
Learning Real-Time Stereo Vergence Control

Justus H. Piater, Roderic A. Grupen, Krithi Ramamritham
Computer Science Department

University of Massachusetts, Amherst, MA, 01003, USA

E-mail:fpiaterjgrupenjkrithig@cs.umass.edu

Abstract

On-line learning robotic systems have many desirable prop-
erties. This work contributes a reinforcement learning
framework for learning a time-constrained closed-loop con-
trol policy. The task is to verge the two cameras of a stereo
vision system to foveate on the same world feature, within a
limited number of perception-action cycles. On-line learn-
ing is beneficial in at least the following ways: (1) The con-
trol parameters are optimized with respect to the character-
istics of the environment actually encountered during oper-
ation; (2) visual feedback contributes to the choice of the
best control action at every step in a multi-step control pol-
icy; (3) no initial calibration or explicit modeling of system
parameters is required; (4) the system can be made to adapt
to non-stationary environments. Our vergence system pro-
vides a running estimate of the resulting verge quality that
can be exploited by a real-time scheduler. It is shown to
perform superior to two hand-calibrated vergence policies.

1. Introduction

Much research effort is currently expended on adaptive
robotic systems that can receive abstract task specifications,
and are capable of learning the detailed actions required to
perform these tasks. There are many motivations for such
machine learning approaches, such as the difficulties of con-
trolling a large number of degrees of freedom [6], or a non-
stationary and partially observable environment [7]. Un-
der such circumstances, the best reported results are often
achieved using learning techniques.

The majority of current robot learning research addresses
relatively complex high-level tasks. This paper addresses
the low-level problem of controlling a single-DOF manipu-
lator under real-time constraints, using visual feedback. The
term “real time” denotes the requirement that the resource
requirements and performance of a system are determinis-
tic [11]. Applied to robotic control, this may mean, for in-
stance, that the functional relationship between speed and

This work was supported in part by the NSF under grants CDA-9703217
and IRI-9704530, and by DARPA/AFOSR and AFRL/IFTD under Con-
tracts F49620-97-1-0485 and F30602-97-2-0032.

accuracy of a manipulator is precisely known. Since a ma-
nipulator as a physical system is subject to various distur-
bances that arise in the real world, the objective of deter-
minism cannot strictly be attained. Therefore, an alterna-
tive formulation must be found that allows the application of
real-time principles to robotic control. This issue has not re-
ceived much attention, although it seems that there are many
applications that would benefit from real-time scheduling of
resources. Examples include scenarios where robots need to
keep up with an environment whose behavior is not entirely
controlled by the robots, and where resources are shared
among multiple components.

We discuss an application involving an articulated stereo
vision system. The control objective is to verge the cam-
eras such that both image centers display the same world
feature. This task is relatively difficult because the perfor-
mance characteristics of an articulated camera system de-
pend on many intrinsic and extrinsic factors that can hardly
be accounted for by conventional system identification and
calibration techniques. Therefore, we propose a direct learn-
ing approach that finds optimal control parameters for time-
constrained vergence policies, and show that the learned
parameters outperform a hand-calibrated system in a real
environment. While the methods employed are specific to
our image representation and the vergence task, they apply
directly to other closed-loop visuomotor tasks, e.g. track-
ing of moving objects. The general principles of direct
control learning and real-time characterization of a non-
deterministic robotic system are applicable to other low-
level control tasks as well.

The vergence task is described in the following section.
Section 3 discusses the task and its role in a real-time frame-
work. These two sections cover the aspects essential to this
paper. For additional detail the interested reader is referred
to [8]. Section 4 introduces a machine learning setup for
learning time-constrained vergence strategies, whose perfor-
mance characteristics are then analyzed in Section 5.

2. On-Line Binocular Vergence

In this work, vergence involves turning both cameras sym-
metrically such that their image centers display the same

Cyclopean axis

object

optical axis

f

vergence pivot = nodal point
δ

θ

pinhole camera
CCD sensor plane

Figure 1: Symmetric vergence geometry.

Pipeline Video Processor

Host Computer

Motor Controller

image pair

motor commands

pair of foveal
representations vergence adjustment

Figure 2: Simplified structure of the vergence task.

point in the world (Figure 1). Figure 2 depicts the hard-
ware setup. A pair of cameras mounted on a pan/tilt/verge
platform provides live video to the Pipeline Video Proces-
sor. Controlled by the Host Computer, this grabs a pair of
video frames and preprocesses it to reduce the amount of
data. The Host Computer then computes a stereo match on
the compact image representations, and determines an ap-
propriate symmetric vergence adjustment angle��. This
adjustment angle is passed to the Motor Controller, which
computes the joint-space trajectories and motor torques ap-
plied to the camera actuators.

For purposes of image data reduction, we generate a
multi-resolution foveal representation by successively sub-
sampling the image to half the (linear) resolution, and keep-
ing the highest resolution only in the center of the image
[2]. The resulting arrangement of the image is illustrated
in Figure 3. Due to the low resolution in the periphery, lit-
tle information is available for stereo matching between im-
ages. To compensate for this, we do not simply retain a sin-
gle gray value at each location, but a vector of 6 expressive
features obtained by a local convolution with one of 6 ori-
ented Gaussian-derivative filters [9]. The subsampling and
the convolutions are performed well within a frame time on
the pipeline video processor.

The resulting foveal representations of the stereo image
pair are passed to the host computer. Here, a symmetric
column-wise stereo match is performed (Figure 4). The re-
sult is given by the best-matching column pair, which is
characterized as the signed distancep (in full-resolution pix-

Figure 3: Logarithmic subdivision of
an image. Each level is represented as
a 4�4 grid. Each square within each
grid represents a vector of 6 features,
which are the responses of 6 different
oriented Gaussian-derivative filters ap-
plied at this location.

p

Figure 4: Illustration of the symmetric matching process
(here shown for 3 levels of resolution). The shaded areas
indicate one pair of matched columns at the highest reso-
lution. A feature vector is constructed as the concatenation
of all feature vectors associated with all squares at all lev-
els of resolution that overlap the shaded area. The match
score of such a column pair is given by the normalized cross
correlation between the corresponding feature vectors. All
symmetric pairs of columns are matched, as indicated by the
arrows. The result of this match is given by the column pair
with the highest match score.

els) of the column center to the image center. Then, a motor
command is generated to turn the two cameras by an amount
of �� = �(p) so as to bring the best-matching column into
the center of both cameras, i.e. to drivep closer to zero.
The motor command is executed by the motor controller.
On completion, the next image pair is acquired and prepro-
cessed by the video processor. This procedure from image
acquisition to completion of the mechanical adjustment con-
stitutes a fullperception-action cycle. These cycles can be
iterated to increase vergence accuracy.

3. Real-Time Issues

In our real-time scenario, the vergence system is allocated a
fixed number of perception-action cycles for a given verge
trial. The goal of the system is to choose the control actions
at each cycle such that the quality of the resulting verge is
maximized. The number of cycles is determined by an ex-
ternal scheduler, which takes into account other constraints
as well as the required quality of the verge. Hence, the func-
tional relationship between the expected performance of the
vergence system and the number of perception-action cy-
cles must be characterized appropriately. This is done by
forming a probability distribution of the vergence qualities
observed after a given number of cycles.

Since the number of remaining perception-action cycles
is known in advance to the system, it should choose�(p)

depending on this number. For instance, it may prove useful
to apply conservative vergence angle corrections�� in the
presence of noise, if there are additional perception-action
cycles left to bring the cameras fully into their desired posi-
tion. It is not trivial to specify such a�(p) optimally. This
paper contributes a machine learning approach that learns to
maximize the expected vergence accuracy, given the number
of remaining perception-action cycles.

Our vergence task is nonstandard among real-time tasks,
but typical of many robotics tasks in several ways because a
mechanical plant is involved that is subject to perturbations.
Therefore, no hard performance guarantees can be made for
the system. The quality of a verge achievable within a given
amount of time can at best be characterized in probabilistic
terms. For a given verge, this quality is given in terms of the
final magnitude ofjpj remaining after the task is completed.

This quality estimate is the value optimized by the ver-
gence controller. It estimates the accuracy of the achieved
verge, given that the stereo match is correct. It makes no
statement about the reliability of the stereo match underly-
ing the verge. A binary estimate of this reliability is given by
the index of the second best matching columnp

0: A stereo
match is considered reliable if the columns ofp

0 andp are
adjacent. The intuition behind this is that due to the wide
spatial support of the convolution kernels that produce the
features used for matching, a good match should extend over
relatively wide areas.

4. Learning Real-Time Vergence

The central task addressed in this work is the specification of
a function�(p) that maps a column indexp to the vergence
adjustment��. To determine this function is a typical sys-
tem identification problem that can in principle be solved by
calibration techniques (see Section 5). On the other hand, a
�� that is optimal in some appropriate sense may depend on
factors other thanp. For instance, in the presence of mea-
surement noise it may be better to use conservative vergence
adjustments, i.e. undershoot, rather than attempt to foveate
by a single adjustment. This will reduce jerky moves in re-
sponse to outliers. If more than one perception-action cycle
is available, it is still possible to achieve good final accuracy.

The traditional approach employs a closed-loop PD con-
trol model [5]. The gains of such a controller are tuned in
a simulated environment to achieve robust and fast perfor-
mance in the presence of simulated noise. However, one can
do better than that. Note that the match uncertainty arises
from self-similar scenes where several good matches com-
pete, or more commonly, from poorly structured scenes that
do not provide enough information for reliable matching,
or from highly non-stationary scenes that degrade the pre-
dictable relationship between consecutive image pairs be-
fore and after a vergence angle adjustment. If the reliabil-

ity of a particular computation ofp can be estimated,��

should clearly depend on this estimate. Such an estimate is
provided by the indexp0 of the second-best matching pair of
columns, as noted above.

Consequently, a function�(p; p0; s
r

), wheres
r

is the
number of perception-action cycles remaining, should be
superior to a function�(p). It should be less susceptible
to noise, and it can provide a running estimate of the reli-
ability of the achieved result. The function�

f

(p; p

0

; s

r

) is
learned in a reinforcement learning framework, which is de-
scribed below. Reinforcement learning [10] is attractive for
control problems because it allows an agent to learn reac-
tive control policies directly by trial-and-error, and does not
require a-priori specification of control parameters. Rein-
forcement methods have been applied successfully in a va-
riety of robotic tasks [3, 1, 4, 6].

The problem of learning�
f

(p; p

0

; s

r

) is expressed in the
Q-Learning framework [12], which learns values of actions
taken in particular states of a Markov Decision Process. The
value of an actiona taken in a states is denotedQ(s; a).

The state space has three discrete dimensions:jpj (0 is
the center of the visual field),�p which is a binary vari-
able indicating whetherp andp0 are neighbors, ands

r

2

f0; 1; : : : ; 4g, which indicates the number of perception-
action cycles remaining after completion of the current cy-
cle. The total number of cycles was limited to 5 for prag-
matic reasons: Intuitively, the utility of further cycles di-
minishes, and longer policies take longer to learn.

An action consists of issuing a specific reference�� 2

f0:1; 0:2; 0:5; 1; 2; 5g to the vergence controller. The an-
gles are given in degrees. The direction of the movement
is forced to correspond to the sign ofp, i.e. the system is
prevented from diverging when the best matching columns
demand convergence, and vice versa.

Training is done on fixed-length trials, where a trial con-
sists of a given number of perception-action cycles. At the
end of each trial, the accuracy achieved is estimated by ac-
quiring a final image pair and computingp using a stereo
match. Reward is then given byr = �jpj; all within-trial
rewards are zero. At the end of each cycle, theQ-value of
the state at the beginning of the cycle is updated according
to the conventional non-discountingQ-Learning rule

Q

new

(s; a) = Q

old

(s; a) +

�[r +max

a

0

Q

old

(s

0

; a

0

)�Q

old

(s; a)]

wheres0 is the state the system has found itself in after per-
forming actiona in states. TheQ function is represented as
a table, indexed byjpj; �p; s

r

; j��j. This table implicitly rep-
resents the vergence policy: Among all possible vergence
adjustments possible in a states = hjpj; �p; s

r

i, the action
a = �� is selected that maximizesQ(s; a).

During learning, thisgreedypolicy is followed only some
of the time. A fraction of all actions are selected randomly.
This ensures that all actions continue to be selected in all

states, which is a necessary precondition for theQ function
to converge to the optimal one [13]. For on-line learning
systems, this precondition gives rise to the so-called explo-
ration/exploitation conflict (see below): Increasing random
exploration may speed learning, but impairs the utility of the
running system while it is learning.

This learning procedure learns the actions leading to a
camera configuration where the best-matching columns are
in the center of each camera’s field of view (p = 0). If
the viewed scene contains enough information to unambigu-
ously identify the best match, then this implies that the cam-
eras are verged on a common feature in the world. Note that
this is a bootstrapping estimate of the achieved accuracy:
The same procedure is used to adjust vergence angles and to
assess the resulting accuracy. No ground-truth information
about the viewed scene is involved.

Some care was taken to speed up the learning process. To
begin, recall that the remaining lengths

r

of a trial forms part
of the state description. Therefore, the update of aQ-value
for a length-2 trial depends on the value of a length-1 trial.
This structural dependency was exploited by search space
shaping: First, 1000 length-1 trials were run to determine
length-1Q-values to some accuracy. One thousand length-
2 trials followed, exploiting the length-1Q-values already
learned. Next, 1000 length-3 trials were run, etc.

Furthermore, the random noise was assumed to be sta-
tionary. Therefore, for length-1Q(s; a)-values the step size
�was chosen such that all learning experiences are weighted
equally, without preference to more recent experiences. This
is achieved by setting� = 1=k

s;a

wherek
s;a

is the total
number of updates of the particularQ value, including the
current update. In conjunction with the above learning rule,
this ensures thatQ(s; a) always is the mean of all past re-
wards this state/action pair(s; a) received.

While this adaptive step size selection is optimal for
length-1 trials, this is not the case for longer trials. Coun-
terexamples exist where equally weighted experiences pre-
vent convergence to the optimalQ values. On the other
hand, if one assumes in our setting that the length-1Q-
values have converged before training on length-2 trials
commences, then the above optimality argument carries over
to length-2 trials, and likewise to longer trials. Therefore, for
all values ofs the� values were selected in this manner.

At the beginning of each trial, the stereo head was pointed
at a random direction in space. At each perception-action
cycle, the motor commands were selected according to an
annealed softmax procedure [10]: In states, actiona is se-
lected with Boltzmann probability

P

a

=

e

Q(s;a)=�

P

a

0

e

Q(s;a

0

)=�

where� = 1000�0:99

k

s is the “temperature” which depends
on the numberk

s

states has been encountered. Initially,
each action is selected with roughly equal probability, and

as k
s

grows, the best actions are selected with increasing
probability. This popular procedure favors exploration in
the early stages of training, and emphasizes exploitation as
experience increases. During evaluation, all actions were
selected greedily, which corresponds to setting� = 0.

5. Evaluation of the Learned Policies

To evaluate the learned vergence policies, a series of 8715
trials was run. The length of each individual trial (given as
the number of perception-action cycles) was chosen at ran-
dom. Vergence adjustments were always selected greedily.

In principle, it is not necessary to perform separate train-
ing and test runs as was done here. Due to the incremental
nature of reinforcement learning, the vergence system could
be installed untrained and put into service right away. Ini-
tial performance is poor in this case, but improves with in-
creasing experience. Likewise, performance estimates can
be acquired and updated as the system operates.

Here, the exploration/exploitation conflict can be re-
solved in an elegant way: Since policies were trained only
for a maximum of five perception-action cycles, any excess
time allowed by the scheduler could be used for exploration.

Prediction of Success
In Section 3 successful vergence was defined as the two best
matching image columns being neighbors. Figure 5 illus-
trates that this criterion is in fact an excellent predictor of
success: The probability that the verge resulted in a best-
matching column indexp of -1, 0, or 1 was 0.69 in the case
of neighboring best and second-best columns, and 0.06 in
the non-neighboring case.

Characterization of Performance
The scheduler requires performance measures of the vari-
ous learned policies. These measures are provided in terms
of the success rater, which is the proportion of trials end-
ing with neighboring best-matching columns, and in terms
of the distribution of accuracies achieved, as measured by
the index of the best-matching column after completion of a
trial. The accuracy distributions for the 1- and 5-step poli-
cies are shown in Figure 6. While they are not adequately
approximated by Gaussian distributions, it may still be in-
structive to consider their standard deviations, here denoted
by �

c

. These measures are summarized in Figure 7.
For the specialized length-k policies (solid curve in Fig-

ure 7), the success rater increases with the number of avail-
able perception-action cycles, and – except for the length-5
trials –�

c

decreases monotonically. Hence, it is beneficial to
use more cycles if time permits. To explain the inferior ac-
curacy of the length-5 trials, it is reasonable to assume that
theQ values for the length-5 trials had not yet converged.
Since learning of the length-k values relies on the learned
values of the length-(k0 < k) values, inaccuracies in theQ
table accumulate as the trial lengths increase. Furthermore,

Figure 5: Histograms of best-
matching column indicesp after
completed vergence. Clearly,
neighboring best-matching
columns are an excellent pre-
dictor of a successful merge. The
relatively low count forp = 0 is a
side effect of the asymmetry in the
way p is measured (one of the two
center columns representsp = 0). −47−23−11 −5 −2 −1 0 1 2 3 6 12 24 48

0

500

1000

1500

2000

2500

Column index p of best match

C
ou

nt

Best two matches are neighbors

−47−23−11 −5 −2 −1 0 1 2 3 6 12 24 48
0

50

100

150

200

250

300

350

Column index p of best match

C
ou

nt

Best two matches are not neighbors

Figure 6: Histograms of accuracies
(as measured by the final match-
ing column indexp) achieved in
the case of success. The tails of
the distributions become thinner as
the number of perception-action cy-
cles increases, indicating that the
expected accuracy improves. Only
the histograms for the 1- and 5-step
policies are shown.

−47−23−11 −5 −2 −1 0 1 2 3 6 12 24 48
0

50

100

150

200

250

300
Performance: 1 Cycle

−47−23−11 −5 −2 −1 0 1 2 3 6 12 24 48
0

100

200

300

400

500

600
Performance: 5 Cycles

theQ values corresponding to shorter trials were updated
more often. For instance, at the end of the training run the
length-1 values had been updated a full 8715 times (once at
the last cycle of each trial), while the length-5 values had
only been updated at the beginning of each length-5 trial.

Is it advantageous to learn separate policies for vari-
ous lengths of trials? To answer this, a separate run of 805
length-5 trials was run, while choosing greedy actions ac-
cording to the length-1Q-table at each cycle (seeIterated
length-1 policyin Figure 7). The performance of this policy
is inferior to the specialized policies fork > 1. We conclude
that the improvement of the iterated versus the non-iterated
length-1 policy is due to the fact that more perception-action
cycles were available for convergence, but the policy did not
make maximum use of the additional cycles. Specialized
policies take more advantage of additional cycles, as shown
by both performance measures of the length-3 and length-4
policies, and the success rater of the length-5 policy.

An intuitive explanation for this behavior is that a length-
1 policy will use conservative vergence adjustments if best-
matching columns are near the fovea, but aggressive adjust-
ments if they are not. This will maximize the likelihood of
achieving correct vergence in one shot, while minimizing
the chance that an already foveated target is lost. If addi-
tional cycles are available, more conservative adjustments
may perform better in the presence of noise.

How is the performance affected if a vergence task
cannot execute all perception-action cycles it anticipated?
The answer is given by the performance variables after ex-
ecuting only the first 1,2,3, or 4 perception-action cycles of

the length-5 policy. The results (seeShort-cut length-5 pol-
icy in Figure 7) clearly demonstrate the graceful degradation
of both performance variables as the task is cut short.

How do the learned policies compare with a hand-
calibrated system? To test this, we calibrated our vergence
axis to construct a table� : p 7! ��. We constructed an in-
verse mapping��1

: � 7! p by acquiring a reference image
at� = 0, and then turning the camera in small increments of
� while computingp values using the same matching proce-
dure as described in Section 2, but with respect to the refer-
ence image taken earlier by the same camera. We ran this
procedure multiple times to yield distributions ofp column
indices as a function of�. From these we read off two�
tables: One,�

m

, turns the mean of thep distribution into
the fovea, and a more conservative�

s

turns just the edge of
thep distribution into the fovea.

The performance measures of these hand-calibrated pa-
rameters are shown in Figure 7. The one-cycle�

m

policy
clearly outperforms the learned one-cycle policy in terms of
�

c

. The conservative�
s

performs similarly to the learned
policy. However, the graphs show clearly that iterating these
policies does not consistently improve their performance.
As the number of perception-action cycles increases, the
hand-calibrated policies are outperformed by the learned
policies by increasingly wider margins. This shows that the
optimal set of control parameters depends on the number of
available perception-action cycles. It is not obvious how to
find optimal� functions for tasks where more than one cy-
cle is available. Here, the learning procedure found policies
that outperform iterated hand-tuned length-1 policies.

Figure 7: Performance variables.
The solid curve in each graph
represents five individual learned
policies, one for each number of
perception-action cycles. For ex-
ample, the length-3 policy, applied
iteratively for three cycles, achieved
a success rater of just above 0.8.
The other four curves show the per-
formance of a single policy, applied
iteratively for the given number of
cycles.

1 2 3 4 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cycles

su
cc

es
s

ra
te

 r

Success rates of various policies

1 2 3 4 5
4

6

8

10

12

14

16

18

cycles

S
ta

nd
ar

d
de

vi
at

io
n

of
 c

: σ
 c

Accuracies of various policies in case of success

Learned policies
Iterated length−1 pol.
Short−cut length−5 p.
Hand−calibrated Θ m
Hand−calibrated Θ s

6. Discussion

We have contributed a machine learning approach to
construct locally optimal time-constrained action policies.
Probabilistic performance characteristics are estimated us-
ing experiences resulting from interactions with the real en-
vironment. These characterizations can be used by a sched-
uler to allocate an appropriate number of time slices to
the vergence process, given certain performance require-
ments and resource limitations. The learned policies are de-
signed to achieve maximal expected performance under the
given schedule. They are robust with respect to unexpected
changes of the schedule.

This work constitutes progress toward interaction of real-
time schedulers with robotic systems, which is a difficult
problem because of the unpredictable nature of the real
world. For example, in a closed-loop control system the
number of control cycles necessary to accomplish a task
is only approximately known in advance. If the system is
subjected to hard time constraints, the predictability of suc-
cess may degrade to a probabilistic estimate of a binary suc-
cess/failure outcome, e.g. whether a pick-and-place task will
or will not succeed. This work describes a task whose per-
formance characteristics degrade gracefully in the presence
of time constraints, and is therefore more amenable to a real-
time framework.

We demonstrated the usefulness of an on-line machine
learning technique for learning control parameters of a me-
chanical system. In contrast to conventional techniques, this
approach has the advantage that the control parameters are
selected with regard to characteristics of visual scenes actu-
ally encountered. In the presence of noise (i.e. self-similar
or poorly textured scenes that cause stereo mismatches), this
is likely to pay off in terms of gained accuracy. This was il-
lustrated by a comparison with a hand-tuned system whose
performance was inferior to that of learned policies, espe-
cially if more than one perception-action cycle is available.

Finally, on-line learning systems such as the one de-
scribed here can be put into service without initial calibra-
tion. They will improve their performance with experience,
and – if a fixed minimum step size parameter� is used –

will adapt to changing environmental and mechanical char-
acteristics.

References
[1] C. G. Atkeson and S. Schaal. Learning tasks from a sin-

gle demonstration. InIEEE International Conference on
Robotics and Automation, volume 2, pages 1706–1712, Al-
buquerque, NM, April 1997.

[2] C. Bandera and P. Scott. Foveal machine vision systems. In
IEEE Int. Conf. on Systems, Man, and Cybernetics, Cam-
bridge, MA, November 1989.

[3] J. Connell and S. Mahadevan, editors.Robot Learning.
Kluwer Academic, Boston, MA, 1993.

[4] A. H. Fagg, D. Lotspeich, and G. A. Bekey. A reinforcement-
learning approach to reactive control policy design for au-
tonomous robots. InProc. IEEE Conference on Robotics
and Automation, 1994.

[5] M. Hansen and G. Sommer. Active depth estimation with
gaze and vergence control using Gabor filters. InIn 13th
Int. Conf. on Pattern Recognition, volume A, pages 287–291,
Vienna, Austria, 1996.

[6] M. Huber and R. A. Grupen. A feedback control structure
for on-line learning tasks.Robots and Autonomous Systems,
22(3/4):303–315, 1997.

[7] F. Michaud and M. J. Matarić. Learning from history for
behavior-based mobile robots in non-stationary conditions.
Machine Learning, 31(1–3):141–167, 1998. Joint special is-
sue withAutonomous Robotson Learning in Autonomous
Robots.

[8] J. H. Piater, K. Ramamritham, and R. A. Grupen. Learning
real-time strategies for binocular vergence. Computer Sci-
ence Technical Report 99-06, University of Massachusetts,
Amherst, Feb. 1999.

[9] R. P. N. Rao and D. H. Ballard. An active vision architec-
ture based on iconic representations.Artificial Intelligence,
78:461–505, 1995.

[10] R. S. Sutton and A. G. Barto.Reinforcement Learning: An
Introduction. MIT Press, Cambridge, Massachusetts, 1998.

[11] A. M. van Tilborg and G. M. Koob, editors.Foundations of
Real-Time Computing: Scheduling and Resource Manage-
ment. Kluwer Academic Publishers, 1991.

[12] C. J. C. H. Watkins.Learning From Delayed Rewards. PhD
thesis, University of Cambridge, England, 1989.

[13] C. J. C. H. Watkins and P. Dayan.Q-Learning. Machine
Learning, 8:279–292, 1992.

