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t. Most existing ma
hine vision systems perform re
ognitionbased on a �xed set of hand-
rafted features, geometri
 models, or eigen-subspa
e de
omposition. Drawing from psy
hology, neuros
ien
e and in-tuition, we show that 
ertain aspe
ts of human performan
e in visualdis
rimination 
annot be explained by any of these te
hniques. We ar-gue that many pra
ti
al re
ognition tasks for arti�
ial vision systemsoperating under un
ontrolled 
onditions 
riti
ally depend on in
remen-tal learning. Loosely motivated by visuo
orti
al pro
essing, we presentfeature representations and learning methods that perform biologi
allyplausible fun
tions. The paper 
on
ludes with experimental results gen-erated by our method.1 Introdu
tion
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How 
exible are the representations for visual re
ognition, en
oded by the neu-rons of the human visual 
ortex? Are they predetermined by a �xed developmen-tal s
hedule, or does their development depend on their stimulation? Does theirdevelopment 
ease at some point during our maturation, or do they 
ontinue toevolve throughout our lifetime? For some of these questions, the answers havebeen well established. For example, the development of re
eptive �elds in theearly visual pathways is in
uen
ed by stimulation of the visual system. Somevisual fun
tions do not develop at all without adequate per
eptual stimulationduring a maturational sensitive period. Higher-order visual fun
tions su
h aspattern dis
rimination 
apabilities are also subje
t to a developmental s
hedule.It is still debated to what extent feature learning for pattern dis
rimination 
on-tinues throughout adulthood. Re
ent psy
hologi
al studies indi
ate that humansare able to form new features if required by a dis
rimination task [11℄.In 
ontrast to the human visual system, most work on ma
hine vision has notused learning at the level of feature dete
tors. In the following se
tion, we brieflydis
uss visual obje
t re
ognition by humans and ma
hines, and we argue thatlow-level learning is an essential ingredient of a robust and general visual sys-tem. The remainder of the paper presents our experimental system for learningdis
riminative features for re
ognition.This work was supported in part by the National S
ien
e Foundation under grantsCISE/CDA-9703217, IRI-9704530 and IRI-9503687, by the Air For
e Resear
h Labs,IFTD (via DARPA) under grant F30602-97-2-0032, and by Hugin Expert A/S througha low-
ost Ph.D. li
ense of their Bayesian network library.



2 Feature Learning in Humans and Ma
hinesHow do humans learn re
ognition skills? Two prin
ipal hypotheses 
an be iden-ti�ed [9℄: A

ording to the S
hema Hypothesis, sensory input is mat
hed tointernal representations of obje
ts that are built and re�ned through experien
e.On the other hand, the Di�erentiation Hypothesis postulates that 
ontrastiverelations are learned that serve to distinguish among the items. Psy
hologi
aleviden
e argues for a strong role of Di�erentiation learning [9, 13℄. What exa
tlythe dis
riminative features are and how they are dis
overed is un
lear. It appearsthat feature dis
overy is a hard problem even for humans and takes a long timeto learn [5℄:{ Neonates 
an distinguish 
ertain patterns, apparently based on statisti
alfeatures like spatial intensity varian
e or 
ontour density.{ Infants begin to note simple 
oarse-level geometri
 relationships, but performpoorly in the presen
e of distra
ting 
ues. They do not 
onsistently payattention to 
ontours and shapes.{ At the age of about two years, 
hildren begin to dis
over �ne-grained detailsand higher-order geometri
 relationships. However, attention is still limitedto \salient" features [15℄.{ Over mu
h of 
hildhood, humans learn to dis
over distin
tive features evenif they are overshadowed by more salient distra
tors.There is growing eviden
e that even adults learn new features when fa
ed witha novel re
ognition task. In a typi
al experiment, subje
ts are presented with
omputer-generated renderings of unfamiliar obje
ts that fall into 
ategoriesbased on spe
i�
ally designed but unobvious features. After learning the 
atego-rization, the subje
ts are asked to 
ategorize other obje
ts that exhibit 
ontrolledvariations of the diagnosti
 features, whi
h reveals the features learned by thesubje
ts. S
hyns and Rodet [12℄ employed three 
ategories of \Martian 
ells."The �rst 
ategory was 
hara
terized by a feature 
alled X , the se
ond by afeature Y , and the third by a feature XY , whi
h was a 
omposite of X and Y .Subje
ts were divided into two groups that di�ered in the order they had to learnthe 
ategories. Subje
ts in one group �rst learned to dis
riminate 
ategories Xand Y and then learned 
ategory XY , whereas the other group learned XYand X �rst, then Y . Subje
ts of the �rst group learned to 
ategorize all obje
tsbased on two features (X and Y ), whereas the subje
ts of the se
ond grouplearned three features, not realizing that XY was a 
ompound 
onsisting of theother two. Evidently, feature generation was driven by the re
ognition task. Fora summary of eviden
e for feature learning in adults, see a re
ent arti
le [11℄.Feature learning does not ne
essarily stop after learning a 
on
ept. Tanakaand Taylor [14℄ found that bird experts were as fast to re
ognize obje
ts at thesubordinate level (\robin") as they were at the basi
 level (\bird"). In 
ontrast,non-experts are 
onsistently faster on basi
-level dis
riminations as 
omparedto subordinate-level dis
riminations. Gauthier and Tarr [4℄ trained novi
es tobe
ome experts on unfamiliar obje
ts and obtained similar results. These �ndingsindi
ate that the way experts perform re
ognition is qualitatively di�erent than2



novi
es. We suggest that experts have developed spe
ialized features, fa
ilitatingrapid and reliable re
ognition in their domain of expertise.General theories of vision su
h as those by Marr [6℄ and Biederman [2℄ havesparked extensive resear
h e�orts in both human and ma
hine vision, and have
ontributed substantially to our understanding of how visual pro
esses may op-erate. However, they have not led to arti�
ial vision systems of noteworthy gen-erality. Why is this so? From our point of view, a key reason is that most theoriesof vision do not address adaptation and learning. The real world is very 
omplex,noisy, nonstationary { too variable for any �xed visual system, too unpredi
tablefor its designer. Today's fun
tional vision systems are highly spe
ialized and op-erate under well-
ontrolled 
onditions. They break if the built-in assumptionsabout task and environment do not hold.Consider visual re
ognition. It is easy to see that there is no parti
ular repre-sentation that 
an express all per
eivable distin
tions between obje
ts or obje
t
ategories that may later be required of a re
ognition system. Most existingma
hine vision systems perform re
ognition either based on a �xed set of hand-
rafted features, eigen-subspa
e de
omposition, or geometri
 model mat
hing.In the �rst 
ase, features are 
hosen in a best e�ort to express the distin
tionsrequired, but not too mu
h more to avoid over�tting. The same is true of geo-metri
 models. How mu
h detail should be en
oded in the models? On the onehand, the level of detail should be kept low to in
rease generalization and eÆ-
ien
y; on the other hand, models should 
ontain suÆ
ient detail to express thedistin
tions required by a given task. Thus, both these methods are restri
tedto tasks that are well-de�ned at design time. We 
all su
h tasks 
losed. In 
on-trast, almost all human visual learning takes pla
e in open settings, where tasksare open-ended and evolve over time. While eigen-subspa
e representations (orrelated subspa
e methods that optimally separate instan
es by 
lass label) areto some extent 
onsistent with 
ertain aspe
ts of human visual me
hanisms (e.g.fa
e re
ognition), it appears unlikely that su
h methods 
an a

ount for all ofbiologi
al dis
rimination learning sin
e they 
an tolerate only a limited degreeof o

lusion and obje
t variability.Humans 
an learn an impressive variety of distin
tions ranging from minis-
ule lo
al features su
h as a tiny s
rat
h to abstra
t global features su
h assymmetry. In light of the eviden
e 
ited above, it seems 
lear that humans are
apable of forming new representations of global and lo
al appearan
e 
hara
-teristi
s in a task-driven way. Thus, a key 
on
ept for building arti�
ial visionsystems of substantially in
reased generality and robustness is task-driven learn-ing or adaptation. An adaptive system should be able to{ optimize its performan
e on-line with respe
t to individual tasks,{ expand its fun
tionality in
rementally,{ optimize its performan
e on-line under the a
tual working 
onditions, and{ tra
k a nonstationary environment by adapting its parametersby building new representations and adapting parameters. In the following se
-tions, we des
ribe our 
urrent work on a model of feature learning for re
ognitionthat addresses all of these issues, building on our previous work [8℄.3



3 An In�nite Feature Spa
eWe argued above that any �xed obje
t representation is insuÆ
ient for learningarbitrary distin
tions. Instead, we begin by spe
ifying a small set of primitivefeatures that 
an be 
ombined into higher-order features a

ording to a smallnumber of rules that will be dis
ussed below. All features that 
an be representedin this way form an in�nite feature spa
e. The stru
tural 
omplexity of a feature,i.e. the number of primitive features that form a 
ompound, naturally provides apartial ordering of this spa
e. Our learning pro
edure sear
hes the feature spa
ebeginning with stru
turally simple features, and 
onsiders more 
omplex featuresas needed [1℄. The underlying assumption is that stru
turally simple featuresare easier to dis
over and have less dis
riminative potential than 
ompli
atedfeatures, but are still useful for some aspe
ts of the learning problem.3.1 Primitive FeaturesIn our 
urrent system, primitive features are lo
al appearan
e des
riptors repre-sented as ve
tors of lo
al �lter responses. The �lters are oriented derivatives of2-D Gaussian fun
tions, with orientations 
hosen su
h that they form a steer-able basis [3℄. Here, the steerability property permits the eÆ
ient 
omputationof �lter responses of Gaussian-derivative kernels at any orientation, given d+ 1measured �lter responses for the dth derivative at spe
i�
 orientations. Spe
i�-
ally, our system 
urrently uses two spe
i�
 variants of su
h des
riptors:{ An edgel is en
oded as a 2-ve
tor 
ontaining the �lter responses to the two�rst-derivative basis �lters. These values en
ode the lo
al intensity gradi-ent of horizontal (Gx) and verti
al (Gy) orientation. Using the steerabilityproperty, the magnitude of gradients in any orientation 
an be 
omputed.{ A texel is represented as an 18-ve
tor 
omprising the responses to the basis�lters of the �rst three derivatives at two s
ales. This represents a lo
altexture signature. Like edgels, texels have an asso
iated orientation that isde�ned by the two �rst-derivative �lter responses. When the orientation of atexel is steered, the entire ve
tor 
ontaining all derivatives is rotated rigidlywith referen
e to the �rst derivative 
omputed at the largest s
ale [10℄.This 
hoi
e of low-level representations is plausible of biologi
al early vision.While it is unlikely that any biologi
al visual systems exploit steerability, thisis an attra
tive 
omputational alternative in the absen
e of massively parallelhardware. Steerability leads to rotational invarian
e whi
h simpli�es arti�
ialvision systems at essentially no extra 
ost. We are not aware of any 
on
lusiveeviden
e for or against the biologi
al faithfulness of our texel representation.3.2 Higher-order FeaturesPrimitive features by themselves are not very dis
riminative. However, spatial
ombinations of these 
an express a wide range of shape and texture 
hara
ter-isti
s at various degrees of spe
i�
ity or generality. We suggest the following four
omplementary types of feature 
omposition:4



�1 �2 d2�3
�4d1referen
e point Fig. 1. A geometri
 feature of order 3, 
omposedof three primitives. The feature is de�ned by theangles � and the distan
es d. Ea
h primitive iseither an edgel or a texel.{ Geometri
 relations are given by the relative angles and distan
es betweenthe parti
ipating lower-order features (Fig. 1). As long as these are rotation-invariant, so is their geometri
 
omposition. Geometri
 features are usefulfor representing e.g. 
orners, angles, and 
ollinearity.{ Topologi
al relations here refer to relaxed geometri
 relationships between
omponent features that allow some degree of variability in angles and dis-tan
es. Topologi
al 
ompound features are more robust to viewpoint 
hangesthan are geometri
 features, at the expense of spe
i�
ity.{ Conjun
tive features assert the presen
e of all 
omponent features withoutmaking any statement about their geometri
 or topologi
al relationship.{ Disjun
tive features are 
onsidered to be present in a s
ene if at least one
omponent feature is dete
ted. This 
an express statements su
h as \If I seea dial or a number pad, I may be looking at a telephone."In 
ontrast to other work, our features 
an be 
omposed into in
reasingly 
om-plex and spe
i�
 des
riptors of 2-D shape, whi
h is 
onsistent with 
urrent mod-els of the inferotemporal 
ortex. Features are 
omputed at various s
ales, gen-erated by su

essively subsampling images by fa
tor two. This a
hieves somedegree of s
ale invarian
e. Moreover, many 
ompositions of edgels are inherentlytolerant to 
hanges in s
ale. For example, the arrangement shown in Fig. 1 ap-plies equally to triangles of any size. Another desirable property of these featuresis that no expli
it 
ontour extra
tion or segmentation is required. This avoidsthese two diÆ
ult open problems in 
omputer vision and should provide ro-bustness to various kinds of image degradation. In 
ontrast, the human visualsystem dete
ts meaningful 
ontours with remarkable robustness. This 
apability
an probably not be explained entirely as a low-level visual pro
ess, but is sup-ported by pre-segmentation re
ognition and task-dependent top-down pro
esses.4 Bayesian Networks for Re
ognitionThe presen
e of a given feature x� at a point i in the image is denoted by itsstrength s 2 [0; 1℄. For primitive features, s = maxf0; r(x�;x(i))g, where r is thenormalized 
ross 
orrelation fun
tion. The ve
tor quantity x� is a model feature,and the fun
tion x(i) returns the 
orresponding feature at lo
ation i. A geomet-ri
 feature is des
ribed by the 
on
atenation of the 
onstituent feature valuesx. In the 
ase of topologi
al and 
onjun
tive features, the strength of the 
om-pound feature is the produ
t of the strengths of its 
onstituents; for disjun
tivefeatures, the maximum is used. Re
ognition is based on the maximum strengthsof features found in the s
ene (or within a region if interest). Mapping feature5



Feature 1 Feature 4Feature 2

Feature 5Feature 3

Class Fig. 2. A Bayesian network for one
lass. Note some interdependentfeatures. A network su
h as this is
reated for ea
h 
lass.ve
tors to 
lass (or obje
t) labels is the problem of 
lassi�
ation, for whi
h manyalgorithms exist. We 
hose Bayesian networks for their attra
tive properties thatare desirable for open-domain re
ognition problems. In our system, ea
h 
lassis modeled as a separate Bayes net. The presen
e of an obje
t is modeled asa dis
rete random variable with two states, true and false. The presen
e of anobje
t gives rise to observable features, represented by random variables whosedistributions are 
onditional on the presen
e of an obje
t of this 
lass. Assum-ing that the features are 
onditionally independent given the 
lass, the resultingBayes net has the topology of a star, with ar
s 
onne
ting the 
lass node to ea
hof the feature nodes.If some features are not independent, 
orresponding ar
s must be insertedbetween the appropriate feature nodes. For example, in Fig. 2, Feature 3 maybe a geometri
 
omposition with Feature 2, that is also in the feature set. Then,the presen
e of Feature 3 in an image implies the presen
e of Feature 2. Thus,in the Bayes net there is an ar
 from node 3 to node 2. An analogous argumentholds for topologi
al and 
onjun
tive features, su
h as Feature 5 in Fig. 2, that
ombines Features 3 and 4. In the 
ase of disjun
tive features, the dire
tion ofthe argument (and that of the additional arrows) is reversed.Our feature strengths are 
ontinuous. We split ea
h feature variable intotwo bins, 
orresponding to \present" and \not present", using a threshold. Thisthreshold is determined individually for ea
h feature variable su
h that its dis-
riminative power between its own 
lass and a misre
ognized 
lass is maximized.The dis
riminative power of a feature variable given a threshold is measuredin terms of the Kolmogorov-Smirno� distan
e (KSD). The KSD between two
onditional distributions of a random variable is the di�eren
e between the 
u-mulative probabilities at a given value of this variable under the two 
onditions.This separates the instan
es of the two 
onditions optimally, in the Bayesiansense, using a single 
utpoint.To perform re
ognition, we 
ompute feature values one by one and updatethe Bayesian network after in
orporating ea
h feature. The 
lass with the high-est posterior probability gives the re
ognition result. Features are pro
essed inde
reasing order of informativeness. The informativeness of a feature is de�nedby the mutual information between a feature and the 
lass node, i.e. its potentialto redu
e the entropy in the 
lass random variable. In pra
ti
e, only a fra
tion ofall features are 
omputed, be
ause the entropy in the 
lass nodes diminish beforeall features have been queried. This phenomenon suggests a straightforward, butvery e�e
tive forgetting pro
edure: We delete any features that 
ease to be usedduring re
ognition. 6



5 Adaptive Feature GenerationAs an agent (e.g. an animal, a human or a robot) intera
ts with the world, it usesvision (and maybe other sensory modalities) to a
quire state information aboutthe world, and performs a
tions appropriate in this state. This requires that theagent's visual features dis
riminate relevant aspe
ts of the state of the world. Weposit that su
h features are generated in response to feedba
k re
eived duringintera
tion with the world. For simpli
ity, we restri
t the following dis
ussion toa 
onventional supervised-learning s
enario: The a
tions of the agent 
onsist ofnaming 
lass labels, the sensory input is an image, and the feedba
k re
eivedfrom the world 
onsists of the 
orre
t 
lass label. We further assume that theagent 
an retrieve random example images of known 
lasses. This assumption isrealisti
 in many 
ases. For example, an infant 
an pi
k up a known obje
t andview it from various viewpoints; or a 
hild re
eives various examples of lettersof the alphabet from a tea
her.Initially, the agent does not know about any obje
ts or features. When it ispresented with the �rst obje
t, it simply remembers the 
orre
t answer given bythe tea
her. When it is shown the se
ond obje
t, it will guess the only 
ategoryit knows about.When the agent gives a wrong answer, it needs to learn a new feature todis
riminate this obje
t 
ategory from the mistaken 
ategory (or 
ategories).This is done by random sampling, with a bias for stru
turally simple features.We employ the following heuristi
 pro
edure, where ea
h step is iterated up toa 
onstant number of times:1. Pi
k a random feature from some other Bayes net (
orresponding to another
lass) that is not yet part of this Bayes net (
orresponding to the true 
lass).This promotes the usage of general features that are 
hara
teristi
 of morethan one 
lass.2. Sample a new feature dire
tly from the misre
ognized image by either pi
kingtwo edgels and turning them into a geometri
 
ompound, or by pi
king asingle texel.3. Pi
k a random feature that is already part of this Bayes net, �nd its strongesto

urren
e in the 
urrent image, and expand it geometri
ally by pi
king anadditional edgel or texel 
lose-by.4. Pi
k two random features and 
ombine them into a 
onjun
tive feature.5. Pi
k two random features and 
ombine them into a disjun
tive feature.After ea
h new feature is generated, it is evaluated on a small set of exampleimages, retrieved from the environment, that 
ontains examples of the true 
lassand the mistaken 
lass(es). If it has any dis
riminative power, it is then addedto the Bayes net of the true 
lass using the 
onditional probabilities estimatedusing a small set of example images, randomly 
hosen from the training set. Ifthe image is now re
ognized 
orre
tly by the expanded Bayes net, the featurelearning pro
edure stops; if not, the feature is removed from the net, and thelearning pro
edure 
ontinues. This pro
edure may terminate without su

ess.7



During operation of the learning system, an instan
e list of all 
lasses en
oun-tered and features queried is maintained. Periodi
ally, all feature 
utpoints, 
lasspriors and 
onditional probabilities in the Bayes nets are updated a

ording tothis list.Feature learning does not have to stop after learning a training set perfe
tly.The system 
an 
ontinue to sear
h for better features. The quality of a feature isits dis
riminative power at a given stage during a re
ognition pro
edure, givenby the KSD between its own 
lass and the 
ombined set of all other 
lasses. We
an train our system to develop better features by imposing a minimum KSD onall features that are used during a re
ognition pro
edure. If a feature does notmeet this requirement, the system has to learn a new and better feature. Theminimum KSD 
an iteratively be raised, until the system fails to �nd adequatefeatures. As a 
onsequen
e, fewer (but superior) features will be queried whilere
ognizing a given image, and many of the inferior features will be
ome obsolete.We suggest this pro
edure, 
alled feature upgrade, as a 
rude model of expertlearning, as outlined in Se
tion 2.6 ExperimentsTo illustrate that our algorithm is able to produ
e dis
riminative features, weperformed pilot experiments on two example tasks (Fig. 3). In the COIL task,the images of the �rst four obje
ts from the COIL-20 database [7℄ were split intotwo disjoint sets su
h that no two neighboring viewpoints were represented inthe same set. As a result, ea
h image set 
ontained 36 images, spa
ed 10 degreesapart on the viewing sphere, at 
onstant elevation. We performed a 2-fold 
ross-validation on these two sets: In one run, one set served as a training set andthe other as the test set; in a se
ond run, the roles were reversed. In the PLYMtask, there were eight geometri
 obje
ts on 15 arti�
ially rendered images ea
h,
overing a small se
tion of the viewing sphere1. We performed a 10-fold strati�ed
ross-validation on this data set, with random subdivision of the 15 images ofea
h 
lass into 10 subsets of 1 or 2 images ea
h.The results of the experiments are summarized in Table 1. While the re
og-nition results fall short of 
urrent ma
hine re
ognition te
hnology, they werea
hieved by an un
ommitted visual system with a strong bias toward few andsimple features that had a

ess only to a small number of random training viewsat any given time during an in
remental training pro
edure. Most of these prop-erties are 
ontrary to 
urrent 
omputer vision te
hnology, but are 
hara
teristi
of biologi
al vision systems.In a

ord with our biased sear
h strategy, most learned features were isolatedtexels and simple geometri
 
ompounds of edgels and/or texels. Smaller numbersof the other 
ompound types of features were also found. In most 
ases, thetraining set was not learned perfe
tly. This is be
ause our system 
urrently givesup after 10 iterations through the training set. Clearly, more e�e
tive te
hniquesfor �nding distin
tive features are 
alled for.1 http://www.
is.plym.a
.uk/
is/levi/UoP CIS 3D Ar
hive/8obj set.tar8



Fig. 3. Obje
ts of the COIL task (left) and the PLYM task (right).Table 1. Summary of experimental results. The \expert level" 
olumn gives the num-ber of feature upgrade iterations. The \other" 
olumns 
ontain 
ases where the systemreturned an ambiguous answer, or no answer at all.Task expert avg. # features Training Set: Test Set:level queried 
orre
t wrong other 
orre
t wrong otherCOIL 0 44 0.98 0.02 0.81 0.191 36 0.85 0.11 0.04 0.73 0.23 0.052 23 0.97 0.03 0.83 0.16 0.013 11 0.83 0.14 0.03 0.67 0.27 0.06PLYM 0 19 1.00 0.72 0.281 21 1.00 0.76 0.21 0.035 13 0.95 0.03 0.02 0.71 0.09 0.20As the minimum KSD required of a feature is in
reased during feature up-grade, it is in
reasingly diÆ
ult to �nd appropriate features in order to learn thetraining set perfe
tly. However, feature upgrade has the desired e�e
t of de
reas-ing the number of features queried during re
ognition, and where the trainingset is learned well, it also tends to redu
e the number of false re
ognitions whilemarginally in
reasing the 
orre
t re
ognition rate on the test set.7 Con
lusionsThere is overwhelming eviden
e that humans learn features for re
ognition ina task-driven manner. Biologi
al learning is on-line and in
remental. We havepresented an arti�
ial vision system that follows these 
hara
teristi
s, based onan in�nite 
ombinatorial feature spa
e and a generate-and-test sear
h pro
edurefor �nding dis
riminative features. Our method su

essfully learns to dis
rim-inate obje
ts. We also proposed that developing visual expertise involves the
onstru
tion of better features. Our system models this by in
reasing the min-imum KSD required of features during re
ognition. While our system re
e
ts
ertain aspe
ts of human vision, it is not a 
omplete model in that it fo
uses onappearan
e-based dis
riminative features. Biologi
al vision systems are probably
omposed of several 
omplementary algorithms.As a model of feature learning for dis
rimination, the main limitation of oursystem is the undire
ted sear
h for features in images that is only guided by afew simple heuristi
s. A more faithful (and more pra
ti
al) model requires a de-velopmental s
hedule that initially 
onstrains the sear
h for features to in
rease9



the likelihood of �nding useful features fast, while temporarily restri
ting gen-erality. Over time, these restri
tions should be relaxed, while the system learnsbetter heuristi
s from experien
e. This is an area of further resear
h.Another 
riti
al limitation of our 
urrent system is the restri
ted expressive-ness our feature spa
e that en
odes only high-
ontrast edge, 
orner and textureinformation. As su
h, our model roughly 
orresponds to the human visual systemduring early infan
y [5℄. A more 
omplete model should at least en
ode 
olor andblob-type features. In addition, more sophisti
ated re
ognition requires higher-level features su
h as qualitative (\Gestalt") features (e.g. parallelism, symmetry,
ontinuity, 
losure) and multipli
ity (a triangle has three 
orners; a bi
y
le wheelhas many spokes). We hope to address these in future work.Referen
es[1℄ Y. Amit, D. Geman, and K. Wilder. Joint indu
tion of shape features and tree
lassi�ers. IEEE Trans. Pattern Anal. Ma
h. Intell., 19(11):1300{1305, 1997.[2℄ I. Biederman. Re
ognition-by-
omponents: A theory of human image understand-ing. Psy
hologi
al Review, 94:115{147, 1987.[3℄ W. T. Freeman and E. H. Adelson. The design and use of steerable �lters. IEEETrans. Pattern Anal. Ma
h. Intell., 13(9):891{906, 1991.[4℄ I. Gauthier and M. J. Tarr. Be
oming a \Greeble" expert: Exploring me
hanismsfor fa
e re
ognition. Vision Resear
h, 37(12):1673{1682, 1997.[5℄ E. J. Gibson and E. S. Spelke. The development of per
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