixels) was used as a training image, the right one (405�328 pixels) as a

disjoint test image. One gull is shown enlarged to reveal its white head

(right), white tail (left) and black back (center).

32

