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Abstract
We present a framework for learning features for
visual discrimination. The learning system is ex-
posed to a sequence of training images. When-
ever it fails to recognize a visual context ade-
quately, new features are sought that discrimi-
nate further between the true and false classes.
Features consist of hierarchical combinations of
primitive features (local edge and texture char-
acteristics) that are sampled from example im-
ages. The system continues to learn better fea-
tures even after all recognition errors have been
eliminated, similarly to mechanisms underlying
human visual expertise. Whenever the proba-
bilistic recognition algorithm returns any poste-
rior class probabilities greater than zero and less
than one, the system attempts to find new features
that improve discrimination between the classes
in question. Our experiments indicate that this
procedure tends to improve classification accu-
racy on independent test images, while reducing
the number of features used for recognition.

1. Introduction
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The attributes or features available to an inductive machine
learning algorithm limit the possible performance of this al-
gorithm on a given task. A given feature set may place a
target concept outside of the space of concepts expressible
by an algorithm. Moreover, an expressible concept may
still be hard to discover by this algorithm; using a different
feature set, the same task may be easy to learn by the same
algorithm. Since learning algorithms differ in their induc-
tive biases, the same feature set may be well suited for one
algorithm but inappropriate for another (John et al., 1994).

Enormous manual effort is often expended to identify use-
ful features. However, any manually designed feature set
is subject to at least these two limitations: First, it is not
clear how well these features are tuned to any given learn-
ing algorithm. Second, the performance of the algorithm
is limited by the given features. One way to address both
problems is to have a learning algorithm construct its own

features. These issues are receiving increased attention in
the machine learning literature (Precup & Utgoff, 1998).

This paper addresses the problem of learning object dis-
crimination by a computer vision system. Presently, most
feature-based visual recognition systems employ fixed fea-
ture sets and suffer from the drawbacks mentioned above.
Training a recognition system is most often a clearly de-
marcated off-line process. After the training phase is com-
plete, further learning is either not possible, or may even be
counterproductive because of overfitting problems.

In previous work we introduced a framework for construct-
ing visual features by hierarchical composition of primitive
features (Piater & Grupen, 1999). This paper describes in
detail an incremental procedure for learning discriminative
composite features using a Bayesian network classifier, and
introduces our concept ofexpert learning. Since feature
learning is driven by the classifier itself, features are con-
structed that are tuned to the classifier. The procedure is bi-
ased to find few but highly discriminative features. Learn-
ing can continue even in the absence of any misclassifica-
tions by looking for features that have more discriminative
power than previously learned features. This is an effective
countermeasure against overfitting, and tends to increase
correct and to decrease false recognitions on an indepen-
dent test set, as well as to reduce the number of features
employed by the classifier. This behavior resembles that
of humans who develop expertise through extensive train-
ing, resulting in increased accuracy and faster responses
(Tanaka & Taylor, 1991; Gauthier & Tarr, 1997).

The following section summarizes relevant aspects of our
visual features, as introduced in earlier work. Section 3 ex-
plains Bayesian network classifiers and their use in our sys-
tem. Incremental feature learning and expert learning are
described in Section 4, followed by experimental results.

2. An Infinite Feature Space

Our objective is to learn features such as to avoid the two
drawbacks of fixed feature sets mentioned above. We be-
gin by specifying a small set of primitive features that can
be combined into compound features according to a small
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Figure 1. A geometric feature of order 3, composed of three prim-
itives. The feature is defined by the anglesφ and the distancesd,
and the orientation of this specific instance is denoted byθ. Each
primitive is either an edgel or a texel.

number of rules that will be discussed below. All features
that can be represented in this way form an infinite fea-
turespace. The structural complexity of a feature, i.e. the
number of primitive features that form a compound, natu-
rally provides a partial ordering of this space. Our learn-
ing procedure searches the feature space beginning with
structurally simple features, and considers more complex
features as needed (Amit et al., 1997). The underlying as-
sumption is that structurally simple features are easier to
discover and have less discriminative potential than com-
plicated features, but are still useful for some aspects of the
learning problem.

2.1 Primitive Features and their Composition

In our current system, primitive features are local, oriented
appearance descriptors represented as vectors of local fil-
ter responses. These filters are oriented derivatives of 2-D
Gaussian functions, with orientations chosen such that they
form a steerable basis (Freeman & Adelson, 1991). Here,
the steerability property permits the efficient computation
of filter responses of Gaussian-derivative kernels at any ori-
entation. This technique is used to normalize features for
orientation in the image plane, thus achieving rotational in-
variance (Rao & Ballard, 1995).

Currently, our system uses two specific variants of such de-
scriptors. Anedgel is encoded as a 2-vector containing
the filter responses to the two first-derivative basis filters.
It represents the magnitude and orientation of a localized
spatial intensity gradient. Atexel is represented as an 18-
vector consisting of the responses to the basis filters of the
first three derivatives at two scales. This represents a local
texture signature. Like edgels, texels have an associated
orientation that is defined by the first derivatives. For more
detail, the interested reader is referred to our earlier work
(Piater & Grupen, 1999).

Primitive features by themselves are not very discrimina-
tive. However, spatial combinations of these can express a
wide range of shape and texture characteristics at various
degrees of specificity. We employ the following four com-
plementary types of feature composition (Piater & Grupen,
2000):Geometricrelations are given by the relative angles
and distances between the constituent lower-order features

(Figure 1). Geometric features are useful for representing
e.g. corners, angles, and collinearity.Topologicalrelations
here refer to relaxed geometric relationships between com-
ponent features that allow some degree of variability in
angles and distances. Topological compound features are
more robust to viewpoint changes than are geometric fea-
tures, at the expense of specificity.Conjunctivefeatures as-
sert the presence of their component features without mak-
ing any statement about their geometric or topological rela-
tionship. Disjunctivefeatures are considered to be present
in a scene if at least one component feature is detected.
This can express statements such as “If I see a dialor a
number pad, I may be looking at a telephone.”

Features are computed at various scales, generated by suc-
cessively subsampling images by factor two. This achieves
a certain degree of scale invariance. Moreover, many com-
positions of edgels are inherently tolerant to changes in
scale. For example, the arrangement shown in Figure 1
applies equally to triangles of any size.

Our feature space encompasses an infinite variety of local-
ized contrast descriptors. For practical purposes, its main
limitation is its ignorance of color and contours, both of
which are highly meaningful to the human visual system.

2.2 Measuring the Value of a Feature

The presence of a given featurex∗ at a pointi in the image
is denoted by itsstrengths ∈ [0, 1]. For primitive features,
this is computed ass = max{0, r(x∗,x(i))}, wherer is
the normalized cross correlation function. The valuex∗ is
a model feature vector, and the functionx(i) returns the
corresponding feature vector at locationi. For geometric
features, the feature vector of the compound feature is the
concatenation of the individual feature vectors of the con-
stituent features. In the case of topological and conjunctive
features, the strength of the compound feature is the min-
imum of the strengths of its constituents; for disjunctive
features, the maximum is used.

The value of a feature of a given image is the maximum
strength of this feature at any location in the image, a
real value between zero and one. Finding the maximum
strength of a feature in principle involves measuring its
strength at each point in the image. For efficiency, we re-
strict our search for the strongest feature to salient “inter-
est” points that are likely to return a high response (Piater
& Grupen, 2000).

3. Multiple Bayes Nets for Recognition

Our system employs Bayesian network classifiers to rec-
ognize images based on the features introduced above.
This section briefly describes a general Bayes net classi-
fier model and shows how it is applied in our system.
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Figure 2. A Bayesian network for a classC. A network such as
this is created for each class. Each feature is specialized to distin-
guish ClassC from one or more other classes. Note some inter-
dependent features.

3.1 Bayes Net Classifiers

In a Bayesian network, each node represents a random vari-
able. The network structure specifies a set of conditional
independence statements: The variable represented by a
node is conditionally independent of its non-descendants
in the graph, given the values of the variables represented
by its parent nodes. Here, each class is modeled by its own
Bayes net. The presence of a visual context (e.g. an object)
is modeled as a discrete random variable with two states,
true and false. A visual context gives rise to observable
features that are represented by random variables whose
distributions are conditioned on the presence of an object
of this class. Assuming that the features are conditionally
independent given the class, the resulting Bayes net has the
topology of a star, with arcs connecting the class node to
each of the feature nodes. Given observed feature values,
the class priors and conditional feature probabilities, the
posterior class probabilities can be inferred by simple ap-
plication of Bayes’ Theorem to each component network.

If some features are not independent, corresponding arcs
must be inserted between the appropriate feature nodes.
For example, in Figure 2, Feature 3 may participate in a
geometric composition with Feature 2, which is also in the
feature set. Then, the presence of Feature 3 in an image im-
plies the probable presence of Feature 2. Thus, in the Bayes
net there is an arc from node 3 to node 2. An analogous
argument holds for topological and conjunctive features,
such as Feature 5 in Figure 2, which combines Features
3 and 4. In the case of disjunctive features, the direction of
the argument (and that of the additional arrows) is reversed.

To propagate evidence, more sophisticated mechanisms are
needed than in the simple case of class-conditional inde-
pendence. For the purposes of this paper, suffice it to say
that after instantiation of some of the variables (nodes) with
actually observed values, the net can be brought toequilib-
rium in which the probabilities and observations in the net
are consistent. For more detail, the interested reader is re-
ferred to the literature on Bayesian networks.

Recall from Section 2.2 that the feature variables are con-
tinuous. We split each feature variable into two bins, cor-
responding to “present” and “not present”, using a thresh-
old. This threshold is determined individually for each fea-
ture node such as to maximize its discriminative power be-
tween its own class and one or more other classes. These
other classes are determined by the learning procedure (see
Section 4.1 below) and remain fixed over the lifetime of
the feature node. The discriminative power of a feature
variable given a threshold is measured in terms of the
Kolmogorov-Smirnoff distance (KSD). The KSD between
two conditional distributions of a random variable is the
difference between the cumulative probabilities at a given
value of this variable under the two conditions. Maximiz-
ing the KSD separates the instances of the two conditions
optimally, in the Bayesian sense, using a single cutpoint.

3.2 Recognition

Recognition of a visual context can be performed in the
conventional way by first measuring the strength of each
feature in the image, setting the feature nodes of the Bayes
nets to the corresponding values, and computing the poste-
rior probability of the presence of each class. In this case,
the absence of a feature is meaningful to the system. Alter-
natively, robustness to occlusion can be built into the sys-
tem by setting only feature nodes corresponding to found
features, and leaving the others unspecified. In this case,
the posterior probability of these features being present (but
occluded) can be easily computed. Incorporating evidence
into the net will monotonically increase the posterior prob-
ability of a class. In particular, the posterior probability
is always greater than or equal to the prior. In this paper,
however, negative evidence is incorporated into the net.

Since each class is represented by its own Bayes net, the
possibility of multiple objects or contexts present in a scene
is built into the system. The presence of each class is de-
termined independently of all others. Those classes with a
posterior probability greater than 0.5 are said to berecog-
nized. A class is calledtrue if it is present in the scene, and
falseotherwise. In the experiments discussed in this paper
there is always exactly one true class. Thus, each recogni-
tion falls into exactly one of the following categories:

correct: Exactly the true class is recognized.
wrong: Exactly one class is recognized, and this is not the

true class.
ambiguous: More than one class is recognized, including

the true class. The other recognized classes are false.
confused: More than one class is recognized, but they do

not include the true class.
ignorant: No class is recognized.
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Instead of computing all feature values at the outset, we
compute them one by one and update the Bayesian net-
works after incorporating each feature. One can quit as
soon as confidence in the recognition result exceeds some
threshold, e.g. based on the posterior probabilities. Fea-
tures are processed in decreasing order of informativeness.
The informativeness of a feature is defined by the maxi-
mum mutual information between a featureF and a given
class variableC:

I(C,F ) =
∑
c

∑
f

BEL(c, f) log
BEL(c, f)

BEL(c)BEL(f)

The summations range over all possible (discrete) values of
the two random variables.I(C,F ) expresses the potential
of an observation ofF to reduce the uncertainty ofC, i.e.
the entropy of its posterior probabilities. It is computed as
described by Pearl (1988) and by Rimey and Brown (1992).
As a result, only a fraction of all features are measured in an
image during a typical recognition process, even if no con-
fidence threshold on the recognition result is used, because
the entropies in the class nodes vanish before all features
have been queried.

The feature values measured during each recognition pro-
cedure, along with the true class label, are grouped in an
instance vector. Missing values corresponding to features
that were not evaluated are represented by a special ‘un-
known’ value. All instance vectors are stored in aninstance
list. This list is used to update the conditional probability
tables of the Bayes nets. Also, presentations of novel train-
ing images are counted to estimate the class priors.

4. Feature Learning

In many realistic interactive tasks, it is difficult – if not im-
possible – to define and acquire representative training data
a priori for off-line learning. Therefore, practical learning
in the real world should be on-line and incremental. In our
assumed scenario, the visual learning agent interacts with
the environment in the following ways:

• The agent can acquire images of a scene. Objects
present in an image may be of relevance to the agent,
which for our purposes is represented as a class label.

• The agent can inquire of the environment what the rel-
evance is of a given image. Presently, this is returned
in the form of a supervisory class label. Therefore we
here refer to the environment also as theteacher. In
realistic applications, this feedback could be the result
of extensive experience (McCallum, 1995).

• The agent can acquire new images of specific rele-
vance, or request them of the teacher. This is real-
istic in many applications. For example, an infant can

pick up a known object and view it from various view-
points; or a child receives various examples of letters
of the alphabet from a teacher. A robot may aim its
camera at known locations, or may pick up a known
object from a known location.

These assumptions permit incremental supervised learning
and statistical evaluation of new features. The following
two sections describe our learning procedure in its basic
form, and an extension for developing visual expertise.

4.1 Basic Feature Learning and Evaluation

The agent receives training images one by one. Once a new
image is available, it is run through the recognition proce-
dure as described in Section 3.2. Initially, the agent does
not know about any classes or features. When it is pre-
sented with the first image, it simply remembers the correct
answer given by the teacher. When it is shown the second
image, it will guess the only class it has seen before.

When the recognition procedure does not produce a correct
answer, the system first updates all conditional probabil-
ity tables according to the instance list. If recognition still
fails, a new feature is derived to discriminate the true class
from themistakenclass (or classes), i.e., those false classes
that were recognized as true.

Two cases must be distinguished. In the first case, the
true class is not among the recognized classes (wrong, con-
fused, or ignorant recognition). The agent needs to find
a new feature in this image of the true class – thesample
image– that, if detected, will cause this class to be recog-
nized. In the second case, some false classes were recog-
nized in addition to the true class. Here, the agent needs to
find a feature in an image of a false class that is not present
in the currently misrecognized image, and that, if not de-
tected, will prevent this false class from being recognized.
Again, this image is called the sample image. The follow-
ing procedure describes the first case; the second case is
handled analogously.

1. A set ofevaluation imagesis retrieved from the envi-
ronment. This set containsk random views of the true
class, andk views of the mistaken class (or classes)
with highest posterior probability. Alternatively, one
could use all mistaken classes or even all false classes.
However, in general it will be much easier to find fea-
tures that discriminate well between pairs of classes,
than features that discriminate between one class and
a large number of other classes. The precise value of
k is unimportant, but involves a tradeoff that will be
discussed below.

2. A new feature is generated, generally by sampling
from the sample image. The details of this step will
be presented in Section 4.2 below.
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3. A new node representing this feature is added to the
Bayesian net that models the class of the sample im-
age, along with links from the class node and any links
required to or from any other feature nodes, as de-
scribed in Section 3.1.

4. The values of this feature, as well as any existing fea-
tures represented by nodes linked to or from the new
feature node in the Bayes net, are measured within
each evaluation image. The resulting instance vectors
are added to the instance list.

5. The new feature node is discretized (as outlined in
Section 3.1) such that the cutpoint maximizes the
KSD between the true and mistaken classes. Since
we want to find features that are characteristic of this
class, we require that the value of the new feature is
above the cutpoint. If this is not the case, the proce-
dure continues at Step 2.

6. The conditional probability tables of the affected
nodes are (re)initialized by counting instances in the
instance list.

7. The recognition procedure is run on the sample image,
using the added feature. If this image is again misrec-
ognized, the new feature node is removed from the
Bayes net. The structural description of the new fea-
ture, however, is retained for the duration of this fea-
ture search, which proceeds with Step 2. If the image
is now recognized correctly, this feature search termi-
nates successfully. After a given number of failed it-
erations, the search terminates without success.

Note that this feature search procedure requires that each
new feature individually solves an existing recognition
problem. This results in a strong tendency to learn few but
informative features.

The value ofk determines how accurately the conditional
probabilities associated with the new feature are estimated
in Step 6. A large value yields accurate estimates, but is ex-
pensive to evaluate. The danger of using too small a value
of k is that many good features are discarded because of
overly pessimistic probability estimates. Optimistic esti-
mates result in the addition of features that later turn out to
be of little value. As a result, these will cease to be used as
they are superseded by more discriminative features. Thus,
using a smallk will result in more feature searches, each of
which will take less time than when using a largek. Cur-
rently, the system usesk = 5.

4.2 Constructive Feature Generation

We now describe how a feature is generated in Step 2
above. There are six ways to generate a new feature that
differ in the structural complexity of the resulting feature.
In accord withOccam’s razor, simple features are pre-

ferred over complex features. Also, they are more likely
to be reusable and computed more rapidly than complex
features. We implement a bias toward simple features by
applying the following six methods in increasing order of
structural complexity:

(a) Pick a random feature from some other Bayes net (cor-
responding to some other class) that is not yet part of
this Bayes net (corresponding to the class of the sam-
ple image). This promotes the reuse of general fea-
tures that are characteristic of more than one class.

(b) Sample a new feature directly from the sample image
by either picking two points and turning them into a
geometric compound of two edgels, or by picking one
point and measuring a texel feature vector. (Individual
edgels do not carry any information because all repre-
sentations are invariant to rotation.)

(c) Pick a random existing feature, i.e. one that was
learned earlier, or one that was generated by a previ-
ous, unsuccessful iteration of this feature search, find a
location in the sample image where this feature occurs
most strongly, and expand it geometrically by adding
a randomly chosen edgel or texel nearby.

(d) Pick two random existing features and combine them
topologically.

(e) Pick two random existing features and combine them
into a conjunctive feature.

(f) Pick two random existing features and combine them
into a disjunctive feature.

The first up tom executions of Step 2 in the procedure
above apply the first method, the nextm executions ap-
ply the second method, etc. This continues until either a
suitable feature is found, or until the last method has been
appliedm times, at which point the current feature search
terminates unsuccessfully. The parameterm in effect con-
trols the bias toward simple features. A large value will
spend more effort using each method, while a small value
will give up sooner and move on to the next method. The
current implementation usesm = 10.

4.3 Expert Feature Learning

As learning proceeds, the views sampled from the envi-
ronment become increasingly representative, and the con-
ditional probability tables in the Bayesian network classi-
fiers increasingly reflect the true probabilities. Thus, learn-
ing should converge to a point where few misrecognitions
occur, and hence few new features are learned. However,
learning does not have to cease at this point. It is still pos-
sible to learn better features by increasing the minimum
discriminative power required of features. When, after a
correct recognition, there exist residual posterior probabil-
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ities strictly greater than zero and less than one, a new fea-
ture is sought that will reduce or remove this uncertainty.
This is accomplished by treating a correct recognition with
non-zero entropy in a manner similar to a misrecognition.

Specifically, we call the class with the highest entropy (pos-
terior probability closest to 0.5) theuncertain class. If
this is the true class, we then find the maximum KSD of
each feature of the uncertain class versus each of the false
classes. The class that minimizes this maximum KSD is
most poorly distinguishable from the uncertain class, based
on any existing individual feature of the uncertain class. If
this minimum KSD is below a thresholdt, the same pro-
cedure (Section 4.1) is used to learn a new feature for the
uncertain class that distinguishes it from this other class.
Of the new feature, we require a KSD≥ t. Note that
such a feature, if found, is guaranteed to be used by the
recognition procedure. It will reduce the nonzero entropy
that remained without this feature, as, by construction, it
is present in the sample image. If the uncertain class is
a false class, a new feature is learned that distinguishes it
from the true class. The procedure is analogous. Again, the
new feature is guaranteed to be used, and it will reduce the
corresponding posterior probability.

Over time, the minimum KSDt required of a new feature
can be raised, in search of ever more discriminative fea-
tures. This procedure will terminate when all recognitions
result in zero entropy. Unfortunately, this procedure does
not guarantee anything about the discriminative power of
surviving features from the basic learning stage. Theo-
retically, it is possible to achieve zero entropy using poor
features with low KSDs. However, such features do not
generalize well and tend to yield lower mutual information
than better features. Therefore, in practice they are mostly
eliminated during expert learning.

Alternatively, one could systematically search for features
that discriminate between all pairs of classes and achieve a
certain KSD. However, this is impractical for even mod-
erate numbers of classes, and it would likely generate a
large number of features that are never going to be used
in practice. We prefer to allow actual experience to drive
the formation of better features and to stop when there is
no measurable need for better features.

As we will show in the following section, this procedure
generates increasingly better features, obsoleting many fea-
tures that were learned previously. Features that cease to
be used can be deleted (“forgotten”). Moreover, the av-
erage number of features used per recognition is reduced,
the number of correct recognitions on independent test im-
ages increased, and the number of wrong recognitions is
reduced. In analogy to humans developing visual expertise
with extensive practice (Gauthier & Tarr, 1997), we call
this schemeexpert learning.

PLYM (15 views per object):

COIL (10 views per object):

Mel (10 views per object):

Figure 3. Example views of the three image databases.

5. Experiments

To avoid the difficulties associated with interactive robot
learning environments as described previously, we per-
formed our experiments in a conventional supervised-
learning scenario using several object recognition data sets.
Training images were presented to the agent one by one,
cycling through the training set in random order. Evalua-
tion images were chosen at random from the training set.
Training was performed in stages. In the first stage, the
basic learning strategy was applied as described in Sec-
tion 4.1. The following stages performed expert learning
(Section 4.3). At each stage, up to 20 iterations through
the training set were performed, unless the training set was
learned perfectly (zero entropy) or no progress was made at
all during an entire iteration. The training set was reshuf-
fled before each iteration. Up to 10 expert learning stages
were performed, as long as new features were learned.

In the expert learning stages, the minimum required
KSDtarget was updated according to the rule

KSDtarget = 1− 1−min{KSDworst,KSDtarget}
2

,

whereKSDworst is the worst KSD recorded at the previous
stage. This rule seeks to increaseKSDtarget exponentially,
asymptoting atKSD = 1, as long as the previous stage
succeeded in achievingKSDworst ≥ KSDtarget.

Experiments were performed using three data sets (Fig-
ure 3). ThePLYM data set consisted of eight geometric
objects on 15 artificially rendered images each, covering
a small section of the viewing sphere1. We ran a two-fold
cross-validation on the PLYM data based on two randomly-
formed equally-sized subsets, each containing 7 or 8 im-
ages of each class. In theCOIL task, 20 images of the
first five objects from the COIL-20 database (Nene et al.,

1http://www.cis.plym.ac.uk/cis/levi/UoPCIS 3D Archive/
8obj set.tar
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1996) were split into two disjoint subsets such that neigh-
boring viewpoints were assigned to different subsets. The
resulting image subsets each contained 10 images, spaced
ten degrees apart on the viewing sphere, at constant eleva-
tion. Again, we performed a two-fold cross-validation on
these two subsets. TheMel data set comprised 10 selected
images of each of five classes from B. Mel’s SEEMORE
study (Mel, 1997). Here we performed a single run using
8 randomly chosen images of each class as the training set,
and the remaining images as the test set.

Quantitative results are summarized in Figure 4. While the
recognition results fall short of the best currently available
machine recognition technology, they were achieved by an
uncommitted visual system with a strong bias toward few
and simple features that had access only to a small number
of random training views at any given time during an in-
cremental training procedure, not knowing that there was
exactly one class present in each image. Most of these
properties are contrary to current computer vision technol-
ogy, but are characteristic of biological vision systems and
would benefit many realistic computer vision applications.
We are not aware of any comparable artificial systems.

In accord with our biased search strategy, most learned fea-
tures were isolated texels and simple geometric compounds
of edgels and/or texels. Smaller numbers of the other com-
pound types of features were also found.

At the basic learning stage, there is no pressure on features
to generalize. In principle, basic learning could generate
features that memorize specific unique features in individ-
ual training images. As the minimum KSD required of a
feature is increased during expert learning, all experiments
show clear improvements: Correct recognitions increase,
and most other recognition results tend to become less com-
mon. The number of features queried per recognition de-
creases, as does the number of features present in the sys-
tem (sometimes after a transient increase). However, this
behavior is not monotonic. For instance, COIL fold 2 at
stage 2 exhibits a substantial drop in performance (see Fig-
ure 4). Notably, performance on the training set was also
unusually poor at this stage (not shown in the figure). This
observation, further supported by earlier pilot studies (Pi-
ater & Grupen, 2000), indicates that expert training can be
assumed to improve performance on independent test data,
unless performance on the training data is poor.

Notably, it is the learning agent itself that judges its own
performance based on training-set performance and resid-
ual entropy. Our results demonstrate that this judgment is
an excellent predictor of test-set performance and recogni-
tion speed, measured by the number of features queried. In
particular, when training-set performance was perfect, i.e.
no misrecognitions and no residual entropy, performance
was always at a maximum in our experiments. This is pre-

cisely the stopping criterion for expert learning. In other
words, an agent is well advised to spend its spare time do-
ing expert learning, as this is very likely to pay off.

A dramatic case is made by the Mel task, which proved
hard to learn for our system due to the small number of
training images with relatively large viewpoint variations.
Test-set performance after the basic learning stage was es-
sentially at chance level, despite perfect results on the train-
ing set. The expert learning procedure achieved reasonable
accuracy with no misclassifications, and a drastically re-
duced number of features.

6. Conclusions

We presented a framework for learning of features for vi-
sual recognition. The learning method contains few ad-
justable parameters, none of which is critical. Learning is
incremental in two ways: First, training images are con-
sidered sequentially; second, continued “expert” learning
produces increasingly better features and reduces any over-
fitting effects, resulting in improved test-set performance
and a reduced number of features.

The objective of the system is to learndiscriminativefea-
tures. In the worst case, discrimination between all pairs of
classes must explicitly be learned, which is only practical
for a small number of classes. Since learned features are
sampled directly from misrecognized images, they likely
serve for more than their designated distinction. This re-
duces the number of features required in practice.

The sequential nature of the learning process is both a
strength and a weakness. Learning any new image can
cause the system to misclassify previously learned images,
requiring extensive training until convergence. This is the
price our system pays for being able to learn any distinc-
tions expressible by an infinite feature space. This dis-
tinguishes it from almost all other visual recognition sys-
tem based on local features. Future research will investi-
gate how to combine the advantages of constructive fea-
ture learning with those of conventional methods; notably,
feature-based indexing and the avoidance of unlearning.
Progress in these areas will lead toward practical systems
for learning large, open-ended visual tasks.
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Figure 4. Experimental results. Stage 0 is the basic training stage,
stages 1 and up perform iterative expert training.Left column:
Recognition results. The numbers in the top of each graph give
KSDtarget, in bold type if there were no misclassifications on the
training set. This was always the case for Stage 0.Right column:
Feature statistics. The top two curves in each graph show the
total number of feature nodes in all Bayes nets, and the number of
different features in all Bayes nets, respectively. The difference is
due to features that are shared between Bayes nets. The remaining
curves show how many features are used in a single recognition
run; error bars indicate one standard deviation.
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