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Abstract. Most existing machine vision systems perform recognition
based on a fixed set of hand-crafted features, geometric models, or eigen-
subspace decomposition. Drawing from psychology, neuroscience and in-
tuition, we show that certain aspects of human performance in visual
discrimination cannot be explained by any of these techniques. We ar-
gue that many practical recognition tasks for artificial vision systems
operating under uncontrolled conditions critically depend on incremen-
tal learning. Loosely motivated by visuocortical processing, we present
feature representations and learning methods that perform biologically
plausible functions. The paper concludes with experimental results gen-
erated by our method.

1 Introduction

How flexible are the representations for visual recognition, encoded by the neu-
rons of the human visual cortex? Are they predetermined by a fixed developmen-
tal schedule, or does their development depend on their stimulation? Does their
development cease at some point during our maturation, or do they continue to
evolve throughout our lifetime? For some of these questions, the answers have
been well established. For example, the development of receptive fields in the
early visual pathways is influenced by stimulation of the visual system. Some
visual functions do not develop at all without adequate perceptual stimulation
during a maturational sensitive period. Higher-order visual functions such as
pattern discrimination capabilities are also subject to a developmental schedule.
It is still debated to what extent feature learning for pattern discrimination con-
tinues throughout adulthood. Recent psychological studies indicate that humans
are able to form new features if required by a discrimination task [11].

In contrast to the human visual system, most work on machine vision has not
used learning at the level of feature detectors. In the following section, we briefly
discuss visual object recognition by humans and machines, and we argue that
low-level learning is an essential ingredient of a robust and general visual sys-
tem. The remainder of the paper presents our experimental system for learning
discriminative features for recognition.
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2 Feature Learning in Humans and Machines

How do humans learn recognition skills? Two principal hypotheses can be iden-
tified [9]: According to the Schema Hypothesis, sensory input is matched to
internal representations of objects that are built and refined through experience.
On the other hand, the Differentiation Hypothesis postulates that contrastive
relations are learned that serve to distinguish among the items. Psychological
evidence argues for a strong role of Differentiation learning [9, 13]. What exactly
the discriminative features are and how they are discovered is unclear. It appears
that feature discovery is a hard problem even for humans and takes a long time
to learn [5]:

— Neonates can distinguish certain patterns, apparently based on statistical
features like spatial intensity variance or contour density.

— Infants begin to note simple coarse-level geometric relationships, but perform
poorly in the presence of distracting cues. They do not consistently pay
attention to contours and shapes.

— At the age of about two years, children begin to discover fine-grained details
and higher-order geometric relationships. However, attention is still limited
to “salient” features [15].

— Over much of childhood, humans learn to discover distinctive features even
if they are overshadowed by more salient distractors.

There is growing evidence that even adults learn new features when faced with
a novel recognition task. In a typical experiment, subjects are presented with
computer-generated renderings of unfamiliar objects that fall into categories
based on specifically designed but unobvious features. After learning the catego-
rization, the subjects are asked to categorize other objects that exhibit controlled
variations of the diagnostic features, which reveals the features learned by the
subjects. Schyns and Rodet [12] employed three categories of “Martian cells.”
The first category was characterized by a feature called X, the second by a
feature Y, and the third by a feature XY, which was a composite of X and Y.
Subjects were divided into two groups that differed in the order they had to learn
the categories. Subjects in one group first learned to discriminate categories X
and Y and then learned category XY, whereas the other group learned XY
and X first, then Y. Subjects of the first group learned to categorize all objects
based on two features (X and Y'), whereas the subjects of the second group
learned three features, not realizing that XY was a compound consisting of the
other two. Evidently, feature generation was driven by the recognition task. For
a summary of evidence for feature learning in adults, see a recent article [11].
Feature learning does not necessarily stop after learning a concept. Tanaka
and Taylor [14] found that bird experts were as fast to recognize objects at the
subordinate level (“robin”) as they were at the basic level (“bird”). In contrast,
non-experts are consistently faster on basic-level discriminations as compared
to subordinate-level discriminations. Gauthier and Tarr [4] trained novices to
become experts on unfamiliar objects and obtained similar results. These findings
indicate that the way experts perform recognition is qualitatively different than



novices. We suggest that experts have developed specialized features, facilitating
rapid and reliable recognition in their domain of expertise.

General theories of vision such as those by Marr [6] and Biederman [2] have
sparked extensive research efforts in both human and machine vision, and have
contributed substantially to our understanding of how visual processes may op-
erate. However, they have not led to artificial vision systems of noteworthy gen-
erality. Why is this so? From our point of view, a key reason is that most theories
of vision do not address adaptation and learning. The real world is very complex,
noisy, nonstationary — too variable for any fixed visual system, too unpredictable
for its designer. Today’s functional vision systems are highly specialized and op-
erate under well-controlled conditions. They break if the built-in assumptions
about task and environment do not hold.

Consider visual recognition. It is easy to see that there is no particular repre-
sentation that can express all perceivable distinctions between objects or object
categories that may later be required of a recognition system. Most existing
machine vision systems perform recognition either based on a fixed set of hand-
crafted features, eigen-subspace decomposition, or geometric model matching.
In the first case, features are chosen in a best effort to express the distinctions
required, but not too much more to avoid overfitting. The same is true of geo-
metric models. How much detail should be encoded in the models? On the one
hand, the level of detail should be kept low to increase generalization and effi-
ciency; on the other hand, models should contain sufficient detail to express the
distinctions required by a given task. Thus, both these methods are restricted
to tasks that are well-defined at design time. We call such tasks closed. In con-
trast, almost all human visual learning takes place in open settings, where tasks
are open-ended and evolve over time. While eigen-subspace representations (or
related subspace methods that optimally separate instances by class label) are
to some extent consistent with certain aspects of human visual mechanisms (e.g.
face recognition), it appears unlikely that such methods can account for all of
biological discrimination learning since they can tolerate only a limited degree
of occlusion and object variability.

Humans can learn an impressive variety of distinctions ranging from minis-
cule local features such as a tiny scratch to abstract global features such as
symmetry. In light of the evidence cited above, it seems clear that humans are
capable of forming new representations of global and local appearance charac-
teristics in a task-driven way. Thus, a key concept for building artificial vision
systems of substantially increased generality and robustness is task-driven learn-
ing or adaptation. An adaptive system should be able to

— optimize its performance on-line with respect to individual tasks,

— expand its functionality incrementally,

— optimize its performance on-line under the actual working conditions, and
— track a nonstationary environment by adapting its parameters

by building new representations and adapting parameters. In the following sec-
tions, we describe our current work on a model of feature learning for recognition
that addresses all of these issues, building on our previous work [8].



3 An Infinite Feature Space

We argued above that any fixed object representation is insufficient for learning
arbitrary distinctions. Instead, we begin by specifying a small set of primitive
features that can be combined into higher-order features according to a small
number of rules that will be discussed below. All features that can be represented
in this way form an infinite feature space. The structural complexity of a feature,
i.e. the number of primitive features that form a compound, naturally provides a
partial ordering of this space. Our learning procedure searches the feature space
beginning with structurally simple features, and considers more complex features
as needed [1]. The underlying assumption is that structurally simple features
are easier to discover and have less discriminative potential than complicated
features, but are still useful for some aspects of the learning problem.

3.1 Primitive Features

In our current system, primitive features are local appearance descriptors repre-
sented as vectors of local filter responses. The filters are oriented derivatives of
2-D Gaussian functions, with orientations chosen such that they form a steer-
able basis [3]. Here, the steerability property permits the efficient computation
of filter responses of Gaussian-derivative kernels at any orientation, given d + 1
measured filter responses for the dth derivative at specific orientations. Specifi-
cally, our system currently uses two specific variants of such descriptors:

— An edgel is encoded as a 2-vector containing the filter responses to the two
first-derivative basis filters. These values encode the local intensity gradi-
ent of horizontal (G;) and vertical (G,) orientation. Using the steerability
property, the magnitude of gradients in any orientation can be computed.

— A texel is represented as an 18-vector comprising the responses to the basis
filters of the first three derivatives at two scales. This represents a local
texture signature. Like edgels, texels have an associated orientation that is
defined by the two first-derivative filter responses. When the orientation of a
texel is steered, the entire vector containing all derivatives is rotated rigidly
with reference to the first derivative computed at the largest scale [10].

This choice of low-level representations is plausible of biological early vision.
While it is unlikely that any biological visual systems exploit steerability, this
is an attractive computational alternative in the absence of massively parallel
hardware. Steerability leads to rotational invariance which simplifies artificial
vision systems at essentially no extra cost. We are not aware of any conclusive
evidence for or against the biological faithfulness of our texel representation.

3.2 Higher-order Features

Primitive features by themselves are not very discriminative. However, spatial
combinations of these can express a wide range of shape and texture character-
istics at various degrees of specificity or generality. We suggest the following four
complementary types of feature composition:



Fig. 1. A geometric feature of order 3, composed
of three primitives. The feature is defined by the

¢+ angles ¢ and the distances d. Each primitive is
either an edgel or a texel.
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— Geometric relations are given by the relative angles and distances between
the participating lower-order features (Fig. 1). As long as these are rotation-
invariant, so is their geometric composition. Geometric features are useful
for representing e.g. corners, angles, and collinearity.

— Topological relations here refer to relaxed geometric relationships between
component features that allow some degree of variability in angles and dis-
tances. Topological compound features are more robust to viewpoint changes
than are geometric features, at the expense of specificity.

— Congunctive features assert the presence of all component features without
making any statement about their geometric or topological relationship.

— Disjunctive features are considered to be present in a scene if at least one
component feature is detected. This can express statements such as “If I see
a dial or a number pad, I may be looking at a telephone.”

In contrast to other work, our features can be composed into increasingly com-
plex and specific descriptors of 2-D shape, which is consistent with current mod-
els of the inferotemporal cortex. Features are computed at various scales, gen-
erated by successively subsampling images by factor two. This achieves some
degree of scale invariance. Moreover, many compositions of edgels are inherently
tolerant to changes in scale. For example, the arrangement shown in Fig. 1 ap-
plies equally to triangles of any size. Another desirable property of these features
is that no explicit contour extraction or segmentation is required. This avoids
these two difficult open problems in computer vision and should provide ro-
bustness to various kinds of image degradation. In contrast, the human visual
system detects meaningful contours with remarkable robustness. This capability
can probably not be explained entirely as a low-level visual process, but is sup-
ported by pre-segmentation recognition and task-dependent top-down processes.

4 Bayesian Networks for Recognition

The presence of a given feature x* at a point 7 in the image is denoted by its
strength s € [0, 1]. For primitive features, s = max{0, r(x*,x(¢))}, where r is the
normalized cross correlation function. The vector quantity x* is a model feature,
and the function x(7) returns the corresponding feature at location i. A geomet-
ric feature is described by the concatenation of the constituent feature values
x. In the case of topological and conjunctive features, the strength of the com-
pound feature is the product of the strengths of its constituents; for disjunctive
features, the maximum is used. Recognition is based on the maximum strengths
of features found in the scene (or within a region if interest). Mapping feature



Fig. 2. A Bayesian network for one
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features. A network such as this is
created for each class.

vectors to class (or object) labels is the problem of classification, for which many
algorithms exist. We chose Bayesian networks for their attractive properties that
are desirable for open-domain recognition problems. In our system, each class
is modeled as a separate Bayes net. The presence of an object is modeled as
a discrete random variable with two states, true and false. The presence of an
object gives rise to observable features, represented by random variables whose
distributions are conditional on the presence of an object of this class. Assum-
ing that the features are conditionally independent given the class, the resulting
Bayes net has the topology of a star, with arcs connecting the class node to each
of the feature nodes.

If some features are not independent, corresponding arcs must be inserted
between the appropriate feature nodes. For example, in Fig. 2, Feature 3 may
be a geometric composition with Feature 2, that is also in the feature set. Then,
the presence of Feature 3 in an image implies the presence of Feature 2. Thus,
in the Bayes net there is an arc from node 3 to node 2. An analogous argument
holds for topological and conjunctive features, such as Feature 5 in Fig. 2, that
combines Features 3 and 4. In the case of disjunctive features, the direction of
the argument (and that of the additional arrows) is reversed.

Our feature strengths are continuous. We split each feature variable into
two bins, corresponding to “present” and “not present”, using a threshold. This
threshold is determined individually for each feature variable such that its dis-
criminative power between its own class and a misrecognized class is maximized.
The discriminative power of a feature variable given a threshold is measured
in terms of the Kolmogorov-Smirnoff distance (KSD). The KSD between two
conditional distributions of a random variable is the difference between the cu-
mulative probabilities at a given value of this variable under the two conditions.
This separates the instances of the two conditions optimally, in the Bayesian
sense, using a single cutpoint.

To perform recognition, we compute feature values one by one and update
the Bayesian network after incorporating each feature. The class with the high-
est posterior probability gives the recognition result. Features are processed in
decreasing order of informativeness. The informativeness of a feature is defined
by the mutual information between a feature and the class node, i.e. its potential
to reduce the entropy in the class random variable. In practice, only a fraction of
all features are computed, because the entropy in the class nodes diminish before
all features have been queried. This phenomenon suggests a straightforward, but
very effective forgetting procedure: We delete any features that cease to be used
during recognition.



5 Adaptive Feature Generation

As an agent (e.g. an animal, a human or a robot) interacts with the world, it uses
vision (and maybe other sensory modalities) to acquire state information about
the world, and performs actions appropriate in this state. This requires that the
agent’s visual features discriminate relevant aspects of the state of the world. We
posit that such features are generated in response to feedback received during
interaction with the world. For simplicity, we restrict the following discussion to
a conventional supervised-learning scenario: The actions of the agent consist of
naming class labels, the sensory input is an image, and the feedback received
from the world consists of the correct class label. We further assume that the
agent can retrieve random example images of known classes. This assumption is
realistic in many cases. For example, an infant can pick up a known object and
view it from various viewpoints; or a child receives various examples of letters
of the alphabet from a teacher.

Initially, the agent does not know about any objects or features. When it is
presented with the first object, it simply remembers the correct answer given by
the teacher. When it is shown the second object, it will guess the only category
it knows about.

When the agent gives a wrong answer, it needs to learn a new feature to
discriminate this object category from the mistaken category (or categories).
This is done by random sampling, with a bias for structurally simple features.
We employ the following heuristic procedure, where each step is iterated up to
a constant number of times:

1. Pick a random feature from some other Bayes net (corresponding to another
class) that is not yet part of this Bayes net (corresponding to the true class).
This promotes the usage of general features that are characteristic of more
than one class.

2. Sample a new feature directly from the misrecognized image by either picking
two edgels and turning them into a geometric compound, or by picking a
single texel.

3. Pick a random feature that is already part of this Bayes net, find its strongest
occurrence in the current image, and expand it geometrically by picking an
additional edgel or texel close-by.

4. Pick two random features and combine them into a conjunctive feature.

5. Pick two random features and combine them into a disjunctive feature.

After each new feature is generated, it is evaluated on a small set of example
images, retrieved from the environment, that contains examples of the true class
and the mistaken class(es). If it has any discriminative power, it is then added
to the Bayes net of the true class using the conditional probabilities estimated
using a small set of example images, randomly chosen from the training set. If
the image is now recognized correctly by the expanded Bayes net, the feature
learning procedure stops; if not, the feature is removed from the net, and the
learning procedure continues. This procedure may terminate without success.



During operation of the learning system, an instance list of all classes encoun-
tered and features queried is maintained. Periodically, all feature cutpoints, class
priors and conditional probabilities in the Bayes nets are updated according to
this list.

Feature learning does not have to stop after learning a training set perfectly.
The system can continue to search for better features. The quality of a feature is
its discriminative power at a given stage during a recognition procedure, given
by the KSD between its own class and the combined set of all other classes. We
can train our system to develop better features by imposing a minimum KSD on
all features that are used during a recognition procedure. If a feature does not
meet this requirement, the system has to learn a new and better feature. The
minimum KSD can iteratively be raised, until the system fails to find adequate
features. As a consequence, fewer (but superior) features will be queried while
recognizing a given image, and many of the inferior features will become obsolete.
We suggest this procedure, called feature upgrade, as a crude model of expert
learning, as outlined in Section 2.

6 Experiments

To illustrate that our algorithm is able to produce discriminative features, we
performed pilot experiments on two example tasks (Fig. 3). In the COIL task,
the images of the first four objects from the COIL-20 database [7] were split into
two disjoint sets such that no two neighboring viewpoints were represented in
the same set. As a result, each image set contained 36 images, spaced 10 degrees
apart on the viewing sphere, at constant elevation. We performed a 2-fold cross-
validation on these two sets: In one run, one set served as a training set and
the other as the test set; in a second run, the roles were reversed. In the PLYM
task, there were eight geometric objects on 15 artificially rendered images each,
covering a small section of the viewing sphere!. We performed a 10-fold stratified
cross-validation on this data set, with random subdivision of the 15 images of
each class into 10 subsets of 1 or 2 images each.

The results of the experiments are summarized in Table 1. While the recog-
nition results fall short of current machine recognition technology, they were
achieved by an uncommitted visual system with a strong bias toward few and
simple features that had access only to a small number of random training views
at any given time during an incremental training procedure. Most of these prop-
erties are contrary to current computer vision technology, but are characteristic
of biological vision systems.

In accord with our biased search strategy, most learned features were isolated
texels and simple geometric compounds of edgels and/or texels. Smaller numbers
of the other compound types of features were also found. In most cases, the
training set was not learned perfectly. This is because our system currently gives
up after 10 iterations through the training set. Clearly, more effective techniques
for finding distinctive features are called for.

! http://www.cis.plym.ac.uk/cis/levi/UoP_CIS_3D_Archive/8obj_set.tar
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Fig. 3. Objects of the COIL task (left) and the PLYM task (right).

Table 1. Summary of experimental results. The “expert level” column gives the num-
ber of feature upgrade iterations. The “other” columns contain cases where the system
returned an ambiguous answer, or no answer at all.

Task expert avg. # features| Training Set: Test Set:
level queried correct wrong other|correct wrong other
COIL 0 44 0.98 0.02 0.81 0.19
1 36 0.85 0.11 0.04| 0.73 0.23 0.05
2 23 0.97 0.03 0.83 0.16 0.01
3 11 0.83 0.14 0.03| 0.67 0.27 0.06
PLYM 0 19 1.00 0.72 0.28
1 21 1.00 0.76 0.21 0.03
5 13 095 0.03 0.02| 071 0.09 0.20

As the minimum KSD required of a feature is increased during feature up-
grade, it is increasingly difficult to find appropriate features in order to learn the
training set perfectly. However, feature upgrade has the desired effect of decreas-
ing the number of features queried during recognition, and where the training
set is learned well, it also tends to reduce the number of false recognitions while
marginally increasing the correct recognition rate on the test set.

7 Conclusions

There is overwhelming evidence that humans learn features for recognition in
a task-driven manner. Biological learning is on-line and incremental. We have
presented an artificial vision system that follows these characteristics, based on
an infinite combinatorial feature space and a generate-and-test search procedure
for finding discriminative features. Our method successfully learns to discrim-
inate objects. We also proposed that developing visual expertise involves the
construction of better features. Our system models this by increasing the min-
imum KSD required of features during recognition. While our system reflects
certain aspects of human vision, it is not a complete model in that it focuses on
appearance-based discriminative features. Biological vision systems are probably
composed of several complementary algorithms.

As a model of feature learning for discrimination, the main limitation of our
system is the undirected search for features in images that is only guided by a
few simple heuristics. A more faithful (and more practical) model requires a de-
velopmental schedule that initially constrains the search for features to increase



the likelihood of finding useful features fast, while temporarily restricting gen-
erality. Over time, these restrictions should be relaxed, while the system learns
better heuristics from experience. This is an area of further research.

Another critical limitation of our current system is the restricted expressive-
ness our feature space that encodes only high-contrast edge, corner and texture
information. As such, our model roughly corresponds to the human visual system
during early infancy [5]. A more complete model should at least encode color and
blob-type features. In addition, more sophisticated recognition requires higher-
level features such as qualitative (“Gestalt”) features (e.g. parallelism, symmetry,
continuity, closure) and multiplicity (a triangle has three corners; a bicycle wheel
has many spokes). We hope to address these in future work.
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