
Multi-Modal Tracking of Interacting Targets Using Gaussian Approximations

Justus H. Piater James L. Crowley

Projet PRIMA, Laboratoire GAVIR-IMAG
INRIA Rhône-Alpes

655 avenue de l’Europe
38033 Montbonnot, France

Abstract

We introduce a modular tracker architecture that combines
the advantages of several simple and rapidly performing
tracking algorithms. Robust tracking is facilitated by frame-
rate or near-frame-rate processing. A Kalman filter is used
to integrate tracking results across detection modules and
over time. Processing regions are smoothly localized by
weighting with a Gaussian that is dimensioned according to
the target sizes and uncertainties estimated by the Kalman
filter. From this Gaussian mask, Gaussian approximations
of known nearby targets are subtracted to allow individual
tracking of interacting targets, that can be merged and split
based on Mahalanobis distances and a robust version of
connected components. The result is an adaptive tracker
that can robustly track at video frame rates several targets,
each of which corresponds to one or more individual ob-
jects. Its performance degrades gracefully with increased
system load.

1. Introduction

Second IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (at CVPR 2001).

A minimal requirement of semi-automatic video surveil-
lance systems is the capability of tracking multiple objects
or groups of objects in the presence of background noise
and lighting variations. Various tracking algorithms have
been published that differ in their respective strengths and
weaknesses [8, 11, 4, 6]. These systems show that robust-
ness to illumination changes can be substantially bolstered
if detailed information is available about the scene and the
objects of interest, such as 3-D scene geometry, object sizes,
velocities, shapes, modes of their interaction, etc. Obtaining
robustness in the absence of a-priori information is a much
greater challenge.

In this paper, we introduce a simple and flexible archi-
tecture that is designed for general scenarios and uses very
limited task-specific information. We adopt the viewpoint
that a key to achieving robustness in general scenarios lies

This work has been sponsored by Project IST-1999-10808 VISOR BASE.

in rapid processing at or close to video frame rates. There-
fore, we employ simple algorithms that perform very rapid
target detection. Several different such algorithms can be
used without loss of processing speed if more than one CPU
is available. This modular architecture permits the selection
of complementary algorithms to balance their respective ad-
vantages and drawbacks. Our architecture combines the fol-
lowing features:

• rapid processing (typically at video frame rate) and au-
tomatic adaptation to varying processing rates,

• several complementary tracking algorithms,
• recursive estimation of the target position and size,
• adaptive outlier rejection during pixel-level detection

and during estimation,
• adaptive parameterization that allows trading off time,

precision, and the number of targets simultaneously
tracked, and

• use of color to take advantage of chromatic contrast,
that often exists even where intensity gradients vanish.

The system attempts to track each moving (or temporar-
ily stationary) object as an individual target. Targets that
come very close to each other are merged. If a target sep-
arates into spatially distinct objects, it is split into twotar-
gets. In this way, interacting objects can be tracked [8, 7].
As a result, the system is robust to certain scene and system
parameters such as the number and proximity of moving
objects and the video processing frame rates.

2. Architecture
The architecture of the tracking system is shown in Figure 1.
Arrows indicate data flow. A video source provides a live
video stream by writing frames into buffers where they are
accessed by the detection modules, while avoiding unnec-
essary copying of pixel arrays. Each detection module im-
plements a specific tracking algorithm. Since they are mu-
tually independent, the detection modules can be executed
in parallel, and can in principle operate at different frame

1

Estimator

Recursive
Supervisor

Recognizer

Background−Difference
Tracker

Motion−History
Tracker

Tracker
Color−Histogram

Integration and Analysis

eventsor file

live video

Detection Modules

Video Source

Figure 1: Architecture of the robust multi-modal tracker, and examples of possible extensions (shown in light blue). Thick
arrows indicate flow of pixel data, and thin arrows parametric data.

rates. Additional detection modules can be implemented as
desired.

The results of individual detection modules are inte-
grated by a recursive estimator. A supervisor performs
high-level control and analysis at the symbolic level. The
supervisor maintains a listU of currently known targets.
For each frame, the following procedure is performed:

1. The supervisor handsU over to the recursive estimator.

(a) The recursive estimator passes a copyu′ of each
targetu ∈ U to each detection module. Each
detection module asynchronously updates its in-
stancesu′ according to its algorithm.

(b) The recursive estimator obtains an updated tar-
get u′ from a detection module, and recursively
updates its estimate of the target parameters:

u← update(u, u′) (1)

This step is repeated until all targets have been
processed.

(c) The recursive estimator asks a designated detec-
tion module to generate a listUnew of new targets
(which may be empty).

(d) The recursive estimator returnsU ← U∪Unew to
the supervisor.

2. The supervisor examines the listU of targets in order
to remove expired or spurious targets, perform splits
and merges, and to generate any associated events if
so desired by the application context. It may also call
upon other modules, e.g. a face recognizer. Such aux-
iliary modules may also access the video source and
may trigger events.

3. Detection Modules
The purpose of a detection module is to measure the current
location and sizeu of a target in the current image, given
its estimated location and sizeû. The target description̂u is
given in terms of a Gaussian estimate of the spatial extent of
a target, and thus contains the pixel coordinates of the target
center along with three spatial covariance parameters:

û = [x̂, ŷ, σ̂xx, σ̂xy, σ̂yy]T (2)

The detection module looks for the target inside a Gaus-
sian region of interest reflecting the uncertainty about the
current estimate of the target:

ROI(u) = G(x; µu, Σ̃u) = e−
1
2 (x−µu)T Σ̃−1

u (x−µu)

where the mean vectorµu = [x̂, ŷ]T is simply the predicted
location of targetu in the current image, provided by the
recursive estimator. The spatial covarianceΣ̃u reflects the
size of the target, as well as the uncertainty about the current
target location and size:

Σ̃ =

[

σ̂xx σ̂xy

σ̂xy σ̂yy

]

+ ∆t

[

qxx+ qσxx 0
0 qyy+ qσyy

]

(3)

The first term is the current spatial extent of the target, and
the second term specifies the growing uncertainty about the
location (qxx andqyy) and spatial extent (qσxx andqσyy) of
the target. All these values are provided by the recursive
estimator. Proportionally to the elapsed video frame time,
the ROI grows into an increasingly axis-parallel ellipse de-
scribed by the second term in Equation 3 that specifies the
estimator’s idea of possible horizontal and vertical target ve-
locities and growth, without bias toward a diagonal slant.

For efficiency, the Gaussian ROI is cut off at a reason-
able size, e.g. at a radius of 2σ horizontally and vertically.
Within this area, the detection module produces adetec-
tion image Dthat encodes, for each pixel, the probability
(or a pseudo-probability) of that pixel being part of the tar-
get. The difference between detection modules lies in the
method of computingD; other than that, all detection mod-
ules within our framework are identical.

The detection imageD is multiplied by a mask, that, for
the moment, is simply the Gaussian ROI, and is then thresh-
olded to yield a binary image representing the target:

MASK(u) = ROI(u) (4)

D′ = thresh(D ×MASK(u), t) (5)

The thresholdt is easily adjusted for each detection module
by visual inspection ofD, and can in principle be computed
probabilistically by collecting statistics ofD in non-target
image regions, or, in a Bayes-optimal way, using hand-
selected regions representing target and non-target regions.

The measurement of the target parametersu =

[x̄, ȳ, σxx, σxy, σyy]T is then formed by computing the spa-
tial means and covariances of the pixel coordinates, masked
by the pixel values of the binarized detection imageD′.

The thresholding step in Equation 5 is not strictly nec-
essary; in principle, the spatial Gaussian approximations
can be computed by weighting each pixel by its value in
D′ = D ×MASK(u) [9]. However, it is not generally clear
that a high pixel value inD should have a high influence
on the target parameters, and vice versa. In general, if a
spatially coherent collection of pixels inD have marginally
higher values than would be expected if no target is present,
then the collective evidence in favor of a target is high de-
spite the relatively low pixel values. This effect is achieved
by thresholding the detection image. In fact, we have found
empirically that a binarized detection imageD′ usually pro-
duces more precise and stable target approximations than
the non-thresholded version.

At this point, the task of the detection module is done,
and the parameter vectoru is passed to the recursive esti-
mator. The following two sections describe the two detec-
tion modules that we used to generate the results described
in Section 5.

3.1. Background-Difference Detection

The background-difference detector maintains an internal
background image B, and produces a monochromatic de-
tection imageD using the current frameI according to the
equation

D = min
(

|Ired− Bred| +
∣

∣

∣Igreen− Bgreen

∣

∣

∣ + |Iblue− Bblue| , Imax

)

.

(6)

diff threshold max

decayframe

current
Motion−History
Image

previous

frame

Figure 2: Computing a motion-history image.

The performance of background-difference detectors de-
pends crucially on the accuracy of the background repre-
sentationB. Therefore, the background is updated using a
weighted average

Bt = αI + (1− α)Bt−∆t,

excluding regions that belong to tracked targets.
For reasons of computational efficiency, we chose this

simplistic background model. For increased robustness in
combination with high sensitivity, one can model the back-
ground as pixel-wise Gaussian distributions [11] or mix-
tures of Gaussians [3].

3.2. Motion-History Detection
Like background-differencing, the motion-history image [2]
has also become a standard technique in computer vision.
The objective here is to increase the robustness of simple
change detection between consecutive frames by represent-
ing a history of change that decays over time. The algorithm
is illustrated in Figure 2. Wherever a change exceeding a
thresholdm is detected between the current frame and the
previous frame (computed using Equation 6) within the cur-
rent ROI, the corresponding pixels in the motion-history im-
ageD are set to the maximum intensity valuegmax. Before
processing a new frame, the entire motion-history image is
decayed by multiplying each pixel value with a factorh < 1:

Dt = max(hDt−∆t, gmaxmin(max(|I t − I t−∆t | −m, 0) , 1))

This constitutes a multiplicative version of the additive
technique introduced by Davis and Bobick [2]. The satura-
tion parameterm depends on the given imaging conditions.
It is equivalent to the parametert of Equation 5 and can be
chosen automatically in the same way, such thatm= t. The
algorithm is robust to the choice ofh, as long as it is cho-
sen small enough such that the motion-history image decays
fast in relation to the velocity of the tracked targets.

3.3. Complementary Properties
The background-difference detector performs robustly as
long as the background remains stationary. It is very sensi-
tive to changes of the background that are unrelated to target
movement, e.g. changes in illumination direction or inten-
sity. If the lighting changes while a target is being tracked,
the current location will become part of the target even if

the object moves elsewhere, because the background is not
updated within target ROIs. In a typical indoor situation, a
tracked person sits down, then gets up and leaves the chair
in a different position than it was before. Now the moved
chair differs from the background represented by the detec-
tor, and thus becomes a part of the tracked target.

The motion-history detector is resistant to background
changes, but tends to lose stationary targets. Moreover, only
boundaries of moving regions are detected that are not par-
allel to the direction of motion. A background-difference
detector does not have this problem.

Thus, both of these simple tracking algorithms have their
advantages and drawbacks. As we will discuss further be-
low, a simple combination of these algorithms allows us to
take advantage of the strengths of both.

A variety of other detection algorithms is possible. We
also have implemented a detection module based on color
histograms [10, 9] and one using multidimensional his-
tograms of chromatic receptive field responses [5], which
will be described elsewhere. For the PETS data, these mod-
ules are not helpful as many target objects are insufficiently
large to create meaningful color statistics.

4. Recursive Estimator and Supervisor
The recursive estimator tracks five parameters of each tar-
getu, specifying the position and spatial extent of the target
(Equation 2). It integrates sensor measurements across de-
tection modules and over time. To perform this fusion, we
use a conventional first-order Kalman filter [1]. In addition
to the five target parameters, the Kalman filter estimates the
2-D velocity vector of each target. Compared to a zeroth-
order Kalman filter, this increases the precision and robust-
ness of target localization while allowing smaller ROI sizes,
if the processing frame rates are high in relation to the ve-
locity changes of targets. This condition is easily met for
the types of objects of interest in surveillance applications.

The Kalman filter must be parameterized according to
the accuracy of the measurements ofu by each detection
module, and to the expected velocity changes of moving
objects. This can be done by careful calibration using mea-
sured data, or simply by rough estimation as the perfor-
mance is quite robust to imprecise parameterization. The
parametersq that occur in Equation 3 with various sub-
scripts are precisely those coefficients specifying the ex-
pected velocity changes of moving objects.

The supervisor triggers the acquisition of a new frame,
passes targets to the recursive estimator, and retrieves the
results. Each target has an associatedconfidence factor. If a
target is successfully tracked by one or more detection mod-
ules, the confidence factor is incremented (up to a limit).
Otherwise, the confidence factor is decremented. Targets
with zero confidence are eliminated. The supervisor is also
responsible for splitting and merging targets, and for report-

ing any events that are of interest in the given application
context. In the next section, we will describe our method
for splitting and merging of targets.

4.1. Tracking Interacting Targets
Using the basic algorithm as described above, targets that
draw near each other will increasingly overlap. Even if the
tracked objects move apart again, the two target representa-
tions will remain identical. They will continue to track both
objects, and will perhaps lose one of them. Our approach to
dealing with such interacting targets involves explicit detec-
tion and suppression or merging of nearby targets. To de-
tect target overlaps in less thanN2

targetsexpected time, each
target marks its ROI in the unused fourth image band (alpha
channel) of the BGRA-format image delivered by our video
source (hence the reverse arrows pointing back to the video
source in Figure 1).

Figure 3 illustrates the central ideas involved in merg-
ing and splitting targets. To avoid merging disjoint targets
whose ROIs barely overlap, each targetu suppresses its
neighborsu′ by subtracting their current Kalman estimates
from its ROI (Figure 3b). This is done by generating the
MASK using the following rule in place of Equation 4:

MASK(u) = ROI(u) −max
u′

G(x; µ̂u′ , Σ̂u′) (7)

where the max is taken pixel-wise over all known nearby
targets. As a result, most pixels belonging to nearby targets
in D (Figure 3c) are suppressed from the weighted detection
imageD ×MASK (Figure 3d). The thresholded versionD′

of this image is shown in Figure 3e.
If the Mahalanobis distance between two targets falls be-

low a thresholdtmerge, the two targets are merged. An ex-
ample is shown in the second column of Figure 3.

If several objects tracked by a single target move apart,
they should be split into separate targets. A natural and effi-
cient way to detect spatial discontinuities is the connected-
components algorithm. We compute connected components
using the thresholded imageD′ (Figure 3e). If more than
two connected components result, we successively merge
them in increasing order of pairwise Mahalanobis distance
until two components remain (third column in Figure 3e).
These are then only merged if their Mahalanobis distance
falls below a thresholdtsplit > tmerge. As a result, we always
obtain one or two subtargets, indicating whether or not the
target should be split, in a way that is much more robust
to discretization artifacts than the conventional connected-
components algorithm.

If two disconnected components result, their individual
Gaussian approximations are computed (blue ellipses in the
third column of Figure 3a). If the supervisor encounters a
target that is composed of two disconnected subtargets, it
first checks whether one or both of them overlap another

before merge (frame 814) after merge (frame 816) before split (frame 881) after split (frame 883)

(a)

(b)

(c)

(d)

(e)

Figure 3: Merging and splitting targets in PETS Dataset 1. (a) targets tracked in the video (purple: ROI; green: target localized
by the background-difference detector; red: Kalman estimate; blue: disconnectedcomponents; ellipses have a radius of 2σ).
(b) MASK (Equation 7) corresponding to the white van, (c) detection imageD, (d) detection imageD×MASK corresponding
to the white van (Equation 5), (e) thresholded detection imageD′ (Equation 5), with color-coded connected components.

existing target. If this is the case, then no special action
needs to be taken, as such an overlapping component is
likely to be a residual part of an incompletely suppressed
neighbor. If, on the other hand, no overlapping targets are
detected, then the target is split into the two separate com-
ponents, as shown in the fourth column of Figure 3. Note
that in the figure, the target corresponding to the white van
already overlaps (and suppresses) the target corresponding
to the pedestrians, without interference with the split from
the blue car.

We make no attempt at this point to keep track of the
identities of objects across merges and splits. In general,
this problem is very difficult to solve without genuine recog-
nition capabilities. However, the ancestral history of each
target is recorded.

4.2. Detecting New Targets

New targets are detected in designatedtrigger regionsthat
are placed wherever new target objects may appear. For
both of the above detection modules, the detection pro-
cedure is exactly the same as the tracking algorithms de-
scribed above, except that no MASK is applied. Instead,
pixels marked in the alpha channel as occupied by a known
target are ignored.

To avoid ambiguities, only one detection module is cur-
rently used for target detection. A maximum of one new
target per trigger region is detected in each frame. This is
ensured using the connected-components algorithm as de-
scribed in the previous section. If two subtargets result, the
larger one is kept, and the smaller is discarded. If the latter
does belong to an actual target object, it will be detected in
the following frame.

4.3. Adapting Parameters

Our tracker delivers best-effort performance. Naturally, it
performs most robustly at video frame rate. If performance
drops below frame rate (e.g. due to a large number of targets
or otherwise high CPU load), performance degrades grace-
fully. The Kalman filter updates its parameter estimates ac-
cording to the elapsed video time, and processing ROIs are
scaled proportionally to the spatial uncertainties estimated
by the Kalman filter. The result is a consistent, best-effort
tracker that performs robustly over a range of frame rates.

In practice, however, there are limits to the achievable
performance. Therefore, the architecture permits to trade
off processing speed, spatial precision, and the number of
targets tracked. For example, if performance speed drops
below a given minimum processing rate, the supervisor can

video motion-history imageD

Figure 4: Disjoint motion-history regions cause spurious
target splits (Sequence 1, frame 881; compare with Fig-
ure 3).

take countermeasures:

• It can choose not to track certain targets. Good candi-
dates are targets that are currently stationary.

• Targets can be tracked by only some of the available
detection modules. For example, for stationary targets
a motion-history detector will not produce a reliable
result anyway.

• The spatial resolution of pixel-level processing can be
reduced. This is controlled by a run-time parameter
p: Instead of processing every pixel (p = 1) within a
ROI, thep parameter sets the detection module to pro-
cess everypth column and everypth row. This allows
computing time to be traded off with scale without any
re-copying of pixels.

5. Experiments
We tested our system on the first three PETS test sequences
(encoded as 25-Hz MPEG-1 files at the original frame for-
mat) using only the background-difference detector, only
the motion-history detector, and both of them simultane-
ously, using several different pixel-step parametersp. Un-
less otherwise noted, when both detection modules were
run simultaneously, the background-difference detector was
used to detect new targets and to trigger target splitting and
merging because the detection imagesD produced by the
background-difference detector are much more spatially co-
herent than those produced by the motion-history detector
that is blind to homogeneous regions (Figure 4). In the
following sections, we will briefly characterize the perfor-
mance of our system on each sequence.

5.1. PETS Test Sequence 1
Figure 5 summarizes some statistics collected while run-
ning the tracker. They were collected by visual inspection,
and must therefore be taken as subjective and approximate.
The top row in Figure 5 plots the number of times a target is
lost, and the bottom row shows the number of times a target
is split even though the split does not correspond to actual
objects. In most cases, the children of a spurious split are
re-merged shortly after.

The performance of the three tracker combinations is
quite similar, but there are also striking differences: Firstly,

1 2 4
0

5

10

pixel step p

Dataset 1: targets lost

1 2
0

5

10

pixel step p

Dataset 2: targets lost

1 2 4
0

10

20

pixel step p

Dataset 3: targets lost

1 2 4
0

100

200

pixel step p

Dataset 1: spurious splits

1 2
0

20

40

pixel step p

Dataset 2: spurious splits

bgDiff
mHist
both

1 2 4
0

50

100

pixel step p

Dataset 3: spurious splits

Figure 5: Performance statistics. Note that the ranges of the
vertical axes differ greatly.

the motion-history tracker loses targets that remain sta-
tionary for longer than about two seconds. Therefore,
the number of lost targets is consistently higher for the
motion-history tracker in Figure 5. Secondly, the motion-
history tracker performs many more spurious splits than the
background-difference tracker because its detection images
D tend to consist of many spatially disjoint regions.

With increasing pixel step parameterp, more targets tend
to be lost. These are typically very small targets that are
hard to detect at reduced resolution. The number of splits,
however, is naturally reduced at lower resolution.

Most tracking errors made by our system are caused by
undetected target splits. As described in Section 4.1, the
splitting algorithm functions reliably as long as the subtar-
gets are of similar size, or the smaller subtarget has suffi-
cient contrast. A counterexample is illustrated in Figure 6,
collected from Dataset 1 usingp = 2: Here, the person has
quite low contrast to the background, especially the pants.
Therefore, the Gaussian approximation of the target is dom-
inated almost exclusively by the large, high-contrast car,as
can be seen in the video frame. As a result, when the person
is detached from the car, she has already advanced quite far
into the periphery of the Gaussian ROI, where her detection
strength is even further depressed (Figure 6, bottom right).
As a result, she is no longer picked up as a separate compo-
nent by the connected-components algorithm (bottom left).
To alleviate this problem for this data set, we used quite ag-
gressive thresholds for splitting and merging (tmerge=

√
2σ

andtsplit = 2σ, as compared totmerge = 2σ andtsplit = 3σ
used in all other experiments). This has the undesired side
effect that objects moving in parallel are sometimes repeti-
tively merged and split.

If a target no longer detects its object, the target state
is updated according to the Kalman prediction. If spurious
image change is picked up in such a situation, the target ap-
pears to wander erratically. Occasionally, it is accelerated
so that it “flies away”. In this test sequence, suchstray tar-
gets occurred between 0 and 2 times; slightly more often

Figure 6: Failed split (test sequence 1,p = 2, frame 589).
Clockwise, the images depict the video,D, D×MASK, and
D′.

when both detection modules were running simultaneously.

5.2. PETS Test Sequence 2
The main problem in Sequence 2 is the presence of a large
occluding bush in the foreground. This bush, as well as
other plants, move slightly in the wind, pushing our sim-
ple background model and motion detector to their limits.
To compensate, we used a relatively high threshold on the
detection of new targets, at the expense of a somewhat in-
creased target loss rate as compared to Sequence 1. Due
to less aggressive target splitting, far fewer spurious splits
were performed. As in Sequence 1, running both detection
modules simultaneously did not yield any benefits. Due to
the abundance of tiny objects, we did not run any experi-
ments withp > 2, as performance atp = 2 was already
limited.

In most cases, occluded objects were again picked up
when they reappeared behind obstacles, though in some
cases a target latched on to an incorrect object. To keep
targets alive during the relatively long obstruction by the
big bush, we used a maximum confidence factor of 100,
corresponding to four seconds of video. In all other exper-
iments, we used a maximum confidence factor of 50 (two
seconds). Due to the high level of background noise and the
complex scene dynamics, significantly more stray targets –
up to 8 – were encountered in this sequence, as compared
to Sequence 1.

5.3. PETS Test Sequence 3
Sequence 3 contained significant changes of background
lighting. Without any intensity normalization, this breaks
our simple background-difference tracker, as can be seen in
Figure 5. Since the background model cannot be updated

where there are known targets, lighting changes produce ar-
tifacts in the background model that later become part of the
tracked object. This results in a large number of stray tar-
gets, around 10 for the background-difference tracker. Since
these are supported by rather large quantities in the detec-
tion imageD, actual objects tend to be lost in such regions.
This effect is responsible for the high target loss rate re-
ported in Figure 5. Due to lighting changes, around 20 spu-
rious new targets were created by the trigger regions.

The motion-history tracker is much less affected by
gradual lighting changes. In contrast to the background-
difference tracker, any resulting artifacts are transient. In
fact, the motion-history tracker performs better than the
background-difference tracker, which is in contrast to the
other two test sequences. However, the number of lost tar-
gets is still high due to the complex target interactions in this
sequence, and relatively many spurious splits are produced.

Sequence 3 does not contain any stationary targets.
Therefore, we can combine the advantages of both detection
algorithms. When running both of them simultaneously, we
used the motion-history detector for new-target detection
because of its low sensitivity to gradual lighting changes,
and the background-difference detector to trigger splitting
and merging. Moreover, the background-difference detec-
tor did not contribute to confidence factors. As a result, the
number of stray targets produced by the combined tracker
– around 5 – was only slightly higher than for the motion-
history tracker alone, and they did not persist due to lack
of support from the motion-history tracker. As can be seen
in Figure 5, the combined tracker outperformed both of the
individual detection modules.

5.4. General Remarks
Currently, our system can track up to about two targets in a
half-PAL image (384× 288 pixels) at video frame rate (25–
30 Hz) on a 600 MHz Dual-Pentium III usingp = 2. In this
case, about one-third of the total available CPU time is con-
sumed by the X server to display the live video. Without
display, video frame rate is attained usingp = 1. In the ex-
periments reported above, no real-time constraints were ap-
plied since the decoding of the MPEG file alone consumes
significant computational resources.

To demonstrate the robustness of our tracker with respect
to achieved frame rates, we had it process only one of ev-
ery f frames, forf = 1, 2, 4, 8, 16, on Sequence 1 using the
background-difference tracker atp = 2. The tracker never
broke down. All error statistics remained consistently low,
including lost targets, spurious splits, stray targets, and spu-
rious new targets. The main effect is that, at reduced frame
rates, targets tend to be split and merged across greater dis-
tances due to increased ROI sizes. In other words, the pre-
cision of tracking interacting targets is reduced. Figure 7
illustrates this using a scene from Sequence 1, frame 896,

roughly corresponding to Figure 3. Here,f = 16, yielding
a processing frame rate of less than 1.6 Hz.

Figure 7: Tracking at reduced frame rate (f = 16).

A distinguishing feature of our system is the consistent
Gaussian weighting of the detection image (Equation 5).
Since this computation requires an extra pass over each
ROI, it is worth asking what the practical trade-off is be-
tween added computation and robustness. To shed some
light on this issue, we ran the tracker without Gaussian
weighting. It turns out that high-contrast peripheral regions,
e.g. due to extended hands or elbows, frequently cause the
ROI to grow considerably larger than with Gaussian weight-
ing, which essentially offsets the computational savings.
Forcing smaller ROIs would make the tracker less robust to
rapidly-accelerating targets. In any case, without Gaussian
weighting nearby targets tend to merge much more easily
than with Gaussian weighting. We conclude that Gaussian
weighting contributes substantially to the robustness of the
tracking system, while adding little to the total computa-
tional cost due to its automatic maintenance of appropriate
ROI sizes.

A drawback of the Gaussian weighting is that split-offs
of small and faint subtargets are difficult to detect (cf. Sec-
tion 5.1). This requires quite careful calibration of the pixel-
level detection thresholdt of Equation 5, which can – as
noted there – be automated by supervised-learning tech-
niques.1 The hardest parameters to calibrate are probably
the coefficients associated with the Kalman filter, but sys-
tem performance does not depend on their precise choice.
In summary, parameterization is not a critical issue.

6. Conclusions
We introduced a modular, flexible architecture for adaptive
tracking over a wide range of frame rates. The algorithm
can trade off processing frame rate and tracking accuracy.

1A more recent version of our system, not discussed in this paper, al-
lows the definition of trigger regions around targets. This makes detection
of asymmetric targets splits much easier, and further improves the robust-
ness of the entire system to parameter choices.

Robust tracking of multiple interacting targets is achieved
at video frame rates using standard hardware. A variety of
pixel-level detection modules are easily integrated. In this
paper, we described two simple such modules (background-
difference and motion-history detectors). We also have
developed a color-histogram detector that computes pixel-
level target probabilities based on two-dimensional joint
chromaticity distributions [10, 9], and a more complex de-
tector based on multidimensional histograms of chromatic
receptive fields computed by Gaussian derivatives on color-
opponent images [5]. In future work, these color-based
modules will play a key role in re-assigning object identities
across target merges and splits.

All detection modules share the same method of com-
puting Gaussian approximations of targets. Neighboring
targets are smoothly suppressed at the pixel level by sub-
tracting their parametric representations from the Gaussian
ROI. Due to the consistent use of Gaussian approximations,
the system is robust to pixel-level artifacts.

References

[1] K. Brammer and G. Siffling. Kalman-Bucy Filters. Artech
House Inc., Norwood, MA, 1969.

[2] J. W. Davis and A. F. Bobick. The representation and recog-
nition of action using temporal templates. InProc. Com-
puter Vision and Pattern Recognition. IEEE, 1997.

[3] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Us-
ing adaptive tracking to classify and monitor activities in
a site. InProc. Computer Vision and Pattern Recognition,
1998.

[4] G. D. Hager and K. Toyama. X Vision: A portable substrate
for real-time vision applications.Computer Vision and Im-
age Understanding, 69(1):23–37, January 1998.

[5] D. Hall, V. Colin de Verdière, and J. L. Crowley. Object
recognition using coloured receptive fields. InEurop. Conf.
on Computer Vision, 2000.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis.w4s: A real-time
system for detecting and tracking people in 21

2d. In Europ.
Conf. on Computer Vision, pages 877–892, 1998.

[7] S. J. McKenna, S. Jabri, Z. Duric, and H. Wechsler. Tracking
interacting people. InProc. 4th Int. Conf. on Automatic Face
and Gesture Recognition, pages 348–353, 2000.

[8] R. Polana and R. C. Nelson. Detection and recognition
of periodic, non-rigid motion. Int. J. Computer Vision,
23(3):261–282, June/July 1997.

[9] K. Schwerdt and J. L. Crowley. Robust face tracking using
color. InProc. 4th Int. Conf. on Automatic Face and Gesture
Recognition, pages 90–95. IEEE Computer Society, 2000.

[10] W. Vieux, K. Schwerdt, and J. L. Crowley. Face-tracking
and coding for video compression. In H. Christensen, edi-
tor, Proceedings of the International Conference on Vision
Systems (ICVS-99), Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[11] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body.IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, July 1997.

