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How exible are the representations for visual reognition, enoded by the neu-rons of the human visual ortex? Are they predetermined by a �xed developmen-tal shedule, or does their development depend on their stimulation? Does theirdevelopment ease at some point during our maturation, or do they ontinue toevolve throughout our lifetime? For some of these questions, the answers havebeen well established. For example, the development of reeptive �elds in theearly visual pathways is inuened by stimulation of the visual system. Somevisual funtions do not develop at all without adequate pereptual stimulationduring a maturational sensitive period. Higher-order visual funtions suh aspattern disrimination apabilities are also subjet to a developmental shedule.It is still debated to what extent feature learning for pattern disrimination on-tinues throughout adulthood. Reent psyhologial studies indiate that humansare able to form new features if required by a disrimination task [11℄.In ontrast to the human visual system, most work on mahine vision has notused learning at the level of feature detetors. In the following setion, we brieflydisuss visual objet reognition by humans and mahines, and we argue thatlow-level learning is an essential ingredient of a robust and general visual sys-tem. The remainder of the paper presents our experimental system for learningdisriminative features for reognition.This work was supported in part by the National Siene Foundation under grantsCISE/CDA-9703217, IRI-9704530 and IRI-9503687, by the Air Fore Researh Labs,IFTD (via DARPA) under grant F30602-97-2-0032, and by Hugin Expert A/S througha low-ost Ph.D. liense of their Bayesian network library.



2 Feature Learning in Humans and MahinesHow do humans learn reognition skills? Two prinipal hypotheses an be iden-ti�ed [9℄: Aording to the Shema Hypothesis, sensory input is mathed tointernal representations of objets that are built and re�ned through experiene.On the other hand, the Di�erentiation Hypothesis postulates that ontrastiverelations are learned that serve to distinguish among the items. Psyhologialevidene argues for a strong role of Di�erentiation learning [9, 13℄. What exatlythe disriminative features are and how they are disovered is unlear. It appearsthat feature disovery is a hard problem even for humans and takes a long timeto learn [5℄:{ Neonates an distinguish ertain patterns, apparently based on statistialfeatures like spatial intensity variane or ontour density.{ Infants begin to note simple oarse-level geometri relationships, but performpoorly in the presene of distrating ues. They do not onsistently payattention to ontours and shapes.{ At the age of about two years, hildren begin to disover �ne-grained detailsand higher-order geometri relationships. However, attention is still limitedto \salient" features [15℄.{ Over muh of hildhood, humans learn to disover distintive features evenif they are overshadowed by more salient distrators.There is growing evidene that even adults learn new features when faed witha novel reognition task. In a typial experiment, subjets are presented withomputer-generated renderings of unfamiliar objets that fall into ategoriesbased on spei�ally designed but unobvious features. After learning the atego-rization, the subjets are asked to ategorize other objets that exhibit ontrolledvariations of the diagnosti features, whih reveals the features learned by thesubjets. Shyns and Rodet [12℄ employed three ategories of \Martian ells."The �rst ategory was haraterized by a feature alled X , the seond by afeature Y , and the third by a feature XY , whih was a omposite of X and Y .Subjets were divided into two groups that di�ered in the order they had to learnthe ategories. Subjets in one group �rst learned to disriminate ategories Xand Y and then learned ategory XY , whereas the other group learned XYand X �rst, then Y . Subjets of the �rst group learned to ategorize all objetsbased on two features (X and Y ), whereas the subjets of the seond grouplearned three features, not realizing that XY was a ompound onsisting of theother two. Evidently, feature generation was driven by the reognition task. Fora summary of evidene for feature learning in adults, see a reent artile [11℄.Feature learning does not neessarily stop after learning a onept. Tanakaand Taylor [14℄ found that bird experts were as fast to reognize objets at thesubordinate level (\robin") as they were at the basi level (\bird"). In ontrast,non-experts are onsistently faster on basi-level disriminations as omparedto subordinate-level disriminations. Gauthier and Tarr [4℄ trained novies tobeome experts on unfamiliar objets and obtained similar results. These �ndingsindiate that the way experts perform reognition is qualitatively di�erent than2



novies. We suggest that experts have developed speialized features, failitatingrapid and reliable reognition in their domain of expertise.General theories of vision suh as those by Marr [6℄ and Biederman [2℄ havesparked extensive researh e�orts in both human and mahine vision, and haveontributed substantially to our understanding of how visual proesses may op-erate. However, they have not led to arti�ial vision systems of noteworthy gen-erality. Why is this so? From our point of view, a key reason is that most theoriesof vision do not address adaptation and learning. The real world is very omplex,noisy, nonstationary { too variable for any �xed visual system, too unpreditablefor its designer. Today's funtional vision systems are highly speialized and op-erate under well-ontrolled onditions. They break if the built-in assumptionsabout task and environment do not hold.Consider visual reognition. It is easy to see that there is no partiular repre-sentation that an express all pereivable distintions between objets or objetategories that may later be required of a reognition system. Most existingmahine vision systems perform reognition either based on a �xed set of hand-rafted features, eigen-subspae deomposition, or geometri model mathing.In the �rst ase, features are hosen in a best e�ort to express the distintionsrequired, but not too muh more to avoid over�tting. The same is true of geo-metri models. How muh detail should be enoded in the models? On the onehand, the level of detail should be kept low to inrease generalization and eÆ-ieny; on the other hand, models should ontain suÆient detail to express thedistintions required by a given task. Thus, both these methods are restritedto tasks that are well-de�ned at design time. We all suh tasks losed. In on-trast, almost all human visual learning takes plae in open settings, where tasksare open-ended and evolve over time. While eigen-subspae representations (orrelated subspae methods that optimally separate instanes by lass label) areto some extent onsistent with ertain aspets of human visual mehanisms (e.g.fae reognition), it appears unlikely that suh methods an aount for all ofbiologial disrimination learning sine they an tolerate only a limited degreeof olusion and objet variability.Humans an learn an impressive variety of distintions ranging from minis-ule loal features suh as a tiny srath to abstrat global features suh assymmetry. In light of the evidene ited above, it seems lear that humans areapable of forming new representations of global and loal appearane hara-teristis in a task-driven way. Thus, a key onept for building arti�ial visionsystems of substantially inreased generality and robustness is task-driven learn-ing or adaptation. An adaptive system should be able to{ optimize its performane on-line with respet to individual tasks,{ expand its funtionality inrementally,{ optimize its performane on-line under the atual working onditions, and{ trak a nonstationary environment by adapting its parametersby building new representations and adapting parameters. In the following se-tions, we desribe our urrent work on a model of feature learning for reognitionthat addresses all of these issues, building on our previous work [8℄.3



3 An In�nite Feature SpaeWe argued above that any �xed objet representation is insuÆient for learningarbitrary distintions. Instead, we begin by speifying a small set of primitivefeatures that an be ombined into higher-order features aording to a smallnumber of rules that will be disussed below. All features that an be representedin this way form an in�nite feature spae. The strutural omplexity of a feature,i.e. the number of primitive features that form a ompound, naturally provides apartial ordering of this spae. Our learning proedure searhes the feature spaebeginning with struturally simple features, and onsiders more omplex featuresas needed [1℄. The underlying assumption is that struturally simple featuresare easier to disover and have less disriminative potential than ompliatedfeatures, but are still useful for some aspets of the learning problem.3.1 Primitive FeaturesIn our urrent system, primitive features are loal appearane desriptors repre-sented as vetors of loal �lter responses. The �lters are oriented derivatives of2-D Gaussian funtions, with orientations hosen suh that they form a steer-able basis [3℄. Here, the steerability property permits the eÆient omputationof �lter responses of Gaussian-derivative kernels at any orientation, given d+ 1measured �lter responses for the dth derivative at spei� orientations. Spei�-ally, our system urrently uses two spei� variants of suh desriptors:{ An edgel is enoded as a 2-vetor ontaining the �lter responses to the two�rst-derivative basis �lters. These values enode the loal intensity gradi-ent of horizontal (Gx) and vertial (Gy) orientation. Using the steerabilityproperty, the magnitude of gradients in any orientation an be omputed.{ A texel is represented as an 18-vetor omprising the responses to the basis�lters of the �rst three derivatives at two sales. This represents a loaltexture signature. Like edgels, texels have an assoiated orientation that isde�ned by the two �rst-derivative �lter responses. When the orientation of atexel is steered, the entire vetor ontaining all derivatives is rotated rigidlywith referene to the �rst derivative omputed at the largest sale [10℄.This hoie of low-level representations is plausible of biologial early vision.While it is unlikely that any biologial visual systems exploit steerability, thisis an attrative omputational alternative in the absene of massively parallelhardware. Steerability leads to rotational invariane whih simpli�es arti�ialvision systems at essentially no extra ost. We are not aware of any onlusiveevidene for or against the biologial faithfulness of our texel representation.3.2 Higher-order FeaturesPrimitive features by themselves are not very disriminative. However, spatialombinations of these an express a wide range of shape and texture harater-istis at various degrees of spei�ity or generality. We suggest the following fouromplementary types of feature omposition:4



�1 �2 d2�3
�4d1referene point Fig. 1. A geometri feature of order 3, omposedof three primitives. The feature is de�ned by theangles � and the distanes d. Eah primitive iseither an edgel or a texel.{ Geometri relations are given by the relative angles and distanes betweenthe partiipating lower-order features (Fig. 1). As long as these are rotation-invariant, so is their geometri omposition. Geometri features are usefulfor representing e.g. orners, angles, and ollinearity.{ Topologial relations here refer to relaxed geometri relationships betweenomponent features that allow some degree of variability in angles and dis-tanes. Topologial ompound features are more robust to viewpoint hangesthan are geometri features, at the expense of spei�ity.{ Conjuntive features assert the presene of all omponent features withoutmaking any statement about their geometri or topologial relationship.{ Disjuntive features are onsidered to be present in a sene if at least oneomponent feature is deteted. This an express statements suh as \If I seea dial or a number pad, I may be looking at a telephone."In ontrast to other work, our features an be omposed into inreasingly om-plex and spei� desriptors of 2-D shape, whih is onsistent with urrent mod-els of the inferotemporal ortex. Features are omputed at various sales, gen-erated by suessively subsampling images by fator two. This ahieves somedegree of sale invariane. Moreover, many ompositions of edgels are inherentlytolerant to hanges in sale. For example, the arrangement shown in Fig. 1 ap-plies equally to triangles of any size. Another desirable property of these featuresis that no expliit ontour extration or segmentation is required. This avoidsthese two diÆult open problems in omputer vision and should provide ro-bustness to various kinds of image degradation. In ontrast, the human visualsystem detets meaningful ontours with remarkable robustness. This apabilityan probably not be explained entirely as a low-level visual proess, but is sup-ported by pre-segmentation reognition and task-dependent top-down proesses.4 Bayesian Networks for ReognitionThe presene of a given feature x� at a point i in the image is denoted by itsstrength s 2 [0; 1℄. For primitive features, s = maxf0; r(x�;x(i))g, where r is thenormalized ross orrelation funtion. The vetor quantity x� is a model feature,and the funtion x(i) returns the orresponding feature at loation i. A geomet-ri feature is desribed by the onatenation of the onstituent feature valuesx. In the ase of topologial and onjuntive features, the strength of the om-pound feature is the produt of the strengths of its onstituents; for disjuntivefeatures, the maximum is used. Reognition is based on the maximum strengthsof features found in the sene (or within a region if interest). Mapping feature5



Feature 1 Feature 4Feature 2

Feature 5Feature 3

Class Fig. 2. A Bayesian network for onelass. Note some interdependentfeatures. A network suh as this isreated for eah lass.vetors to lass (or objet) labels is the problem of lassi�ation, for whih manyalgorithms exist. We hose Bayesian networks for their attrative properties thatare desirable for open-domain reognition problems. In our system, eah lassis modeled as a separate Bayes net. The presene of an objet is modeled asa disrete random variable with two states, true and false. The presene of anobjet gives rise to observable features, represented by random variables whosedistributions are onditional on the presene of an objet of this lass. Assum-ing that the features are onditionally independent given the lass, the resultingBayes net has the topology of a star, with ars onneting the lass node to eahof the feature nodes.If some features are not independent, orresponding ars must be insertedbetween the appropriate feature nodes. For example, in Fig. 2, Feature 3 maybe a geometri omposition with Feature 2, that is also in the feature set. Then,the presene of Feature 3 in an image implies the presene of Feature 2. Thus,in the Bayes net there is an ar from node 3 to node 2. An analogous argumentholds for topologial and onjuntive features, suh as Feature 5 in Fig. 2, thatombines Features 3 and 4. In the ase of disjuntive features, the diretion ofthe argument (and that of the additional arrows) is reversed.Our feature strengths are ontinuous. We split eah feature variable intotwo bins, orresponding to \present" and \not present", using a threshold. Thisthreshold is determined individually for eah feature variable suh that its dis-riminative power between its own lass and a misreognized lass is maximized.The disriminative power of a feature variable given a threshold is measuredin terms of the Kolmogorov-Smirno� distane (KSD). The KSD between twoonditional distributions of a random variable is the di�erene between the u-mulative probabilities at a given value of this variable under the two onditions.This separates the instanes of the two onditions optimally, in the Bayesiansense, using a single utpoint.To perform reognition, we ompute feature values one by one and updatethe Bayesian network after inorporating eah feature. The lass with the high-est posterior probability gives the reognition result. Features are proessed indereasing order of informativeness. The informativeness of a feature is de�nedby the mutual information between a feature and the lass node, i.e. its potentialto redue the entropy in the lass random variable. In pratie, only a fration ofall features are omputed, beause the entropy in the lass nodes diminish beforeall features have been queried. This phenomenon suggests a straightforward, butvery e�etive forgetting proedure: We delete any features that ease to be usedduring reognition. 6



5 Adaptive Feature GenerationAs an agent (e.g. an animal, a human or a robot) interats with the world, it usesvision (and maybe other sensory modalities) to aquire state information aboutthe world, and performs ations appropriate in this state. This requires that theagent's visual features disriminate relevant aspets of the state of the world. Weposit that suh features are generated in response to feedbak reeived duringinteration with the world. For simpliity, we restrit the following disussion toa onventional supervised-learning senario: The ations of the agent onsist ofnaming lass labels, the sensory input is an image, and the feedbak reeivedfrom the world onsists of the orret lass label. We further assume that theagent an retrieve random example images of known lasses. This assumption isrealisti in many ases. For example, an infant an pik up a known objet andview it from various viewpoints; or a hild reeives various examples of lettersof the alphabet from a teaher.Initially, the agent does not know about any objets or features. When it ispresented with the �rst objet, it simply remembers the orret answer given bythe teaher. When it is shown the seond objet, it will guess the only ategoryit knows about.When the agent gives a wrong answer, it needs to learn a new feature todisriminate this objet ategory from the mistaken ategory (or ategories).This is done by random sampling, with a bias for struturally simple features.We employ the following heuristi proedure, where eah step is iterated up toa onstant number of times:1. Pik a random feature from some other Bayes net (orresponding to anotherlass) that is not yet part of this Bayes net (orresponding to the true lass).This promotes the usage of general features that are harateristi of morethan one lass.2. Sample a new feature diretly from the misreognized image by either pikingtwo edgels and turning them into a geometri ompound, or by piking asingle texel.3. Pik a random feature that is already part of this Bayes net, �nd its strongestourrene in the urrent image, and expand it geometrially by piking anadditional edgel or texel lose-by.4. Pik two random features and ombine them into a onjuntive feature.5. Pik two random features and ombine them into a disjuntive feature.After eah new feature is generated, it is evaluated on a small set of exampleimages, retrieved from the environment, that ontains examples of the true lassand the mistaken lass(es). If it has any disriminative power, it is then addedto the Bayes net of the true lass using the onditional probabilities estimatedusing a small set of example images, randomly hosen from the training set. Ifthe image is now reognized orretly by the expanded Bayes net, the featurelearning proedure stops; if not, the feature is removed from the net, and thelearning proedure ontinues. This proedure may terminate without suess.7



During operation of the learning system, an instane list of all lasses enoun-tered and features queried is maintained. Periodially, all feature utpoints, lasspriors and onditional probabilities in the Bayes nets are updated aording tothis list.Feature learning does not have to stop after learning a training set perfetly.The system an ontinue to searh for better features. The quality of a feature isits disriminative power at a given stage during a reognition proedure, givenby the KSD between its own lass and the ombined set of all other lasses. Wean train our system to develop better features by imposing a minimum KSD onall features that are used during a reognition proedure. If a feature does notmeet this requirement, the system has to learn a new and better feature. Theminimum KSD an iteratively be raised, until the system fails to �nd adequatefeatures. As a onsequene, fewer (but superior) features will be queried whilereognizing a given image, and many of the inferior features will beome obsolete.We suggest this proedure, alled feature upgrade, as a rude model of expertlearning, as outlined in Setion 2.6 ExperimentsTo illustrate that our algorithm is able to produe disriminative features, weperformed pilot experiments on two example tasks (Fig. 3). In the COIL task,the images of the �rst four objets from the COIL-20 database [7℄ were split intotwo disjoint sets suh that no two neighboring viewpoints were represented inthe same set. As a result, eah image set ontained 36 images, spaed 10 degreesapart on the viewing sphere, at onstant elevation. We performed a 2-fold ross-validation on these two sets: In one run, one set served as a training set andthe other as the test set; in a seond run, the roles were reversed. In the PLYMtask, there were eight geometri objets on 15 arti�ially rendered images eah,overing a small setion of the viewing sphere1. We performed a 10-fold strati�edross-validation on this data set, with random subdivision of the 15 images ofeah lass into 10 subsets of 1 or 2 images eah.The results of the experiments are summarized in Table 1. While the reog-nition results fall short of urrent mahine reognition tehnology, they wereahieved by an unommitted visual system with a strong bias toward few andsimple features that had aess only to a small number of random training viewsat any given time during an inremental training proedure. Most of these prop-erties are ontrary to urrent omputer vision tehnology, but are harateristiof biologial vision systems.In aord with our biased searh strategy, most learned features were isolatedtexels and simple geometri ompounds of edgels and/or texels. Smaller numbersof the other ompound types of features were also found. In most ases, thetraining set was not learned perfetly. This is beause our system urrently givesup after 10 iterations through the training set. Clearly, more e�etive tehniquesfor �nding distintive features are alled for.1 http://www.is.plym.a.uk/is/levi/UoP CIS 3D Arhive/8obj set.tar8



Fig. 3. Objets of the COIL task (left) and the PLYM task (right).Table 1. Summary of experimental results. The \expert level" olumn gives the num-ber of feature upgrade iterations. The \other" olumns ontain ases where the systemreturned an ambiguous answer, or no answer at all.Task expert avg. # features Training Set: Test Set:level queried orret wrong other orret wrong otherCOIL 0 44 0.98 0.02 0.81 0.191 36 0.85 0.11 0.04 0.73 0.23 0.052 23 0.97 0.03 0.83 0.16 0.013 11 0.83 0.14 0.03 0.67 0.27 0.06PLYM 0 19 1.00 0.72 0.281 21 1.00 0.76 0.21 0.035 13 0.95 0.03 0.02 0.71 0.09 0.20As the minimum KSD required of a feature is inreased during feature up-grade, it is inreasingly diÆult to �nd appropriate features in order to learn thetraining set perfetly. However, feature upgrade has the desired e�et of dereas-ing the number of features queried during reognition, and where the trainingset is learned well, it also tends to redue the number of false reognitions whilemarginally inreasing the orret reognition rate on the test set.7 ConlusionsThere is overwhelming evidene that humans learn features for reognition ina task-driven manner. Biologial learning is on-line and inremental. We havepresented an arti�ial vision system that follows these harateristis, based onan in�nite ombinatorial feature spae and a generate-and-test searh proedurefor �nding disriminative features. Our method suessfully learns to disrim-inate objets. We also proposed that developing visual expertise involves theonstrution of better features. Our system models this by inreasing the min-imum KSD required of features during reognition. While our system reetsertain aspets of human vision, it is not a omplete model in that it fouses onappearane-based disriminative features. Biologial vision systems are probablyomposed of several omplementary algorithms.As a model of feature learning for disrimination, the main limitation of oursystem is the undireted searh for features in images that is only guided by afew simple heuristis. A more faithful (and more pratial) model requires a de-velopmental shedule that initially onstrains the searh for features to inrease9



the likelihood of �nding useful features fast, while temporarily restriting gen-erality. Over time, these restritions should be relaxed, while the system learnsbetter heuristis from experiene. This is an area of further researh.Another ritial limitation of our urrent system is the restrited expressive-ness our feature spae that enodes only high-ontrast edge, orner and textureinformation. As suh, our model roughly orresponds to the human visual systemduring early infany [5℄. A more omplete model should at least enode olor andblob-type features. In addition, more sophistiated reognition requires higher-level features suh as qualitative (\Gestalt") features (e.g. parallelism, symmetry,ontinuity, losure) and multipliity (a triangle has three orners; a biyle wheelhas many spokes). We hope to address these in future work.Referenes[1℄ Y. Amit, D. Geman, and K. Wilder. Joint indution of shape features and treelassi�ers. IEEE Trans. Pattern Anal. Mah. Intell., 19(11):1300{1305, 1997.[2℄ I. Biederman. Reognition-by-omponents: A theory of human image understand-ing. Psyhologial Review, 94:115{147, 1987.[3℄ W. T. Freeman and E. H. Adelson. The design and use of steerable �lters. IEEETrans. Pattern Anal. Mah. Intell., 13(9):891{906, 1991.[4℄ I. Gauthier and M. J. Tarr. Beoming a \Greeble" expert: Exploring mehanismsfor fae reognition. Vision Researh, 37(12):1673{1682, 1997.[5℄ E. J. Gibson and E. S. Spelke. The development of pereption. In J. H. Flavelland E. M. Markman, editors, Handbook of Child Psyhology Vol. III: CognitiveDevelopment, hapter 1, pages 2{76. Wiley, 4th edition, 1983.[6℄ D. Marr. Vision: A Computational Investigation into the Human Representationand Proessing of Visual Information. Freeman, San Franiso, 1982.[7℄ S. A. Nene, S. K. Nayar, and H. Murase. Columbia objet image library (COIL-20). Tehnial Report CUCS-005-96, Columbia University, New York, NY, Feb.1996.[8℄ J. H. Piater and R. A. Grupen. Toward learning visual disrimination strategies.In Pro. Computer Vision and Pattern Reognition (CVPR '99), volume 1, pages410{415, Ft. Collins, CO, June 1999. IEEE Computer Soiety.[9℄ A. D. Pik. Improvement of visual and tatual form disrimination. J. Exp.Psyhol., 69:331{339, 1965.[10℄ R. P. N. Rao and D. H. Ballard. An ative vision arhiteture based on ionirepresentations. Arti�ial Intelligene, 78:461{505, 1995.[11℄ P. G. Shyns, R. L. Goldstone, and J.-P. Thibaut. The development of featuresin objet onepts. Behavioral and Brain Sienes, 21(1):1{54, 1998.[12℄ P. G. Shyns and L. Rodet. Categorization reates funtional features. J. Exp.Psyhol.: Learning, Memory, and Cognition, 23(3):681{696, 1997.[13℄ J. R. Silver and H. A. Rollins. The e�ets of visual and verbal feature-emphasison form disrimination in preshool hildren. J. Exp. Child Psyhol., 16:205{216,1973.[14℄ J. W. Tanaka and M. Taylor. Objet ategories and expertise: Is the basi levelin the eye of the beholder? Cognitive Psyhology, 23:457{482, 1991.[15℄ J.-P. Thibaut. The development of features in hildren and adults: The ase ofvisual stimuli. In Pro. 17th Annual Meeting of the Cognitive Siene Soiety,pages 194{199. Lawrene Erlbaum, 1995.10


