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ABSTRACT

VISUAL FEATURE LEARNING
FEBRUARY 2001 (REVISED JUNE 14, 2001)

JUSTUS H. PIATER
Dipl.-Inform., UNIVERSITY OF MAGDEBURG, GERMANY
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic A. Grupen

Humans learn robust andfieient strategies for visual tasks through interaction \tisr
environment. In contrast, most current computer visioriesys have no such learning capa-
bilities. Motivated by insights from psychology and neuodbgy, | combine machine learning
and computer vision techniques to develop algorithms feuali learning in open-ended tasks.
Learning is incremental and makes only weak assumptiongstdle task environment.

| begin by introducing an infinite feature space that costaimmbinations of local edge and
texture signatures not unlike those represented in the hwisaal cortex. Such features can
express distinctions over a wide range of specificity or gaitg. The learning objective is to
select amallnumber othighly usefufeatures from this space in a task-driven manner. Features
are learned by general-to-specific random sampling. Thikugrated on two dferent tasks,
for which | give very similar learning algorithms based oe $tame principles and the same
feature space.

The first system incrementally learns to discriminate isaanes. Whenever it fails to rec-
ognize a scene, new features are sought that improve disation. Highly distinctive features
are incorporated into dynamically updated Bayesian né&twtassifiers. Even after all recog-
nition errors have been eliminated, the system can contmiearn better features, resembling
mechanisms underlying human visual expertise. This temdsprove classification accuracy
on independent test images, while reducing the number afriesmaused for recognition.

In the second task, the visual system learns to anticipatéulusand configurations for
a haptically-guided dextrous robotic grasping system, ke humans do when they pre-
shape their hand during a reach. Visual features are leahstcdcorrelate reliably with the
orientation of the hand. A finger configuration is recommehtased on the expected grasp
quality achieved by each configuration.

The results demonstrate how a largely uncommitted visusiegy can adapt and specialize
to solve particular visual tasks. Such visual learningeyst have great potential in application
scenarios that are hard to model in advance, e.g. autonorabats operating in natural envi-
ronments. Moreover, this dissertation contributes to oglenstanding of human visual learning
by providing a computational model of task-driven develepitof feature detectors.
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CHAPTER 1
INTRODUCTION

Humans have a remarkable ability to act reasonably baseccmegtual information about
their environment. Our perceptual system functions witbhsspeed and reliability that we
are deluded into underestimating the complexity of eveyyaerceptual tasks. In particular,
humans rely heavily on visual perception. We orient ouesglvecognize environments, objects,
and people, and manipulate items based on vision withouttlirking about it. Given the
importance of vision to humans, it is not surprising thatonshas been the most-studied mode
of machine perception since the early days of artificiallligience. Nevertheless, despite fifty
years of active research in artificial intelligence, rob®tnd computer vision, many real-world
visuomotor tasks remain that are easily performed by hurbatrere still unsolved by machines.
The robustness and versatility of biological sensorimatteraction cannot yet be matched in
robotic systems.

What is it that enables higher animals, first and foremostdnsnto outperform machines
so dramatically on real-world visuomotor tasks? | belidvat the answer is grounded in the
following two theses that form the basis of this dissertatio

e The human visual system @laptive During the first years of life, the visual capabilities
of children increase dramatically. These capabilitiesrateimited by the design of the
visual system alone, but are modified by learning. All thioug life, the human visual
system continues to improve performance on both novel afidonaecticed tasks.

In contrast, most current machine vision systems do notl@aithis way. They are
designed to perform, and their performance is limited bydixsign. They do not usually
improve over time or adapt to novel situations unforeseetheydesigner.

e The human visual system is inextricably linked with hunzantivity. Activity operates
in synergy with vision and facilitates visual learning, ansion subserves activity. Hu-
man vision operates in a highly task-dependent way and idttm deliver exactly the
information needed.

In contrast, most research in computer vision has focusethsizindependent visual
functionality. In a typical scenario, a computer visiontsys produces a generic result or
representation for use by subsequent processing stages.

Both of these points will be further discussed in Chapter Ze Temainder of this opening
chapter serves to define the scope and organization of ggerttion.

1.1 Closed and Open Task Domains

The field of computer vision is commonly subdivided into I@vel and high-level vision. Low-
level vision is typically concerned with task-independemhge analysis such as edge extraction
or computation of disparity or optical flow. High-level wsi considers application-level prob-
lems, e.g. object recognition or vision-guided graspingngiderable progress has been made
in both areas during the past decade. For example, macliogni¢éion systems have achieved
unprecedented levels of performance [73, 104, 71, 77, #8tehsingly impressive recognition



results are reported on large databases of various obfeatsmated character recognition sys-
tems are involved in sorting most of the U.S. mail. Opticahbétric identification systems have
reached commercial maturity.

While these successful systems are truly remarkable, nideem are designed for tasks
that are limited in scope and well defined at design time. Rstance, most object recognition
systems operate on a fixed set of known objects. Many algositin fact require access to a
complete set of training images during a dedicated traiplragse. Deployed OCR and biometric
identification systems operate under highly controlledditions where parameters such as size,
location, and approximate appearance of the visual targdtreown. Similar arguments can be
made for other computer vision problems such as face detecérrain classification, or vision-
guided navigation.

Task domains that share these characteristics thaded | argue that many practical vision
problems are not closed. For instance, a human activitygréton system should be able to op-
erate under many fierent lighting conditions and in a variety of contexts; indoor outdoors,
with any number of people in the scene. A visually navigateabife robot should be able to
learn distinctive landmarks by itself. If the robot is mo¥eamm one environment to another, one
does not want to redesign the recognition algorithm — theesalgorithm should be applicable
in, and adaptive to, a variety of environments. An autoncsn@lot that traverses unknown
terrain or collects specimens should be able to learn tagirdte gfect of its actions based on
perceptual information in order to improve its actions wgtiowing experience. Ultimately, it
should be the interaction of an agent with its environmerg ef@osed to a supervisory training
signal — that drives the formation of perceptual capabditivhile performing a task [67, 114].

Table 1.1.Typical characteristics of closed vs. open task domains.

Closed Tasks Open Tasks
Task parameters: all known at the outset some to be discovered
stationary may be non-stationary
Training data: fixed dynamic, generative
fully accessible partially accessible via interaction
Learning: batch incremental
off-line on-line
Visual features: may be fixed must be learned

Thus, many realistic visual problems constitofgentask domains (see Table 1.1). Closed
and open tasks constitute two extremes along a continuumskfdharacteristics. Open tasks
are characterized by parameters that are unknown at désigrand that may even change over
time. Therefore, the perceptual system of the artificiahtgannot be completely specified at
the outset, but must be refined through learning duringacten with the environment. There
is no fixed set of training data, complete or otherwise, tloaldt be used to train the system
off-line. Training information is available in small amountsagime through interaction of the
agent with its environment. Therefore, learning must bdirmmand incremental.

1.2 Scope

Autonomous robots that perform nontrivial sensorimotsksan the real world must be able to
learn in both sensory and motor domains. A well-establigeedarch community is addressing
issues in motor learning, which has resulted in learningréttyns that allow an artificial agent
to improve its actions based on sensory feedback. Littl&kvisbeing conducted in sensory
learning, here understood as the problem of improving antageerceptual skills with growing
experience. The sophistication of perceptual capalsilitieist ultimately be measured in terms
of their value to the agent in executing its task.



This dissertation addresses a subset of the problemseditimove. At a broad level, its goal
is to make progress toward computational models for pewe¢fgarning in open task domains.
While most work in computer vision has focused on closeddasie following chapters present
learning methods for open tasks. These methods are desigredvery general. They make
few prior assumptions about the tasks, and can learn incr@the and on-line. | hope that
this work will spark new research aimed at expanding the esafpmachine perception and
autonomous robots to increasingly open task domains.

A key unit of visual information employed by biological anchahine vision systems is a
feature Loosely speaking, a visual feature is a representatiommiesaspect of local appear-
ance, e.g. a corner formed by two intensity edges, a spat@hlized texture signature, or
color. Most current feature-based machine vision systanm@ay hand-crafted feature sets. In
the context of open tasks, | argue that learning must tal@@aen at the level of visual feature
extraction. Any fixed, finite feature set would constrain thege of tasks that can be learned
by the agent. This does not necessarily mean that the featarenot be computed by a fixed
operator set. If they are, then these operators must bdkugiarameterized to provide for the
flexibility and adaptability demanded by a variety of opesksa

The key technical contribution of this dissertation cotssisf methods for learning visual
features in support of specific visual or visuomotor taskdese features capture local ap-
pearance properties and are sampled from an infinite feapaee. Most parameters of the
system are derived on-line using probabilistic methodse Vdlidity of the proposed methods
are demonstrated using two venyffdrent example skills, one based on categorization (visual
discrimination) and the other on regression (visual suppiohaptically-guided grasping). The
sampling methods for feature generation and the assocmtet®l-fitting techniques can be
adapted to other visual and non-visual perceptual tasks.

This work constitutes exploratory research in an area wbenegputer vision and machine
learning meet. This area has received relatively littlerdton by these subdisciplines of com-
puter science that are relatively distinct even though lgoghw out of the artificial intelligence
community. While the research questions are addressedailgrfrom the perspective of com-
puter vision and machine learning, much of the motivatiodravn from observations in psy-
chology and visual neuroscience. Parts of the model acdourglevant aspects of the function
or performance of the human visual system. The behavioreohtbdel resembles critical as-
pects of phenomena in human learning.

1.3 Outline

The next chapter places this work into the context of resei@rpsychology and artificial intel-
ligence and discusses the motivation, goals and meanssagiagnbackdrop of related research
within and outside of computer science. Chapters 3-6 datestihe heart of this dissertation.
These technical chapters share the same general strubteeiew of related work is followed
by a precise problem statement, a presentation of the bated solution, experimental results
where applicable, and a discussion. In these chapters,tiars¢itled “Background” briefly
introduces prerequisite concepts, terminology, and iootat

e Chapter 3is self-contained and defines an infinite featuaeesthat is defined to overcome
the limitations of finite feature sets for open learning faskeatures are constructed
hierarchically by composing primitive features in specifigys. The learning algorithms
discussed in subsequent chapters are based on this feadioe s

e Chapter 4 describes a system for learning features in an igoegnition task, building
on the feature space defined in the preceding chapter. Tregnthe point of learning
the features themselves, the algorithm is biased to find f@whlghly distinctive fea-



tures. Probabilistic pattern classification is combinethwiformation-theoretic feature
selection.

e Chapter 5 extends the previous chapter by introducing theeqt of learned visual exper-
tise in a way that resembles human expert visual behavidsotin cases, a visual expert
exhibits faster and more reliable recognition performathe@ a non-expert. It is conjec-
tured that superior features underly expertise, and a rdathimtroduced for continuing
to learn improved features with growing experience by tlaerlmg system.

e Chapter 6 describes a system for learning features to sugp@ptically-guided robotic
grasping process. Features are learned that enable eeiiatidlizations of hand con-
figurations before the onset of the grasp, resembling hureachrand-grasp behavior.
This chapter again builds on the feature space introducé&hapter 3, but is otherwise
self-contained.

Finally, Chapter 7 concludes with a general discussion efithpact of this work and future
directions.



CHAPTER 2

THIS WORK IN PERSPECTIVE

The questions addressed in this dissertation span a wide m@indisciplines in- and outside
of computer science. This chapter places these questitmshie context of other research in
perceptual skill learning in psychology and artificial iligence. Motivated by this interdis-
ciplinary background, | pose a general research challemageid larger than the scope of this
dissertation. Finally, | state some important persondkepemces and biases — many of which are
motivated by insights from psychology and neurobiology at ihfluenced many of the design
choices presented in the subsequent technical chapters.

2.1 Human Visual Skill Learning

The human visual system is truly remarkable. It routinellives® a wide variety of visual tasks
with such reliability and deceiving ease that belittlesintlaetual dificulty. These spectacular
capabilities appear to rest on at least two foundationst,Rlre human brain devotesormous
computational resourcet® vision: About half of our brain is more or less directly atwed

in processing visual information [54]. Second, essentialial skills arelearnedin a long
process that extends throughout the first years of an ingiVillife. At the lowest level, the
formation of receptive fields of neurons along the early aiguathway is likely influenced
by retinal stimulation. Some visual functions do not depedb all without adequate perceptual
stimulation within asensitive periodluring maturation, e.g. stereo vision [12, 44]. Higheresrd
visual functions such as pattern discrimination capabdiire also subject to a developmental
schedule [40]:

e Neonates can distinguish certain patterns, apparentbdbas statistical features such as
spatial intensity variance or contour density [103].

e Infants begin to note simple coarse-level geometric @atiips, but perform poorly in
the presence of distracting cues. They do not consisteaffyattention to contours and
shapes [101].

e At the age of about two years, children begin to discover §ireened details and higher-
order geometric relationships. However, attention id Btilited to “salient” features
[123].

e Over much of childhood, humans learn to discover distiecfeatures even if they are
overshadowed by more salient distractors.

There is growing evidence that even adults learn new fesitwigen faced with a novel
recognition task [107]. In a typical experiment, subjects@esented with computer-generated
renderings of unfamiliar objects that fall into categotiesed on specifically designed but un-
obvious features. Before and after learning the catedgwizahe subjects are asked to delineate
what they perceive to be characteristic features of theeshdpefore learning, the subjects show
little agreement in their perception of the features. Haveafter learning most subjects point
out those features that by design characterize the cassgd08, 123].



Schyns and Rodet demonstrated convincingly that humans features in task-driven and
task-dependent ways [109]. Subjects were presented witk ttategories of “Martian cells”,
two-dimensional grayscale patterns that loosely resetiolegical cells containing intracel-
lular particles. The first category was characterized byatufe X, the second by a featuhg
and the third by a featur®¥Y, which was a composite of andY. Subjects were divided into
two groups that diered in the order that they had to learn the categories. &shjeone group
first learned to discriminate categori¥sandY and then learned categoXyY, whereas the other
group learnecKY andX first, thenY. After learning the categorization, the subjects were dske
to categorize other “Martian cells” that exhibited contedlvariations of the diagnostic features.
Their category assignments revealed the features useategarization: Subjects of the first
group learned to categorize all objects based on two feafrandY), whereas the subjects of
the second group learned three features, not realizingitiatas a compound consisting of the
other two. Evidently, feature generation was driven by geognition task.

Feature learning does not necessarily stop after learntiogeept. Tanaka and Taylor [120]
found that bird experts were as fast to recognize objectseastibordinate level (“robin”) as
they were at the basic level (“bird”). In contrast, non-axpeare consistently faster on basic-
level discriminations as compared to subordinate-lev&trithinations. Gauthier and Tarr [38]
trained novices to become experts on unfamiliar objectsantdined similar results. These
findings indicate that the way experts perform recognit®qualitatively dfferent than novices.
It has been suggested that experts have developed spedifdiatures, facilitating rapid and
reliable recognition in their domain of expertise [107].

Despite this accumulated evidence of visual feature lagrim humans, little is known about
the mechanisms of visual learning. At least, recent newsiplogical and psychological stud-
ies have shed some light on what the features represent [IB@]pulk of the evidence points to
view-specific appearance-based representations in télotabfeatures. The view-dependence
of human object recognition has been firmly established J[LR2cognition performance de-
creases as a function of viewpoint disparity from previpushrned views. In the light of this
evidence, Wallis and Bulthbdismiss recognition theories based on geometric modelso— tw
or three-dimensional — by declaring that “there remaitie Idr no neurophysiological evidence
for the explicit encoding of spatial relations or the repreation of geon primitives” [129].

The strong viewpoint dependency of human visual repregensais even more apparent
in the context of spatial orientation [11]. Here, the repreation employed by the brain is
clearly based on a viewer-centered perceptual refereaceefr Abstract spatial reasoning is a
cognitive skill that requires extensive training, invelgimultiple perceptual modalities as well
as physical activity [1, 2, 95, 97].

Few definitive statements can be made about the spatialteftdime features used by the
visual brain. Nevertheless, it has been shown that eveméorecognition of faces — often cited
as a prime example of holistic representations — local featplay a major role. Solso and
McCarthy generated artificial face images by composingafdeiatures taken from real face
images. Subjects regarded these artificial faces as higinhliér if the constituent features
were taken from known faces, even though the complete (atjfifaces had never been seen
before [113].

2.2 Machine Perceptual Skill Learning

For the purpose of this work, machine learning is concerniglal mvethods and algorithms that
allow an artificial sensorimotor agent to improve or adapaitions over time, based on percep-
tual feedback from the environment that is acted upon. Téimition stresses that learning is
task-driven and incremental. It excludes non-incrememthanisms for discovering structure
in data such as many conventional classification and ragreakyorithms, typically considered



machine learning methods. Nevertheless, such algorithaysfarm important components of
the type of learning methods of interest here.

For a sensorimotor agent, deriving the next action to beopmed involves the following
two steps:

1. Analyze the current set of sensory input to extract intion — so-calledfeatures—
suitable for action selection.

2. On the basis of these features, and possibly other sfateniation, derive the next action
to be taken.

This dichotomy is somewhat idealized, as many machine ileguadgorithms involve transfor-
mations of the feature set, e.g. feature selection or prai@omponent analysis. Most work on
machine learning has focused on the second step, with thetjdantifying improved methods
for generalizing from experience given a set of (possikdnsformed) features. In contrast, a
mechanism foperceptual learnindocuses on improving the extraction of features. The follow
ing paragraphs touch on a few representative examples cépeial learning systems. Previous
work related to specific methods and problems will be disetiss later chapters.

The goal of Draper et al.'s ADORE system is to learn reactivetegies for recognition of
man-made objects in aerial images [29]. The task is forradlas a Markov decision process,
a well-founded probabilistic framework in whichpmalicy maps perceptuatatesto actions In
ADORE, an action is one of a set of image processing and canpigion operators. The
output data produced by taking an action characterize #te,sand the policy is built using
reinforcement learning techniques [115]. ADORE learnedtige policies superior to any static
sequence of operators assembled by the authors.

Steels and his collaborators investigate the problems raepéual categorization and lan-
guage acquisition by a group of communicating agents. Sgmsmrmation is available to an
agent in the form of continuous-valued “streams” [114],qdoly extracted from live video [27].
An agent can decide on a “topic” characterized by certaigearf values in a subset of the sen-
sory channels, and can invent “words” to designate thictofiie agents interact in the form of
“language games” in which one of them chooses a known topitvents a new one, and utters
the corresponding word(s). A listening agent matches ttezartce with its current sensory in-
put. If the utterance does not match the listening agentieegt of the words, or if it contains
unknown words, the agent refines its sensory charactemizassociated with the words. This
is done by successively subdividing sensory ranges andsgigpadditional sensory channels if
necessary. The sensory categorization thus formed is atietpr the current topic, but it does
not necessarily match the concept of the speaker. However tioe course of many language
games the agents form a shared vocabulary through whichciiegommunicate about what
they perceive.

A similarly motivated mechanism for discovering infornvatistructure in sensory channels
was used by Cohen et al. [25]. Here, concepts are formeddfzdé perceptions to the agent’s
interaction with its environment, in contrast to Steelgliabcommunication.

In these two examples, perceptual distinctions are leampedrving up the perceptual space
into meaningful regions. This can be done successfully g & the information contained in
an instantaneous perception igfguent to make these distinctions. In many practical cases,
however, world states that requireffdrent actions by the agent may not be distinguishable
on the basis of an instantaneous perception. In this caseetent history of percepts may
allow the disambiguation of these perceptually aliasetéstarhis is the basic idea underlying
McCallum’s Utile Distinction Memory and Utile Stix Memory algorithms [68, 69]. In addition
to resolving hidden state, his U-Tree algorithm [67] pearferselective perception by testing
which perceptual distinctions are meaningful.

Temporal state information is also the basis of Coelho'sesysfor learning haptically-
guided grasping strategies [22, 23]. Grasping experiencecorded as trajectories in a phase



space. These trajectories are clustered and represenpeddigetric models that define discrete
states of the grasping system during its interaction witr@ett object. A reinforcement learning
procedure is used to select appropriate closed-loop gmagpotiers at each of these states.

2.3 Objective

Draper's ADORE system [29] is a rare example of perceptualtesyy learning. The other
systems cited in the previous section perform perceptwahieg by subdividing the feature
space spatially [114, 27, 25, 67] dodtemporally [67, 22, 23], but they do not learn the features
themselves.

It is often argued that multilayer neural networks learrtdess that are represented by the
nodes of the hidden layer(s). Likewise, the basis vectormebed by eigen-subspace decom-
position and similar methods can be regarded as learnegrésat These methods essentially
project the input space into another space, typically ofelodimension. However, they pro-
vide little control over the properties of the resultingtieas with respect to criteria external
to the projection method. For example, in computer visioa pray want to preserve locality
of features or invariance to various imaging conditionsisThotivates the use of other types
of features that are not based on subspace decompositibexiibit the desired properties by
design.

The central, technical contribution of this dissertatisnai mechanism for learning such
features. These are extracted directly from the raw imatge dad express image properties that
are very hard to discover using general techniques for diinaality reduction. Features are
chosen from a very largeature spaceThe specification of this space constrains the structure
of the learned features. Thus, it is possible to bias or lih@tlearning system to features that
have specific representational or invariance properties.ekample, one may want features to
encode corners under rotational invariance.
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Figure 2.1. A general model of incremental feature learning.

The feature learning procedure is incremental and is daitf@p interactive learning. Fea-
tures are learned as demanded by a given task. Figure 2dtglagjeneral model of the interac-
tion of the system with its environment. The system stadmfa blank slate, and is constrained
only by the specification of the feature space and the feddaraing algorithm. It operates in a
perception-action cycle that begins with the acquisitibaroimage. This image is analyzed in
order to derive a decision or action in response to the cuperception. It is assumed that the



system can observe the quality or usefulness of this dec@i@ction. If this response reveals
the adequacy of the action, the agent proceeds with the rexg¢ption-action loop. Otherwise,
one or more new features are generated with the goal of firmieghat will result in superior
future actions. The dashed lines designate two alternatiyes of operation:

1. If the features can be evaluated immediately without ghenthe environment, then the
agent can iterate feature learning and decision makingd argilitable feature has been
found. The recognition system described in Chapter 4 operiatthis way. When the
system misrecognizes an image, new candidate featuregaeeaged one at a time, and
are evaluated immediately by rerunning the recognitiorc@dare on the same image.
This is indicated by the lower dashed line in Figure 2.1.

2. If a feature cannot be evaluated immediately, then thetageceeds with the next
perception-action loop. In this case, the generated festare evaluated over time. In the
grasping application (Chapter 6), immediate feature extsdn would require regrasping
of an object. To avoid this interference with the task contafter generating new candi-
date features the system instead proceeds with the nexitpageindicated by the upper
dashed line. Evaluation of the newly sampled candidateifeatis distributed over many
future grasps.

These two applications flier significantly not only in their learning mechanisms, bigban
their learning objectives. The recognition applicatioraisupervised classification task. The
utility of a feature is immediately assessed in terms ofdtstébution to the classification pro-
cedures. In contrast, the grasping application is primaritegression task, where features are
learned that predict a category-specific angular parame&ter utility of a feature depends on
its contribution to the value of future behavior of the rabbtaining is grounded in the robot’s
interaction with the grasped object, and does not involvexdarnal supervisor. Nonetheless,
both of these applications employ the same feature spacedirced in the following chapter,
and their feature learning algorithms are based on the sasie principles. These filiérences
and similarities are summarized in Table 2.1.

Table 2.1. Summary of important characteristics of the two applicgaidiscussed in this dis-
sertation.

Recognition (Ch. 4) Grasping (Ch. 6)
classification regression
external supervisor learning grounded in interaction

immediate feature evaluation features evaluated over time
same feature space
same principles for feature learning

All learning algorithms presented in the following chaptere designed to operate incre-
mentally. They are very uncommitted to any specific task, ma#te few assumptions about
the task environment. For example, the recognition aligaritioes not know how many known
object categories — if any — are present in any given scenis. ign contrast to most existing
recognition algorithms that always assign one (or no) diaissl to each scene. Also, neither
application has any prior knowledge about the number oreatfithe categories to be learned.
In short, the algorithms do not assumelased world which has many implications on their
design. A consistent set of learning algorithms émendomains constitute the second key
contribution of this dissertation.



2.4 Motivation

In addition to the objectives stated in the preceding sectlwere are additional, somewhat less
tangible biases and motivations that influenced the deditmeaepresentations and algorithms
presented in the following chapters. These are introduciefl\yohere.

The primary goal of this dissertation is to contribute to anderstanding of mechanisms
of perceptual learning in humans that can be applied in machision systems. Many of the
ideas manifested in this work are motivated by insights fimenceptual psychology. At the
outset, | believe that humans (children and adults) leasnalifeatures as demanded by tasks
they encounter. Above | presented evidence collected byrscand others in support of this
belief. A subgoal of this work is to contribute to our undarsting of human vision, by devising
plausible computational models that describe certaincsmd human vision. | firmly believe
that we can learn a great deal from biology for the purposedgfiacing technology in the
service of human interests. Specifically, | believe that-ddven, on-line, incremental visual
learning is essential for building sophisticated appliegzdion systems that operate in general,
uncontrolled environments.

With this long-term objective in mind, the mechanisms cbuted are applicable in scenar-
ios where no external supervisor is available. While thécdaarning framework is supervised,
the supervisory signal can be produced by the agent itseBulbsequent chapters, | will show
how this can be done.

The construction of the algorithms and the prototype imgetation involved a number
of design choices, many of them concerning inessentiallslei&herever reasonable, choices
were made to emulate biological vision. Some of the regyléilgorithms are veryféciently
implemented on massively parallel neural hardware, butgaiee expensive when run on a
conventional serial computer.
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CHAPTER 3

AN UNBOUNDED FEATURE SPACE

The necessity for a very large feature space has been neatiaitefly above. This chapter
introduces a particular feature space suitable for thectitags of this work.

3.1 Related Work

The idea of representing data in terms of features from aniteffeature set (i.e., a feature
space) is quite old. A natural method is Principal Comporeralysis (PCA) that returns the
eigenvectors of the covariance matrix of the data. Thesebearegarded as a small set of
“features” selected from aN-dimensional continuous space, whetes the dimensionality
of the data. If the data resemble a low-dimensional zeroAnt@aussian cloud in this space,
then they can be faithfully reconstructed using only a featdfiees corresponding to the largest
eigenvalues. Turk and Pentland [125] popularized thagen-featuredor face recognition.
Figure 3.1 shows the eight principal components of a setaddalnterestingly, some of them
correspond to intuitively meaningful facial features.

Figure 3.1.“Eigen-faces” — eigenvectors corresponding to the eiglgelst eigenvalues of a set
of face images. The brightness of each pixel represents #umitade of a ca@cient. Zero-
valued co€icients are rendered in intermediate gray; large positicereagative coficients in
white and black, respectively. (Reproduced with permisgiom Moghaddam and Pentland

[72].)

Nayar, Murase and collaborators [74, 73, 75] developeddhiteral approach for view-
invariant object recognition, tracking and simple robatomtrol. It has been pointed out that
PCA is not necessarily well suited for discrimination betweobject classes [117]. Several
adaptations of the idea of PCA to generate discriminatigeof@posed to descriptive) features
have been suggested, such as the Fisher Linear DiscriniBHnthe Fukunaga-Koontz trans-
form [37], and the Most Discriminating Feature [117]. Talekand Casasent [118, 119] suggest
an adaptation of nonlinear PCA that simultaneously optsithe descriptive and discrimina-
tive power of the extracted features. Some types of eigatiifes can be learned and updated
incrementally [130].

Hidden nodes in a neural network may be seen as computingrésafrom an infinite set.
In particular, neural networks can implement several pt@e pursuit methods as well as PCA
in biologically plausible ways [47, 48, 91]. Projection puit iteratively seeks low-dimensional
projections of high-dimensional data that maximize a gipesjection index. The projection
index encodes some measure of “interestingness” of the ggiaally based on the deviation
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from Gaussian normality [59, 36, 99]. The projections gatest by a projection index based on
second-order statistics correspond to the principal corepis of the data.

All of these methods, with the exception of certain typesafnal networks, computgobal
features. In contrast, it is often desirable to prodiaoal features that represent spatially local-
ized image characteristics. Localized variants of eigeitfres have been explored [26].

A variety of local features have been proposed in the comErecognition systems. In a
typical approach, a feature is a vector of responses to d kmtadly applied basis filter kernels.
Koenderink [57] suggests that the neighborhood around agénpoint can be represented by
a set of Gaussian derivatives of various orders, termledal jet, derived from a local Taylor
series expansion of the image intensity surface. Somestekthemes are based on steerable
bases of Gaussian-derivative filters [90, 104, 94, 43], hidl be briefly discussed in Section
3.3.2. Others employ Gabor filters [128, 20], curved vasdmown asanana waveletfs8],
or Haar wavelets [81] to represent local appearance.

A different way to generate an unbounded feature space is by dediféature as a param-
eterized composition of several components. Cho and Du|ndgfine a corner feature by the
distance and angle between two straight line segmentsr fdature set is finite because these
parameters are quantized.

Segen [110] was one of the first to consider an infinite comobita feature space in a
computer vision context. His shape recognition system setan structural compounds of
local features. Geometric relations between local cureatiescriptors are represented by a
multilevel graph, and concept models of 2-D shapes are manstl by matching and merging
multiple instances of such graphs. Califano and Mohan [b®jlined triplets of local cur-
vature descriptors to form a multidimensional index useddégoognition of 2-D shapes. Their
contributions include a quantitative probabilistic argamhdemonstrating that the discriminative
power of features increases with their degrees of freedom.

Amit, Geman and their coworkers create a potentially irdiniériety of features from a
guantized space by means of combinatorics. Primitive Ifeztlires are composed to produce
increasingly complex arrangements. Primitive featuresdafined by co-occurrences of small
numbers of binarized pixel values, and compounds are cegized by relaxed geometric rela-
tionships. Discriminative features are constructed aretiqd dficiently using a decision tree
procedure. This type of approach has been applied to hattelmvcharacter recognition [8, 5]
and face detection [7, 6] with remarkable success, and basakn extended to recognition of
three-dimensional objects [50]. The approach employedisdissertation borrows and extends
key ideas from this work.

3.2 Objective

The representational power of any system that uses featurepresent concepts is determined
to a large extent by the available features. If the featutasseot suficiently expressive for
the task at hand, the performance of the system will be loniteever. If the feature set is
too expressive, the system will be prone to a variety of gnotsl, including overfitting, and to
biases introduced through pairwise correlated featurdsstiactor features that do not correlate
well with important distinctions. Clearly, fierent features may be relevant foffdrent tasks.
Moreover, given a task, fierent feature sets may be suitable fdfetient algorithms employed
to solve the same task [52].

These considerations require that features either be txafigtd for a particular setting (con-
sisting of task, algorithm and data), or that they be lealmethe system. This chapter defines
a feature space for use with a feature learning system,dubjéhe following objectives:

1. As this work is concerned with visual tasks, features areputed on intensity images.
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2. The feature space should not be geared toward any taskshould contain features that
are suitable for a variety of visual tasks at various levélspecificity and generality. In
other words, there should be some features that are higklaluer any of a variety of
tasks that the system may be asked to solve.

3. Since the characteristics of a feature learning systenb@st demonstrated on a system
that learns few but powerful features, the feature spacaldhumntain features that are
individually very useful for given tasks. This is in contrés most existing feature-based
vision systems that derive their power primarily from a &ngimberof features that are
not necessarily very powerful individually.

4. The feature space should befgmuently complete to demonstrate success on example
tasks using feature learning systems discussed in sub#echupters.

5. Since image-plane orientation is important in some tasid irrelevant in others, fea-
tures should inherently allow the measurement of featusntation in a way that can be
exploited to achieve normalization for rotation.

6. Since in many visual tasks there is no prior scale infoionatvailable, features should
be robust to variations in scale to simplify computation.

7. To enhance robustness to clutter and occlusion and tadéeithe learning of categories
characterized by unique object parts, features shoulddag ito the image array.

8. For generality, features should be applicable in gemtaasification and regression frame-
works.

9. The features should be a plausible functional model afvesit aspects of the human
visual systent.

All of the methods discussed in the preceding section gati@ie of these objectives, but
none of them satisfies all. Eigen-features and their vanatiare well suited for a variety of
tasks, but rotational invariance and image-plane localigyhard to achieve. Wavelets and Ga-
bor filters and their variants are local, but are not rotatilgninvariant. Filters based on steer-
able Gaussian-derivative filters satisfy all of the aboviedtives. The steerability property, to
be explained in Section 3.3.2, allows the synthesis of $iléerd their responses at arbitrary ori-
entations from a small set of basis filters, and can be exaldi achieve rotational invariance
at very little computational cost. However, the represmtal and distinctive power of indi-
vidual, well-localized (Objective 7) Gaussian-derivatifilters is not sfficient for many tasks
(Objective 3). Amit and Geman [8, 5] used relatively weakividlal features, sparse binary
pixel templates, and showed how to increase their power tmposing them in a combinatorial
fashion.

The key idea to achieving all of the above objectives is to luiom steerable Gaussian-
derivative filters with an adaptation of Amit and Geman’saidproducing features that consist
of spatial combinations of local appearance charactesisBefore the details are presented, the
following section provides some helpful background.

3.3 Background

This section presents brief introductions to relevant eptethat have been well established in
the literature. Some familiarity with these concepts isuresg to understand the contributions
presented in subsequent sections.

1Since this contradicts Objective 5, rotational (non-)iaace is not considered a relevant aspect here.
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3.3.1 Gaussian-Derivative Filters

The isotropic zero-mean Gaussian function with variaméef a two-dimensional parameter
space at a point = [x,y]" € R?is defined as

XTX

G(x, o) = e 22, (3.1)

2n02

For the purposes of this work, the oriented derivative of aisgan of orded at orientation
6 =0, i.e. in thexdirection, is written as

ad
Gg(x, o) = GTXG(X’ o). (3.2

For general orientationg Gg is defined as an appropriately rotated versioGg)([X, o), i.e.

Gl(x, o) = GJ(Rex, o) (3.3)

with a rotation matrix
Ry =

cosf —siné
sind cosf |’

Gaussian-derivative filter kernels are discrete versidnSaussian point spread functions
computed in this way. To generate a filtered verdigfx) of an imagel (x), a discrete convo-
lution with a kernelG is performed. Two-dimensional convolutions with Gaussiand their
derivatives can be computed verfieiently because the kernels are separable, and highly accu-
rate and #icient recursive approximations exist [127]. Unfortungtéhis is not generally true
of rotated derivatives (Equation 3.3).

Gaussian Go

First derivative GO G/?

1

Second derivative ~ G9 Gy/° Go/°

2

Figure 3.2. Visualization of a two-dimensional Gaussian function amahe oriented derivatives
(cf. Equation 3.3). Zero values are shown as intermediatg, grositive values are lighter,
negative values darker.

Figure 3.2 illustrates some oriented Gaussian-derivdiiters used in the context of this
work. Gaussian filters act as low-pass filters, and theirvdgvies as bandpass filters. The
center frequency increases (see Figure 3.2) and the bathddétreases as the order of the
derivative increases. First-order derivative kernelpoas to intensity gradients in To extract
edge information from an imade | is convolved with the two orthogonal basis fiItéB% and

G’lr/ 2. The gradient magnitudes and orientation$ are then easily computed:

Vi| = 12 +12 3.4
[VI] a0 T lgr (3.4)
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tandy, = |G;lr/2/|G(l) (35)

When computindgy, using Equation 3.5, the full angular range of 8-€an be recovered by tak-
ing into account the signs of the numerator and the denoorimdten computing the arctangent.
For a thorough discussion of Gaussian-derivative filteesssecent book chapter [93].

3.3.2 Steerable Filters

A class of filters issteerablef a filter of a particular orientation can be synthesized #inear
combination of a set dbasis filterd35]. For example, first-order Gaussian-derivative filtames
steerable, since

G) = GYcost + GZ'*sing (3.6)

as is easily verified. Due to the linearity of the convolutmperation, an image filtered at any
orientation can be computed from the corresponding basigest

'Gg = 'Gg cosh + IG,lr/z sing (3.7)

which is much moreféiciently computed for many ffierent values of than by explicit convo-
lution with the individual fiItersGi.

Gaussian-derivative filters of any ordgeare steerable usingj+ 1 basis filterﬁfj“’d that are
equally spaced in orientation between 0 ande.,
kr
Okd = ——, k=0,...,d.
A= a1
Incidentally, Figure 3.2 shows the basis fiItéB%’d for the first two derivatives. To synthesize a
filter at any given orientation, these basis filters are combined using the rule

d
Gh=> Gy (3.8)
k=0
where
Chy = ©€0S@—kn/2) k=0,1
¢, = 3(1+2cos(2¢ - kr/3))) k=012
¢y = 3(cos@—kr/4)+cos(3¢-kr/4)) k=0,123

which contains Equation 3.6 as a particular case [35, 90gi#gdue to the linearity of con-
volution, the same operation can be performed on the filtenades, as opposed to the filters
themselves. See Freeman and Adelson [35] for a thorougtmieea of steerable filters.

Example 3.1 (Operations on Gaussian-filtered images) Figure 3.3 illustrates some manip-
ulations on filtered images that are of interest in this cant&he image shown in Figure 3.3a
is convolved with the kernel@(l) andG’lr/ 2 resulting in the vertical and horizontal edge images
shown in Figures 3.3b and 3.3c. Edge energy is computedtigifeom these images using
Equation 3.4 (Figure 3.3d), and edge orientation using &qua.5 (Figure 3.3¢e). In the ori-
entation image, note that the angular domain is mapped tlinder gray scale. Consequently,
both black and white correspond to near-zero angles. Fi§j@fevas generated by steering the
edge images using Equation 3.7. This image is identicaldémtie that would be obtained by
convolving the original image (Figure 3.3a) with the kerGa(*. [
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Figure 3.3. Example manipulations with first-derivative images. Imagshows the original
image of size 12& 128 pixels. In images b, c, and f, zero values are encodedeasiadiate
gray, and positive and negative values as lighter and datkedes, respectively. In image d,
black represents zero. In image e, the angular range af 3+2apped to the range from black
to white. The derivatives were computed with= 2 pixels. See Example 3.1 for discussion.

3.3.3 Scale-Space Theory

A fundamental problem in computer vision is to decide on thbtrscale for image analysis. A
typical question is: “How large are the features of interetdtive to the pixel size?” In many
applications, no prior scale information is available. f#fere, many computer vision systems
perform their analysis over an exhaustive range of scaldsraegrate the results. Scale-space
theory provides a sophisticated mathematical frameworkrfolti-scale image analysis [62],
and is consulted in this work to answer the above questiotindg) scale-space representation,
or simply scale spacdor short, of an image is the stack of images generated bygasangly
blurring the original image. This process can be describethe difusion equation [56]. In
practice, a scale-space representation is computed bgssiee smoothing (Figure 3.4). The
Gaussian kernel has been shown to be the unique smoothimgt@p#or generating a linear
scale space [34].

141 20

000 1.00

Gaussian standard deviation o in pixels

Figure 3.4. Visualization of a linear scale space generated by smapthith Gaussian kernels
of increasing standard deviation. The image size isX.884 pixels.
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For the purposes of this work, scale-space thedfgre well-motivated ways to identify
appropriate scales for image analysis at each location iimage, based on the followirggale-
selection principle

“In the absence of other evidence, assume that a scale &wehich some (pos-
sibly non-linear) combination of normalized derivativesames a local maximum
over scales, can be treated as reflecting a characteristithi®f a corresponding
structure in the data.” [64]

Lindeberg [64] provides some theoretical justificationtfis principle derived from the obser-
vation that if an image is rescaled by a constant factor, therscale at which a combination
of normalized derivatives assumes a maximum is multipligdhe same factor. The choice
of a specific combination of normalized derivatives — in tbkofving denoted acale function
s(o’) — depends on the type of image structure of interest. Suiohtstes and their associated
scales can then be detected simultaneously in an image ligdiletal maxima o&in the scale
space. Thus, there are typically multipfgrinsic scalesassociated with each image location.
The normalization is done with respect to the operator sealend ensures that the values of
the scale function can be compared across scales.

(o]
o

Scale-Space Slg'nature at 60,60 e -. ?
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o
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10 10' 10
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Figure 3.5. Example of a scale functios(c’). The graph shows the scale function computed for
13 discrete values of at the center pixel of the image (11121 pixels). Each local maximum
defines an intrinsic scale at this point. The two intrinsielss are illustrated by circles of
corresponding radii.

Example 3.2 (Intrinsic Scale) Figure 3.5 illustrates the computation of the intrinsiclesa

at an image location. The graph plots the values(of) at this point, computed for discrete
values ofo- at half-octave spacing. The local maxima of this graph defieeintrinsic scales,
which are illustrated by circles of corresponding radii fre image. The stronger maximum
(s(5.7) = 73.6) captures the size of the dark, solid region at the centéreosunflower, while

the weaker maximums(22.6) = 7.1) roughly corresponds to the size of the entire flower. The
maximum at the minimal value @f = 1 is not considered a scale-space maximum because it is
not enclosed between lower valuessof

To illustrate hows(o") can be used to detect image structures of interest at titeimsic scale,
Figure 3.6 shows the 200 strongest local maxima of the samle functions(o) computed
everywhere in the image. To generate this figure, the valug(f was computed at each
pixel for each value ofr. The corresponding local maxima within the resulting ssplace are
illustrated by circles of the corresponding radiast the corresponding location The figure
clearly illustrates the correspondence of intrinsic sedth the size of local image structures,
which is here dominated by sunflowers. The scale found fotatge sunflower at the lower
right is smaller than expected because no larger scalesawesdered at this point to avoid
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artifacts caused by the the filter kernel exceeding the inmagadary. The scale functiogfo)
used for these examples is defined by Equation 3.9, discuesed |

Figure 3.6. lllustration of the 200 strongest scale-space maximsygf(c). The radius of each
circle corresponds to the local scate See Example 3.2.

The types of structures of interest in this dissertationbdobs, corners, and edgeBlobis
a commonly used term referring to a roughly circular (orpsitiidal) image region of roughly
homogeneous intensity (or texture). A suitable isotropalesfunction is defined in terms of the
trace of the Hessian:

Solob(07) = o2 ’IG(Z) + IGZ/Z (3.9
where the scale is given lay which is the scale (standard deviation) of the fiIt@@sandG’zr/ 2,
The normalization factorr?, ensures that the scale-selection principle holds [64] tae abso-
lute value is taken to remove sensitivity to the sign of thegien. This scale function is rotation
invariant as are the other two mentioned below. Figure &§6c¢idbed in Example 3.2, illustrates
the image property described by a blob.

A commonly used measure for corner detection is the curgaitilevel curves in the inten-
sity data combined with the gradient magnitude. Lindeb®&4j fecommends the product of the
level curve curvature and the gradient magnitude raisededhird power, which leads to the
scale function

41,2 2
o) =0 1%, 5lc0 — 200l en2la,, + 1501 <n 3.10
Scomel(0) G2 G GY'Gy?'Cxy T g0 Gy (3.10)
2 . . . . .
whereGyy = &G. Again, the normalization factar* ensures that the scale-selection prin-

ciple holds, and the absolute value removes sensitivitheosign. Figure 3.7 shows how the
scale-space maxima detectedsyinerCluster at corners, and also occur at high-contrast edges.
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Figure 3.7. lllustration of scale-space maxima §me(c). The left image shows the strongest
15 scale-space maxima, and the right image the strongesti&9radius of each circle corre-
sponds to the local scate

For intensity edges, a useful scale function is based onrstespatial derivative [63]:

Sedgd0) = o-(lég +12 ) (3.11)

/2
Gl

The normalization factor/o- ensures the scale-selection principle as before. The tiaatian
factors for blobs and corners as formulated above are ch&sem that the recovered scales
correspond to the size of the local image structure, andthils typically be related to the
size of objects depicted in the image. In contrast, the nlizateon factor for edges is chosen
to reflect the sharpness of the edge. Sharp edges attainstadé-space maxima at smaller
scales than blurry edges. For the purposes of this diseertéte reason for this choice of scale
normalization is that it ensures perfect localization & thcovered edges at the maxima in the
gradient magnitude along the gradient direction.

As noted above, blob and corner features are identified asnogxima of the scale function
in the scale space. To extract edges in scale space, grpdieiie] maxima are extracted from
the scale space according to the notion of non-maximum sspj@n [17]. This results in thin
and mostly contiguous edges. Since the details of scaleesp@dge extraction are unimportant
in the context of this work, the interested reader is reteteethe literature [63].

3.4 Primitive Features

Sections 3.1 and 3.2 discussed important properties amaugaways to generate global and
local features. Since eigen-features have a number ofathsiproperties, it is worth consid-
ering how their primary drawback — their global spatial exte can be overcome. Colin de
Verdiere and Crowley investigated this question and ampeal a recognition system based on
local descriptors derived by PCA [26]. Many of the most intpot eigen-features generated
by their system resemble oriented bandpass filters. Thie &coident: If natural images are
decomposed into linearly independent (but not necessartiyogonal) basis functions, using a
sparseness or minimum-description-length objectivefthatrs representations with many van-
ishing codficients, then basis functions emerge that resemble oriéatedpass filters. Notably,
these are stronglpcalized— even without an explicit constraint or bias toward logdl&0, 91].
This result has been well established in the literature ,sendes as a natural explanation for the
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shape of receptive fields in the mammalian early visual payhwi he receptive fields of vi-
sual neurons in the primary visual cortex have often beeneheddby oriented derivatives of
Gaussian functions [132, 57].

In this dissertation, these insights motivate the choic&aftissian-derivative filters as a
fundamental representation of local appearance. Sinceipled and biologically plausible
feature extraction mechanisms tend to result in featurssmbling Gaussian derivatives, they
are used here directly, avoiding the addd€rt of eigen-subspace decomposition. Moreover,
Gaussians and their derivatives have a number of usefuepiesp; those that are important for
this work were introduced in Section 3.3.

The feature space considered in this work is defined realysi feature from this space is
either aprimitive feature, or &ompoundeature. Compound features consist of other compound
features anr primitive features, and are discussed in Section 3.5.Aipive feature is defined
by a vector of responses of Gaussian-derivative filtersaatifputed at the same image location
X. The following sections describe two types of primitivetteas.

3.4.1 Edgels

Edges are a fundamental concept in vision, deemed impdiyabbth machine and biological
vision research. Edges describe aspects of shape in terim®sity boundaries. Here, indi-
vidual edge elements — so-calledgels— are considered in isolation, without attempting to join
them into contours. An edgel is defined by the 2-vector

|Gg(X)
fedge(X) - [ IG,l,/z(X)
where the filter$G are computed at thiatrinsic scaleoy that maximizesseqge(c) at the image
locationx. An edgel encodes the orientation and magnitude of the Intalsity gradient at the
intrinsic scale. Note that the gradient orientation is gisvaumerically stable at a scale-space
maximum, because the numerator and denominator in Equaioczannot both be close to zero
at a maximum of the scale functi®agget

3.4.2 Texels

Edgels are a weak descriptor of the local intensity surfadkat they are defined by merely two
parameters. It may often be desirable to have a more expedssial descriptor that uses more
parameters and captures more structure than just the lteaisity gradient. Intuitively, this
structure corresponds to a local pattern or texture, whiokiviaites the terntexel (for texture
element). A texelfeye is defined by a vector containing the steerable bases of thtenfir
Gaussian derivatives at, scales. One of these scales is the intrinsic scathat maximizes
Soiob(07) OF Scorne(0”) @t an image location.

Besides the choice of the scale function, an edgel is simpéxel withny = ns = 1. The
motivation for using texels with several derivatives andlss is that the additional parameters
represent more information about local image structurdexture), increasing the specificity
of the feature [90]. This increased specificity may or may metdesirable in a given task.
Therefore, both edgels and texels are included in the feapace, and it is up to the feature
learning algorithms (Chapters 4 and 6) to use any or bothesfetiprimitive feature types.

This work consistently uses texels composed of the first tetvdtives at three scales,
yielding a total of (2+ 3) x 3 = 15 filter responses. The middle scale is the intrinsic sdaleah
image location, and the other two scales are spaced halftavedcelow and above. Derivatives
of an order greater than about two or three rarely respomfigigntly in practice because of
their narrow bandpass characteristics. Therefore, thegribate little to the specificity of a
feature. The specificity can arbitrarily be increased byiragidcales (within the limits imposed
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by the pixel and image sizes). However, adding larger scabbsces the locality of the feature.
Also, good generalization properties are usually expeatedeature. This choice of parameters
constitutes a compromise between expressive power anlityaafathe filter in space and scale,

and has been found useful in other applications [93].

The orientation of a texel is defined in terms of the two firstihtive responses. At what
scale should these responses be measured? Thisfiicaltguestion because the edge energy
at the intrinsic scale as determined accordingl§, and Scomermay be very low, rendering the
texel orientation unreliable. This was pointed out by Choetaal. [19], who recommended
that the orientation of blobs be defined using the scale tlaatimizes Sqge at this location.
However, this scale may be veryfiirent than the texel scale, resulting in an orientation that
corresponds to an image structure other than that deschpdte texel. In particular, this
can be a problem in the presence of non-rigid objects or antiat clutter in the scene. Most
of the imagery considered in this dissertation shows rigigects and no clutter. Chomat et
al.'s empirical results and my own informal experimentsfoamed the clear superiority of their
method, which is therefore applied throughout this work.

3.4.3 Salient Points

In principle, edgel and texel features can be computed alcmayion in an image. In practice,
it is often useful to concentrate @alientimage locations. For a given scale functig(or), any
local maximum within the three-dimensional scale spacendefa salient point and its intrinsic
scaleo- at which this maximum is attained (cf. Example 3.2 on page 17)

In order to identify scale-space maxima for edges, the spHee ofseqqeis first projected
onto the image plane by taking the maximumsgfiye over the scaleg- at each pixel. The
resulting image specifies the gradient magnitude, orilemaand intrinsic scale for each pixel.
Then, gradient-parallel maxima are extracted on this 2-@&helin the conventional fashion,
resulting in well-localized and mostly contiguous contsagments.

(a) intrinsic scales (b) gradient oriens.  (c) grad. magigtu  (d) extracted edges

Figure 3.8. Extracting edges from the projected scale space. See Ega8§for explanation.

Example 3.3 (Extracting Edges from the Projected Scale Spay  Figure 3.8a shows the
intrinsic scale corresponding to each pixel location. Atrepixel, the gray value encodes the
scale at whichsggge is maximized at that image location. Bright shades cornegpo large
scales. High-contrast regions in the original image (ajuFé 3.3a, page 16) clearly correspond
to smaller scales. The blocky artifacts are bounddfgces; filters are not applied near the
image boundary where the filter kernel exceeds the imagee€fi§gure 3.8d) are extracted
as gradient-parallel maxima from the image shown in FiguBe,Xontaining at each pixel the
strongest edge energy across all scales, attained at tleesbwavn in Figure 3.8a, using the
corresponding gradients shown in Figure 3.8b. [ |

For texels, local maxima are identified in each of the twoessgaces generated Bygp
and scomer  These local maxima are then projected onto the image pl@nethose relatively
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rare occasions where two local maxima project to the samgénacation, the maximum cor-
responding to the larger scale is shifted slightly. The $sabent texel points is then given by
the union of the projected maxima of both scale spaces. Asudtreach salient image point
has exactly one intrinsic scale (Figure 3.9).

Figure 3.9. Salient edgels and texels extracted from an example imageth®left, each
dark line segment corresponds to an edgel (i.e., a scategpaximum ofsqgd located at
the midpoint of the line, with scale identical to half the length of the line. On the right,
square markers correspond to scale-space maximmg:gf; and circular markers to scale-space
maxima ofg,jop. Collectively, these are the salient texels. The orieotatiof these are illustrated
by the center lines of each marker. The radius of each maslegual to the local scate. See
Example 3.4 for discussion.

Scale spaces are computed at half-octave spacingyi,e.= o V2. This choice provides
suficient resolution at moderate computational cost [93]. Tl@mum plausible scale is re-
lated to the pixel size, and the maximum is limited by the sizéhe image. This work uses
scales in the range between one pixel and one quarter ofdberlanage dimension.

Example 3.4 (Salient Edgels and Texels) Figure 3.9 illustrates the salient edgels and texels
extracted from an example image. The radius of each edgataabmarker shown in the figure
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is equal to the local scale. Circles and squares correspond to blobs and corners ctashe
The bottom row illustrates the degree of robustness of tiensgoints with respect to rotation
and scale. These images were obtained by rotating the akidick image by 60 degrees and
scaling it by a factor of 0.7 and subsampling, but are shovarged to match the original size to
facilitate visual comparison. Naturally, some amount dades lost through the subsampling,
which accounts for the reduced number of salient points.

Most edgels are located at high-contrast image locatiodsaemextracted at a very small scale.
In addition, some edgels were extracted at much largersaadeturing large-scale image struc-
tures as opposed to pixel-level localized gradients. Likewtexels cluster around high-contrast
image regions. While edgel scales reflect the smoothnesedbtal edge, texel scales corre-
spond to the size of the image structure. Note, for examipéelatrge corner behind the neck, or
the small blob at the tip of the tail. All of these are locatétbeal maxima in the scale function;
there was no threshold on the prominence of these local naaxiviany of the weaker max-
ima tend to occur in clusters along intensity edges, eslheebtsmaller scales. As the figure
illustrates, such texels are less robust to image transfitons than texels at more pronounced
locations, e.g. the blob centered at the eye, the large cbetend the neck, the small blob at
the tip of the tail, or the blob at the chest underneath the.chi

Figure 3.10 illustrates the extent to which texels are stalckoss viewpoint changes. Again,
those texels that correspond to pronounced locations et tmore stable. Texels located
at accidental maxima along intensity edges are reliablggure but their precise number and
location varies across viewpoints. |

Figure 3.10. Stability of texels across viewpoints. Adjacent viewpsidiffer by 10 degrees.
See Example 3.4 for discussion.
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3.4.4 Feature Responses and the Value of a Feature

As introduced in Sections 3.4.1 and 3.4.2, a specific insthf) of a primitive feature is de-
fined by the numerical values comprising the feature resperstor, typically generated by
computing the applicable filter responses at a locgtiamsome image. To find occurrences of
f(p) in an imagel, the response strength value fp)(x) of f(p) is measured at each poixt

in I. To measure the feature value at a locatipthe feature response vecfdk) is computed
atx, using the local intrinsic scalex. The feature value is then given by the normalized inner
product of the observed resporf¢g) with the reference responé):

3 f(p)" f(x)
frip () = max{o’ )l ||f(x)||} (3.12)

Negative values are considered as weak as orthogonal sspenctors, and are therefore cut
off at zero. Hence, & f; < 1. The normalized inner product is pleasing in that it resuime
cosine of the angle between the vectors in question whickedgels, is identical to the cosine
of the angle between the edgels in the image pldngy(x) = max0, cos@, — 6x)}. Moreover,
the feature value is invariant to linear changes in imagesity.

If the feature value is to be computed regardless of the @tiem of a feature in the image
plane, the measured feature response vd¢xris first steered to match the orientation of the
pattern vectorf(p) before Equation 3.12 is applied. This is done using a fondtix, p) that
applies the steering equation (3.8, page 15) to all comgeradiii(x), usingé = 6, — 6x. Thus,

Equation 3.12 becomes

N f(p)T f(x

fioy () = max{o, (p)—f’p)} (3.13)

IF I )

for rotationally invariant feature value computation. Bltiiat this rotationally-invariant match-
ing implies thatf; is always equal to one fif is an edgel. Hence, individual edgels carry no
information. Rotation-invariant edgels are only usefupag of a compound feature, as intro-
duced in the following section.

£

@) f(p) (b) f(x*) (© f(xt)

Figure 3.11. Matching a texel (a) across rotation and scale, without ifio)with (c) rotational
normalization. See Example 3.5 for explanation.

Example 3.5 (Localizing a Feature) Figure 3.11a shows one of the salient texels extracted
from the familiar duck image (cf. Figure 3.9). Figures 3.Hiu 3.11c show the same rotated
and scaled version as used in Figure 3.9. fLet [71,49]", which is the location of the texel
shown in Figure 3.11a. Thef(p) is the feature response vector defining this texel featve.
now want to find this feature in the rotated and scaled imagelofhis without regard to feature
orientation, the locatio®r” that maximizesf ) (x) is identified using Equation 3.12. The salient
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point x* that maximizes Equation 3.12 is that shown in Figure 3.11érekf ) (x*) = 0.956.

It is no accident that this texel has the same orientatiorhagattern featurg(p) shown in
Figure 3.11a, but the two locations do not correspond (elvengh they are spatially close to
one another in this example). The true corresponding feasushown in Figure 3.11c; let us
call this locationx;. Disregarding the dierence in orientationfsp)(X;) = 0.578 < frp)(x*). If

at each locatiox the feature response vectdx) is first steered to match the orientationf ()
using Equation 3.13, then the correct location is found vﬁi((gj(x;k) = 0.996 (Figure 3.11c). In
contrast, the value at” increases only marginally frorf,)(x*) = 0.956 to ﬂ(p)(x*) = 0.960,
remaining below the value at the correct locatign [

In all parts of this work, feature values are computed wittational normalization using
Equation 3.13. From now on, the tilde will be omitted for slmity, and the notatiorf; will be
used with the understanding that feature response vectoadveays steered to achieve rotational
invariance.

A featuref(p) is present in an imageto the degree

frp)(1) = maxfr(p) (x). (3.14)

This computation is quite expensive, as it involves the mesment of the intrinsic scale and
the computation of(x) and f;)(X) at each location in the image. A large proportion of this
computation is going to be wasted because most image regitinsot contain features of
practical relevance. Therefore, the assumption is madealifaatures of practical relevance are
located at salient points. To identify the salient points #till necessary to evaluatéo) over
the entire range of scaleseverywhere in the image, which constitutes a highly pdiatible
operation. Maoreover, if the application provides a fixedddtaining images, this computation
can be performedfBline. In practice, this leads to a great reduction in corapaih time and
space, as the maximum in Equation 3.14 is only taken overdliens points rather than the
entire image.

3.5 Compound Features

A core objective of this work is to demonstrate that featwaasbe learned that are highly mean-
ingful individually. The limited descriptive power of inddual primitive features is overcome
by composing two or more primitive features into compounatidess. Since compound fea-
tures contain more parameters and cover a larger image laeadd primitive features, they
provide a potentially more specific and robust descriptibmetevant aspects of appearance.
What it means for a feature to be relevant, and how relevaitifes are sought, depends on
the given task. Chapters 4 and 6 present two illustrativengkas. This section describes three
complementary ways in which primitive features can be casedanto compound features.

There is evidence that the mammalian visual cortex also osegsimple and generic fea-
tures hierarchically into more complex and specific featur€he primary visual cortex con-
tains retinotopic arrays of local and oriented receptiviel$§i¢45] which have been modeled as
Gaussian-derivative functions [132, 57]. Many neuronsifbin higher-order visual cortices are
tuned to more complex stimuli. Riesenhuber and Poggio [8&)@sed a hierarchical model of
recognition in the visual cortex, using spatial combinagi@f view-tuned units not unlike the
compound features introduced below.

3.5.1 Geometric Composition

The structure of a geometric compounchpt 2 primitive featureso, f1, . . ., fn,—1 (Figure 3.12)
is defined by the attitudes of each subfeature, and the angha, distances;, and scale ratios
Ao between the constituent subfeatufesThe distancesl; are given relative to the intrinsic
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scaleo_1 at pointi — 1. Each primitive feature is either an edgel or a texel. A Hjpeiostance
fyeomOf & geometric feature with a given structure is defined byctiveatenation of the vectors
comprising the primitive subfeatures. Its orientationeésoted byg, which is the orientation of
the reference point.

reference pointy

Figure 3.12. A geometric compound feature consisting of three primifeatures.

The location of a feature is defined by the location of therezfee point. To extract the
filter response vector defining a geometric feafifx@ at locationx, the following procedure is
used:

Algorithm 3.6 (Extraction of a Geometric-Compound FeatureResponse Vector)

1. The response vectdg(x) is computed ak. This defines the orientatiofy and intrinsic
scaleoy of f(x). Initially, leti = 1:

2. Ifi = ng, then stop.

3. The locatiorx;, orientationg;, and scales of the next constituent subfeatufieare com-

puted:
- [ cos@i_1 + )
Xi = Xi-1+0i-ai [ sin@i-1 + ¢i) ]
0 = Oi_1+Ab
o = 0i_1A0;

4. The feature response vecfg;) is computed at scale;j, and is rotated to orientatiof
using the steering equation 3.8 (page 15) with angular aggtién= Ag;. Incremeni, and
continue at step 2.

The filter response vector is given by the concatenationeoirttlividual response vectors of the
constituent primitive featuref€x;),i =0,1,...,n; — 1. |

The valuef;, (1) of a geometric compound featufgeom in an imagel is computed in the
same way as for a primitive feature (Equations 3.13 and 3using the concatenated response
vectors. This involves running Algorithm 3.6 at each of thg applicable salient image loca-
tions. These are either all salient edgels or all salierglsexdepending on the type of the first
subfeaturdo of fgeom It is easily seen that the time required to compfgfg, is proportional to
Nsall .

3.5.2 Boolean Composition

A Boolean compound feature consists of exactly two subfeafieach of which can be a prim-
itive or a compound feature. The relative locations of thiefsatures are unimportant. Two
types of Boolean features have been defined:
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e The value of a&onjunctivefeature is given by the product of the values of the two subfea
tures.

e The value of adisjunctivefeature is given by the maximum of the values of the two
subfeatures.

For conjunctive features, the product is used instead ofrttmum because it is natural to
assign a higher value to a feature if the larger of the two anrept values is increased even
further. For example, the valuke of a conjunctive feature with subfeature valugs= 0.6 and
fr, = 0.9 should be larger than for a feature with subfeature vafyes 0.6 andf;, = 0.7.
Feature values of Boolean compound features are measwasively by first measuring
the values of each of the two subfeatures individually, &ed combining their values using the
product or the maximum, respectively. Hence, the time regiuio compute the valug,,(I) of
a Boolean compound featufg,q in an imagel is proportional tangoto(l) + Nsaata(l), where
Nsali denotes the number of salient image points applicable tieaturef;, andt;() denotes the
time required to compute the valdg(l) of subfeaturd; in the image. Note that each subfeature
of a Boolean compound feature can be any type of featureydimgy primitives, or geometric,
conjunctive or disjunctive compounds.

3.6 Discussion

Section 3.2 formulated a list of objectives (page 12) to bebyehe feature design. All of these
are addressed by the compositional feature space:

1. Features are computed on intensity images.

2. The feature space was designed without a specific tasknith. rRieatures can be composed
to arbitrary structural complexity to increase their sfieity.

3. Therefore, it seems justified to hope that powerful irdiiail features are contained in this
feature space. The extent to which this goal was achievddwidliscussed in Chapters
4-6.

4. Edgels and texels are complementary and capture impasaects of image structure.
Geometric and Boolean compositions are also complemeatatjhave intuitive seman-
tics. Subsequent chapters will illustrate possibilitiad éimitations of this feature space
for practical tasks.

5. Feature orientations are easily computed and compehfeatasing the steerability prop-
erty of the filters employed.

6. The features are computed at the intrinsic scale obsénvih@ images. Therefore, they
are useful for scale-invariant image analysis.

7. The features are local, since the filters employed haw kgpport. The locality of geo-
metric features can be controlled by placing constrainttherdistances between primi-
tives and the number of primitives allowed.

8. Features return a scalar value, which makes them aplgigabeneral classification and
regression frameworks. The orientation attribute of auieatan also be used for regres-
sion, as will be seen in Chapter 6.

9. The biological relevance of this feature space was Bridiicussed in the introductions
to Sections 3.4 and 3.5.
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A critical property of this compositional feature spacehattit is partiallyorderedby the
structuralcomplexityof a feature, according to the number of primitives contadiirea com-
pound. Also, the three compositional rules are ordered biy gxpressive power. A disjunctive
compound can be regarded as more complex than a conjunotivgazind in that it can express
a strictly larger class of concepts. For example, a hieyaotiisjunctions of sfficiently com-
plex geometric features can memorize almost any arbitretrpfimages. Conjunctive features
are more expressive than geometric features because therfeaan be composed out of the
latter, but not vice versa.

This orderly structure will play an important role in thel@ling chapters, where algo-
rithms are described for learning features from this spdéese algorithms create features in
a simple-to-complex manner, in the sense that featuresicamg few primitives are preferred
over features with many primitives, and geometric comjmmsits preferred over conjunctive
composition, which in turn is preferred over disjunctivergosition. The underlying assump-
tion is that simpler features generally provide for betteneralization, or in other words, that
the “real” structure underlying a task tends to be exprés$ip simple features.

In summary, all design goals laid out in Section 3.2 are ais@ by the feature space
defined in this chapter. Itis unique in its hierarchical anthpetric organization that facilitates
simple-to-complex search for highly distinctive, locahfieres in an infinite space. Because of
these key properties it is well suited for open tasks, asaatguChapters 1 and 2. The following
chapters will demonstrate how important visual skills cadarned on the basis of this feature
space.
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CHAPTER 4
LEARNING DISTINCTIVE FEATURES

This chapter introduces the first of two feature learningliagpons that build on the feature
space introduced in Chapter 3. The task is to learn to disishigvisual contexts by discovering
few but highly distinctive features. The scenario addréseehis chapter is substantially less
constrained than in most conventional approaches to viggalgnition. The learning system
does not assume a closed world. Learning is incrementalnewdarget object classes can be
added at any time. An image presented to the system may shonuamber of target objects,
including none. No explicit assumptions are made about thegmce or absence of occlusions
or clutter, and no object segmentation is performed. Caresgty, this chapter does not set out
to improve on the recognition rates achieved by today’s nspexialized recognition systems.
Rather, the goal is to demonstrate that a highly uncommatetem, starting from a nearly
blank slate, can learn useful recognition skills.

4.1 Related Work

The general problem of visual recognition is too broad andeuronstrained to be addressed
comprehensively by today’s artificial systems. Thereftre following three subproblems have
been identified in the literature that are more easily adeseparately by specialized solu-
tions:

Specific Object Recognition. In a typical scenario, a test image depicts exactly one taige
ject (with or without occlusion ardr clutter). The task is to recognize that object as one
of several specific objects [46, 73, 104, 71], e.g. a padictdy or a particular landmark.
The appearance or shape of the objects in the database aigefyré&known. Naturally,
most work concentrates on rigid objects, with the notabtepiion of face recognition.

Generic Object Classification. The scenario is the same as in Specific Object Recognition,
but here the task is to label the target object as belongimgéocof several known object
categories or classes [133, 111]. The individual objectsiwa class may vary in appear-
ance. A class (“car”, “chair”) can be defined in various wag/g,. by object prototypes,
by abstract descriptions, or by models containing enougdilde discriminate between
classes, but not enough to distinguish between objectsrvathlass.

Object Detection. Test images contain various items and typically show nhfumadoor or out-
door) scenes. The task is to localize regions of the imagedthzict instances of a target
object or class of objects, e.g. faces or people [81, 7, 6je@bletection is closely related
to fundamental problems in image retrieval [92].

The requirements andfticulties difer between these subproblems. Therefore, many existing
recognition systems are designed to solve only one of thewwre®er, some practical recog-
nition problems further specialize these categories. kamgle, face recognition [125] is a
distinct subcategory of specific object recognition thaistreope with gross non-rigid trans-
formations that are hard to model mathematically. Optitalracter recognition is a distinct
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subcategory of generic object recognition [8], etc. Othracfical recognition problems are of-
ten addressed in related ways. For example, Weng et al. {ée&it]indoor landmark recognition
as a simplified object recognition problem without geneedlon across size or pose. Riseman
et al. [100] represent outdoor landmarks by line models andgnize them by many-to-many
model matching in two and three dimensions. Very few promgigittempts have been made to
develop systems that are applicable to more than one of sudgEoblems. Among these, most
systems employ features that explicitly allow certain imagriations [128, 5, 77, 78].
For visual recognition, two major classes of techniquesheaitentified:

Model-based methods employ geometric models of the target objects fiufe extraction or
alignment [46, 100].

Appearance-basedor model-free methods extract features directly from eXanmpages with-
out explicitly modeling shape properties of the target otsje Various types of features
have been employed, e.g. principal components computettfre image space [73, 125],
local image statistics [116, 104, 71], locally computed péates [128], or primitive local
shape descriptors such as oriented edges or corners [1j04, 71

Hybrid techniques have also been proposed in which appesdtzased methods served as in-
dexing mechanisms to reduce the number of candidate objedels[55]. In fact, it appears
that this was historically the primary motivation for appa@e-based methods. Only later was
their full potential discovered, and systems began to eentirgt omitted the model-matching
phase and relied on appearance-based methods alone.

Most appearance-based visual recognition systems exfesgnition as a pattern classi-
fication problem, and many employ standard pattern redognélgorithms [128, 71, 8, 81].
Also very common in computer vision, custom classifiers asighed for specific recognition
paradigms. For example, Swain and Ballard [116] and Sclaieté Crowley [104] proposed
methods for comparing histograms. Turk and Pentland [188]Murase and Nayar [73] find
nearest neighbors in eigen-subspaces. Fisher and Macf32dlyise a perceptron to learn the
weights for a weighted multivariate cross-correlationgaaure.

A large variety of features have been proposed (see alsm88&c1). Those that relate to this
work fall into two broad categories: eigen-subspace methibdt operate in image space [125,
48, 73, 131, 119], and locally computed image propertie8,[126, 104, 71, 5, 32, 66]. Eigen-
subspace methods are well suited for learning highly detbegi[125, 73, 119] or discriminative
features [131, 119]. Locally computed features are typiafined a priori [116, 104, 71], or
they are derived to be descriptive of specific object clagks, 32, 6, 33, 66]. Few approaches
exist that attempt to derive discriminative local feat&s 8, 5].

4.2 Objective

Object recognition has reached a remarkable maturity ientegears. The problem of finding
and recognizing specific objects under controlled conalitican almost be considered solved,
even in the presence of significant clutter and occlusiome@e object recognition is consider-
ably harder because the within-class variability in obggmpearance can be arbitrarily large. If
the within-class variability is large in comparison to thetkeen-class variability, it can be very
difficult to find feature sets that cleanly separate the objestetain feature space. This prob-
lem has not yet received much systematic attention. Esdlgnail current object recognition
and detection systems operate on the assumption that thimwiass appearance variability is
small compared to the between-class variability, i.e.eclsj within a class appear more simi-
lar (to a human observer) than objects from distinct clasSemsequently, researchers choose
feature sets that reflect our intuitive notion of visual $amity.

In practical tasks, this assumption does not always holdliéte that this constitutes one of
the key dificulties in generic object recognition: In practice, megfuhobject classes are often
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defined not by their appearance, but by some other similaréiric, e.g. functional properties.
A classical example is that of chairs: A chair is somethirag #fords sitting. In a given context,
anything that has this functional property is a chair. Hogveghairs can look quite dissimilar.
It is very hard to specify a generic appearance model of a &rabbject recognition purposes.

In contrast, | argue that humans recognize chairs on the bé#ieir experience that objects
that dford sitting tend to exhibit certain visual properties, egoughly horizontal surface of
appropriate size and height. It is oexperiencehat created the association between function
and specific aspects of appearance. None of the work citaagabarguably with the exception
of Papageorgiou and Poggio’s wavelet-based trainablebigection system [81] — considers
object classes that arise from an application context dtfeer subjective similarity of appear-
ance.

A corollary of the necessity of learning object models fraxperience is that learning must
be incremental. Some of the recognition algorithms meptioabove can be altered to learn
incrementally [130, 81], but none of these authors notedeimental learning as a desirable
property of machine vision systems.

| perceive the distinction between specific and genericabligcognition and detection as
rather artificial. It is the necessity to define problems ifyeand to design testable and com-
parable algorithms that has produced this taxonomy of @mies, rather than well-established
principles of vision. The same basic mechanism should m®dund refine features at various
levels of distinction, as demanded by a task. Features gleoplress just the level of specificity
or generality required along a continuum between specificgameric recognition [122, 121].
Likewise, it is hard to think of visual search or object déitat without doing some recognition
of the detected objects at the same time. Ultimately, we aeadiform framework for visual
learning that addresses these subtasks in a coherentrfashio

Building on the feature space introduced in Chapter 3, thégter presents a framework for
incremental learning of features for visual discriminatidhe task scenario is not restricted to
specific objects, landmarks, etc. A design goal is to be alisirn a wide variety of perceivable
distinctions between visual contexts that may be impoitaatgiven task. A visual context may
correspond to an individual object, a category of objeatgny other visually distinguishable
entity or category. In agreement with pattern recognitenminology, these distinct entities or
categories will be referred to atasses The following properties distinguish this framework
from most conventional recognition schemes (see also Tablen page 2):

e Atthe outset, the number and nature of the classes to baglisthed are unknown to the
learner.

e Learning is performed incrementally on a stream of trainimgges. No fixed set of
training data is assumed. Only a small number of traininggiesaneed to be accessed at
any one time.

e There is no distinction between training and test phasesrrirg takes place on-line,
during execution of an interactive task.

e There can be any number of target objects in a scene, notrjastRrior to recognition,
this number is unknown to the system.

¢ In principle, there is no distinction between specific radtign, generic recognition, and
detection. The unified framework encompasses each of tiypss of problems.

e Prior to learning, the algorithms and representationsagely uncommitted to any par-
ticular task. The objective is to leadustinctivelocal features.

Definition 4.1 (Distinctive Feature) A feature isdistinctiveif it has both of the following
properties:
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e It is characteristicof a particular class or collection of classes. These ctaase called
thecharacterizedclasses. Objects of a characterized class are likely tdixthis feature.

e |t is discriminativewith respect to another class or disjoint collection of sé&s Objects
of such adiscriminatedclass are unlikely to exhibit this feature.
|

Taken together, these properties allow one to argue thagifen distinctive feature is found
in a scene, an instance of the characterized class(esklg tik be present in the scene. This
reasoning forms the basis for the feature learning algoriphesented in Section 4.4. The goal
is to show that useful recognition performance can be aeldi®y an uncommitted system that
learns distinctive features. To reinforce this point, tigetem starts out with a blank slate,
without any task-specific tuning, and learnsmaallnumber of features to solve a task.

It is worth pointing out that, strictly speaking, neithertbése two characteristics is biologi-
cally correct: Firstly, the human visual system indeed sheevy little hard-wired specialization
and draws much of its power from its versatility and adapitghiHowever, it is also true that
infant visual learning is guided by highly structured deymhental processes. Secondly, we are
capable of learning individual, distinctive high-leveafares, e.g. corresponding to object parts.
On the other hand, the robustness of our visual capabilgtiesgely due to the redundancy of a
large number of low-level features such as line segmentage® and other descriptors of local
image structure represented by neurons along the visualvpgitbetween the primary visual
cortex and the inferotemporal cortex.

4.3 Background

The framework for incremental learning of discriminatieafures, introduced in the following
section, builds on two important existing concepts — Bayesietworks and the Kolmogorov-
Smirndt distance — that are be briefly described here.

4.3.1 Classification Using Bayesian Networks

In the context of this workglassificationrefers to the process of assigning a class label to
an instance described byfeature vectar The elements of a feature vector may be scalar or
categorical values, whereas a class label is always cétafjohn abstract device that performs
classification is called elassifier Here, a classifier is trained inductively, i.e., by gengadion
from training examples. There are many well-establishathéworks for classification, e.g.
decision trees, neural networks, nearest-neighbor msttaod support vector machines.

Bayesian networks constitute a rather general graphieahdwork for representing and
reasoning under uncertainty. A Bayesian network encodeimiagrobability distribution. Each
node represents a random variable, here assumed to beelisdne network structure specifies
a set of conditional independence statements: The vaniaptesented by a node is condition-
ally independent of its non-descendants in the graph, divervalues of the variables repre-
sented by its parent nodes. In more intuitive terms, an aicates direct probabilistic influence
of one variable on another. Each nodehas an associated table specifying the conditional
probabilities of the value oK given the values of its parents. In other words, the conuftio
probability table ofX contains the values d¥(X = x| A=a,B =h,...), whereA B,... are
the parents oK in the graph, ana, a, b, ... each denote a particular value — commonly called a
state— of the corresponding random variable.

Bayesian networks permit the computation of many intenggpieces of information. Most
importantly, one can infer the probabilistic value of sonagiables, given the values of some
other variables. This involves the following two essengiglps:
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Instantiation of evidence: The values of some variables are set to their observed valhese
values may themselves be (unconditional) probabilityrithistions over the possible val-
ues of these variables.

Propagation of evidence: Using the conditional probability tables, the posteriookbilities
of neighboring nodes are iteratively computed, generatii some nodes of interest —
targetvariables — are reached. These nodes now contain the pogteybabilities of their
values given all evidence entered into the net, also cal@igfs BEL(X = x) = P(X =
x| A=aB=Dh,...))whereA B,... include all nodes in the net that contain evidence
[83]. If evidence is propagated exhaustively throughoatehtire network, the net is said
to be inequilibrium

Mathematical methods exist that allow these two steps todadyfintermixed. In general, exact
inference is NP-hard. In practice however, due to the spasseof most practical networks,
inference is performed very quickly for up to a few tens ordnels of nodes.

Often itis useful to know the influence of one variable on heatThe influence of variable
X on variableY is conveniently defined by the mutual information [112] beénX andY, that
is, the potential of knowing to reduce uncertainty regarding the valueyof

LY, X) = H(Y) = H(Y | X) (4.1)
wheré the uncertainty irY is given by the entropy function

H(Y) = - > Py)log P(y)

y
and

HIY[X) = D HYIX)PX)

= > > Py IX)P(X)log Py | X)
Xy

- > > Py log P(y | )
Xy

is the expected residual uncertainty given that the valu¢ isfknown. Expanding the condi-
tional probabilities and using belief notation, Equatioh decomes

1Y, X) = Z Z BEL(Y, ) log BELE/;(Q’EXE(X) 4.2)
To computel (Y, X), note thatBEL(y, x) = BEL(x | y)BEL(X). One can comput8EL(x |
y) by temporarily settingy to valuey, propagating beliefs through the network to establish
equilibrium, and using the resulting posterior probaiegiditat nodeX as theBEL(x | y) [83,
98]. The unconditional belieBEL(y) andBEL(x) are available at the respective nodes prior to
application of this procedure.

The theory of Bayesian networks has been best developedsitnete random variables.
With some restrictions, inference is also possible witlcalled conditional Gaussian distri-
butions [60], and the theory is constantly being advancemt. nkore information on Bayesian
networks, excellent texts are available [83, 51].

A naive Bayesian classifiés easily represented using a Bayesian network. It has gud-to
ogy of a star, with a node representing the class randomblaria the center, and arcs going
out to each feature variable. Intuitively, each arc spexifiat the presence of a class gives rise
to the feature pointed to by the arc. A general Bayesianitiexssiodels dependencies between
features by inserting arcs between them, where applicable.

1The notationl, conventionally used to denote mutual information, is ndieé confused with the use bfor an

image intensity function introduced in Section 3.3.1. la following, the context will always indicate the referent
of I.
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4.3.2 Kolmogorov-Smirndf Distance

Let X be a continuous random variable, andpéx | a) and p(x | b) describe the conditional
probability densities oKX under two conditiong andb. Suppose one is asked to partition the
domain of X into two bins using a single cutpoint such that most values of that fall into
one bin are generated under conditigrand most values in the other bin under conditiorA
Bayes-optimal value ok is one that minimizes the probability of any given instacending

up in the wrong bin.
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Figure 4.1. Definition of the Kolmogorov-Smirn® distance.

Let cdf(x | @) and cdf | b) denote the cumulative conditional densities correspuntd
p(x | @) and p(x | b), respectively. Thé&olmogorov-Smirng distanceor KSD for variable X
under conditions andb is defined as

KSDap(X) = max| cdf(a | &) - cdf(e | b) (4.3)

(see Figure 4.1). A value af maximizing this expression constitutes a Bayes-optimgdaint
in the above sense, if the prior probabilities of a givenansex having been generated under
conditionsa andb are equal.

In practice, the cumulative distributions are often noilatde in analytic form. Fortunately,
it is easy to estimate these from sampled data. Given a plartticutpointa, simply count the
data samples that fall into each bin, and normalize the saiantonvert them into cumulative
probabilities [126]. To find an optimal, this procedure is performed for all candidate cutpoints
that include all midpoints between adjacent values in thieedsequence of the available data.

4.4 Feature Learning

Figure 4.2 is intended to serve as a road map to the algorittefised in the present chapter.
It shows an instantiation of the generic model of incremiele@ning (Figure 2.1 on page 8)
applied to learning distinctive features. This is the tasénsirio underlying this chapter: At
the outset, the agent does not know anything about the tyfpéistinctions and classes to be
learned, and it has no features available. As it performmds, it acquires one image at a time,
and attempts to recognize its contents as far as they arantl® the task. If the recognition
succeeds, the agent simply continues to perform its tasiat]fit attempts to learn a new feature
that solves the recognition problem.

In the basic form introduced below, the feature learninguligm requires two key proper-
ties of the task environment:

1. The agent must be able to compare its recognition resthtthv correct answer (i.e., the
learning algorithm isupervisell
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Algorithm 4.7
——Jp| acquire image
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recognize classes |
Algorithm 4.4

learn distinctive feature
Algorithm 4.8,
yes no using Algorithm 4.10

Figure 4.2. A model of incremental discrimination learning (cf. Fig&d, page 8).

2. The agent must be able to acquire rands@ample imagesf scenes containing instances
of specific classes. This permits statistical evaluatiocanfdidate features.

The second requirement is not a critical limitation in maeglistic interactive scenarios. For
example, an infant can pick up a known object and view it frarious viewpoints; or a child
receives various examples of letters of the alphabet fropaehier. A robot may aim its camera
at known locations, or may pick up a known object from a knoagation.

The subsequent sections introduce the key components ofghal learning algorithm in
turn; namely, the classifier subsystem, the recognitioordlgn, and the feature learning pro-
cedure.

4.4.1 Classifier

Conventionally, a Bayesian network classifier models thesgs using a single discrete random
variable that has one state for each class. This repremgngtsumes that there is exactly one
correct class label associated with each instance. Alsh, feature — if instantiated — always
contributes to the classification process, no matter wieattirent class is, because each feature
node contains a full conditional probability table tfiateach classepresents the probability of
this feature being observed. This is contrary to the conakgistinctive features that specialize
in specific distinctions between a characteristic classasmall subset of the other classes. Ina
naive Bayesian classifier, the number of entries contaimélaki probability table at each feature
node is equal to the product of the number of classes timesummber of states of the feature
variable. If there are many classes, these tables can begoiteclarge. All their conditional
probability entries must be estimated. Even worse, all @fittmust be re-estimated whenever a
new class is added to the system.

A natural way to avoid these problems is to represent eads tia an individual Bayesian
network classifier. An example is shown in Figure 4.3. The<glaode of each network has
two states, representing presence or absence of an insihtide class. Here, each feature is
characteristic (in the sense of Definition 4.1, page 31) efdlass represented by its Bayesian
network, and is discriminative with respect to one or morcHx other classes. In Figure 4.3,
all features are characteristic of claSs and the discriminated classes are shown inside the
feature nodes.
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Feature 1 Feature 2 Feature 4
—Class A —Classes AB —Class E
Feature 3 /
—Class B Feature 5
—Class A

Figure 4.3. A hypothetical example Bayesian network.

This representation keeps the classes and their chasdictéeiatures separate. When a new
class is learned, a corresponding network is instantidtatithe existing networks and their
conditional probability tables remain uifiected. Moreover, this representation builds in the as-
sumption that the probability of the presence of each clasglependent from all other classes.
Since each network separately decides whether an objetst dbss is present, multiple target
classes within a scene are easily handled without interéexeEach networkfiectively acts as
an objectdetectionsystem. In contrast, most current recognition systemssaclaasification
systems and assign exactly one class label to each image.

Together with the concept of distinctive features, an irtgodrimplication of this represen-
tation is that the absence of a feature in an image neverasesethe belief in the presence of a
class. Inference in favor of a class is only drawn as a re$uétected features. This behavior
is a design choice reflecting the openness of the uncomnhééeding system. It is noteworthy
that this design is in contrast to conventional recognifigstems that always assign exactly one
of a given set of class labels to an image. Under this paradightedforced-choicerecognition
by psychologists, not detecting a characteristic featulldnevitably increase the belief in the
presence of other classes. Thieet may be desirable in@dosed world but can be detrimental
in realistic open scenarios. Many conventional recogmitigstems adopt confidence thresholds
that avoid the assignment of a class label in the absencefiddient evidence for any class,
which reduces but does not eliminate this problem.

Like class nodes, feature nodes also have two states, pondisig to presence or absence
of the feature. As in a typical naive Bayesian network cfassiarcs are directed from the class
node to the feature nodes. To model known dependencies detigatures, additional arcs
connect features where appropriate. Such dependenciesbgrthe construction of compound
features. Specifically, if a geometric compound featurg, (Seature 3 in Figure 4.3) has a com-
ponent feature that is also present in the network (e.gtuFea in Figure 4.3), then it is clear
that the presence of Feature 3 implies a high probabilityrmfifig Feature 2 in the scene also.
Feature 2 does not necessarily have to be present becaubeesteolds that define “presence”
are determined independently for each feature node (seailfi4.2 below). An analogous
argument holds for the components of a conjunctive featarthe case of a disjunctive feature,
the direction of the argument — and that of the arcs — is rederSay, Feature 4 is a disjunctive
feature, and Feature 5 is one of its components. Then, firie@adure 5 in a scene implies the
likely presence of the disjunctive Feature 4 in the sameescdiie reverse is not necessarily
true because Feature 4 may be present by virtue of its otlhéeature, with Feature 5 being
completely absent. Therefore, the causal influence is radd®} an arc from the component
feature to the compound.

Note that the same feature (defined by its structure andsfsorese vector) may occur in
more than one Bayesian network classifier. Feature valemeaasured using Equation 3.14
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(page 25). Since these feature values are real numbersmihs&tybe discretized by applying a
threshold marking the minimum value required of a featureriter to be considered present.
This threshold is determined individually for each featniogle so as to maximize its distinctive
power:

Definition 4.2 (Distinctive Power of a Feature) Thediscriminative powepf a featurd is the
Kolmogorov-Smirndé distance (KSD) between the conditional distributions aftfiee values
observed undeiaj the discriminated classes versb} the characterized class (cf. Equation 4.3
and Figure 4.1). Thelistinctive powerof a feature is identical to its discriminative power, if
cdf(as | @) > cdf(as | b) for the cutpointa; associated with the KSD, i.e., the feature is in fact
characteristic of its class. Otherwise, the distinctivevgois defined to be zero. |

As was noted in Section 4.3.2, this definition yields an optisutpoint in the Bayesian sense
that if the presence of a class is to be inferred on the badlisofeature alone, the probability
of error is minimized, given that the prior probability ofetipresence of this class equals 0.5.
In general, however, the prior probability of a class wilt he equal to 0.5. In this case, this
choice of a cutpoint is not optimal in any known sense. Néaess, Utgfi and Clouse [126]
make a strong argument in favor of using the K&iIhout paying attention to the prior class
probabilitiesas a test selection metric for decision trees. It is basetd@nliservation that even
in cases where the Bayesian choice is always the same regmuaflthe test, the cutpoint given
by the KSD separates two veryfidirent regions of certainty regarding the presence of thescla

Example 4.3 (KSD and Disparate Priors) Consider the class-conditional distributions shown
in Figure 4.4. There are many more samples from the discatathclasses than from the

Distributions of feature values observed under the

€ D discriminated classes
3
o . characterized class
>
(&)
[
Q
>
O
= A
=
0 feature values 1

Figure 4.4. Highly uneven and overlapping feature value distributions

characterized class. In other words, given an unclassifietbke, the prior probability that it
belongs to the discriminated classes is much higher thait thelongs to the characterized class.
Where should the Bayes-optimal cutpoint be placed thatvallone to guess what conditional
distribution generated a given sample? The two distrimgtifully overlap! Because of this and
the disparate priors, it is clear from Figure 4.4 that no eratthere a cutpoint is placed, the
expected error rate is minimized by always guessing thatrgkacame from the discriminated
classes, irrespective of the sample’s feature value. Hewyd@vis also obvious that a cutpoint
can be found that is meaningful in the sense that almost mipkss of the characterized class
fall above it, and almost none below it. While a decision todsed on such a cutpoint is not
Bayes-optimal, this cutpoint would tell us something alibatposterior probability of a sample
belonging to each of the two conditional distributions. &ffgand Clause simply suggest that
the simple definition of the KSD given in Equation 4.3 be agbliwhich — being based on
cumulative distributions — ignores the prior probabitie |

The computation of a KSD requires a description of the twadd@mal probability distri-
butions. Here, these distributions are approximated bytimeulative experience of the agent:
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The agent maintains ainstance listof experiences. Each image encountered adds to the in-
stance list a newnstance vectocontaining the feature values measured and the true clasls la
of this training image. All probability estimates relatitgthe Bayesian network classifiers are
estimated by counting entries in the instance list. Thisuhes the cumulative distributions
for estimating the KSDs to discretize feature variables,dbnditional probability tables at the
feature nodes, and the prior class probabilities at thes clades.

4.4.2 Recognition

Recognition of a scene can be performed in the conventioagloy first measuring the strength
of each feature in the image, setting the feature nodes dBdlyesian networks to the corre-
sponding values, and computing the posterior probabifithhe presence of each class. In this
case, the absence of a feature is meaningful to the systeternAlively, robustness to occlu-
sion can be built into the system by setting only feature sagresponding to found features,
and leaving the others unspecified. In this case, the postgrbability of these features be-
ing present (but occluded) can easily be computed. Incatipgr positive evidence into the
net will monotonically increase the posterior probabiliiya class. In particular, the posterior
probability is always greater than or equal to the prior.Naifitt éfective countermeasures how-
ever, in practice this monotonic increase will often reguitery high posterior probabilities for
many classes. Since the posterior class probabilities @mpuated independently by separate
networks for each class, evidence found for one class daesedaoce the posterior belief in
any other class. To avoid these problems, in this work bo#itige and negative evidence is
incorporated into the network by setting the applicabléuieanodes to the corresponding state,
presence or absence.

Computing a feature value in an image is expensive (cf. Egu&.14) in comparison to
propagating evidence in a Bayesian network of moderate $itmeover, the contribution of
individual features to the classification decision is uacliié all of them are computed at once.
Therefore, features are computed sequentially, and tissifitaation decisions are made incre-
mentally within each Bayesian network, according to thofeing algorithm.

Algorithm 4.4 (Sequential Computation of Class Beliefs)

1. Bring the Bayesian network to equilibrium by propagativigence.

2. Find the maximally informative feature among all featucé all classes. Le€ and F¢
denote two-state random variables representing the presenabsence of a class and
of a featuref, respectively. Then, the maximally informative featfifgy is the one that
maximizes

| max = mfaxmcaxl (C.Fp)

wherel (C, F¢) is the mutual information defined in Equation 4.2 on page 33.
3. If Imax = 0, then stop.

4. Measure the value of this featurgay, fr,.,. in the current image using Equation 3.14.

5. Instantiate all nodes correspondingfiayx in all networks to the appropriate values by
comparingfs, . against the respective threshotds(cf. Definition 4.2).

6. To keep track of the usage of each feature, ldRegl with the running number of the
current training image. Then, continue with Step 1.
[ |

Note that at each iteration of this algorithm, one featurestantiated. For an instantiated

featuref, the uncertainty in its characterized cl&s H(C) = H(C | F¢), and thud (C,F¢) = 0
(Equation 4.1). Therefore, the algorithm stops at Stepe3 aft features have been instantiated.
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In practice, it often stops sooner because among the untiated features there are none with
nonzero mutual information. This results if the entropiesll of the class nodes have been
reduced to zero, or if none of the remaining features arermdtive with respect to any class
variable with nonzero entropy. The labeling in Step 6 alldkes algorithm to detect obsolete
features. If a feature ceases to be used, it can be discafdwsl will further be discussed in
Section 4.5.

There are various ways to add sophistication to this bagiorithm. Instead of consult-
ing features exhaustively, a stopping criterion can beihiced that terminates Algorithm 4.4
oncel(C, F¢) drops below a threshold at Step 2. By definition, features Yow mutual in-
formation have little potential toffect the posterior class distributions. The tra@idetween
computational expense and confidence in the recognitiaritresn be adjusted in terms of this
threshold. Another computational tradieooncerns the relative cost of measuring feature val-
ues. Large compound features consisting of many subfeatuieemore costly to evaluate than
smaller features, as are Boolean compounds relative togfgicrmnompounds (see Section 3.5.1
on page 26, and Section 3.5.2). This cost can be consider8teat2 of Algorithm 4.4, for
example using the framework of decision theory [102, 98]cltihresholds and costs depend
on specific applications. For simplicity, these issues woidad here.

Since each class is represented by its own Bayesian netWalkpossibility of multiple
classes present in a scene is built into the system. Theruesd each class is determined
independently of all others. The possibility of arbitragynmbers of target classes within a scene
makes the evaluation of recognition results somewhat mamgplicated than the conventional
correctwrong dichotomy. A recognition result is derived from thesgasior class probabilities
according to the following definition:

Definition 4.5 (Evaluation of Recognition Results) Those classes with a posterior probabil-
ity greater than 0.5 are said to berognized A class is calledrue if it is present in the scene,
andfalseotherwise. Each recognition falls into exactly one of thilofeing categories:

correct: Exactly the true classes are recognized.

wrong: The correct number of classes are recognized, but theselmelt least one false
class. At least one true class was missed.

ambiguous: All of the true classes are recognized, plus one or more tidsses.

confused: None or some (but not all) of the true classes, and some fldsses are recog-
nized. The number of recognized classes tsedent from the number of target
classes present in the scene. (Otherwise, it is considenedrg recognition.)

ignorant:  None or some (but not all) of the true classes, and none ofalse tlasses are
recognized.
|

The category ofvrongrecognitions constitutes a special case of misrecogusitibat are other-
wise in theconfusedcategory. Wrong recognitions are important in that theyt@ionpairwise
errors where one class is mistaken for one other class. kwsaichl forced-choice scenario, this
is the only type of incorrect recognitions.

In conventional forced-choice classification, there arky @orrect and wrong categories.
Since this system has the additional freedom to assign prauitiass labels or no label at all,
the number of correct recognitions may be lower than in agfrchoice situation. To facilitate
comparison with forced-choice scenarios, at least the ramiambiguous recognitions should
somehow be taken into account. These contain the right anaiuesh is valuable especially if
the number of false positive labels in an ambiguous recimgnis low. Similarly, an ignorant
recognition should contribute to the same extent as a randeunit. This idea is formalized in
the following definition.
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Definition 4.6 (Accuracy) A recognition resulis a set of classes recognized in an imagy
Algorithm 4.4. This set includes true positives and; false positives, whers; + ns < ng, the
total number of classes known to the system. isetienote the actual number of target objects
depicted in the scene. Then,

n .
L ifn+n;=0
Nec
acc() = N
otherwise
Nt + Ny

is theaccuracyof this recognition result. The accuracy achieved on asgftimages is given
by
1
acc(l) = — » acc().
0 = D acc)

lel
[ |

This definition is a generalization of the notion of correetagnition that values ambiguous
recognitions according to the number of false positiveslired. An ignorant recognition is
regarded as equivalent to a fully ambiguous recognitian, a result that lists alt; class la-
bels. The accuracy is a value between zero and one, wherestkienom corresponds to 100%
correct recognition. If all recognitions are ignorant diyff@ambiguous, then the accuracy is the
inverse of the number of classes known to the systemy K 1 everywhere, this is identical to
the chance-level proportion of correct recognitions a#diby uniformly random forced-choice
classifiers. Thus, the accuracy can be directly comparegetpércentage-correct result deliv-
ered by a conventional forced-choice classifier.

4.4.3 Feature Learning Algorithm

In the incremental learning scenario (Figure 4.2 on pagetBB)agent receives training images
one by one. Initially, the agent does not know about any ekesfeatures. When itis presented
with the first image, it simply remembers the correct answathen it is shown the second
image, it will guess the same answer. This will continue, andeatures will be learned, until
this answer turns out to be incorrect.

Algorithm 4.7 (Operation of the Learning System) This algorithm provides details of the
basic model of incremental discrimination learning showfigure 4.2, page 35.

1. A new training image is acquired, denoted

2. Imagel is run through the recognition algorithm 4.4 as describe®ection 4.4.2. If
recognition is correct according to Definition 4.5, thentomre at Step 1.

3. Assume recognition failed because of inaccurate camditiprobability estimates stored
in the Bayesian networks. To remedy, all feature nodes atismeetized to maximize
their distinctive power (cf. Definition 4.2, page 37). Theonditional probabilities are
estimated by counting co-occurring feature values anddédeels in the instance list (cf.
Section 4.4.1, page 38). In the same way, the prior probiasilassociated with the class
nodes are re-estimated.

4. Re-run the recognition algorithm 4.4 on the imag# | is now recognized correctly, then
continue at Step 1.

5. Conclude that at least one new feature must be added tasatdee Bayesian network to
recognizel correctly. Attempt to do this by invoking Algorithm 4.8 (de#ed below).
Then, continue at Step 1.

[ |

40



This algorithm re-estimates the conditional probabildples of the Bayesian networks only
when an image is misrecognized (Step 3). Alternativelygradiach recognition — successful
or otherwise — the conditional probability tables of all eedelated to queried features could
be updated, maintaining a best estimate of the actual pildlesbat all times. A drawback
of this approach is that the behavior of the system woulddhtet even in the absence of any
mistakes. For example, two consecutive presentationseo$dime image could result in two
different recognition results. Since it is easier to charamdhe behavior of the system if its
behavior does not depend on a recent history of correct nétdags, it is designed to learn only
from mistakes.

At Step 5 in this algorithm, the objective is to derive a neatfee to discriminate one or
more true classes from one or marestakenclasses, i.e., those false classes that were erro-
neously recognized. Two cases must be distinguished. liirthease, a true class is not among
the recognized classes (wrong, confused, or ignorant nitimg). The agent needs to find a
new feature of this true class in the current image —smple image- that, if detected, will
cause this class to be recognized. In the second case, stsael@sses were recognized in
addition to the true classes (ambiguous recognition). Hbeeagent needs to find a feature in
an image of a false class that is not present in the currernidyegognized image, and that, if
not detected, will prevent this false class from being raecoed. Again, this image is called the
sample image.

Algorithm 4.8 (Feature Learning)

1. For the purpose of learning this feature, the true andakest classes are (re)defined so
that there is generally exactly one true and one mistakesscl@he classes selected are
the true class with minimum belief and the false class witlximam belief, respectively,
representing the most drastic case. In either case, if fkere such unique class, belief
values from earlier (non-final) recognition stages (Alori 4.4) are consulted. In partic-
ular, this covers the case of ignorant recognition. Seenb&do further discussion and an
example.

2. A set ofexample imagess retrieved from the environment. This set contamag ran-
dom views of each of the true class and the mistaken class.pfguise value ofigy is
unimportant, but involves a trad&dhat will be discussed below.

3. A new feature is generated, generally by random samptiomg the sample image, using
Algorithm 4.10. Algorithm 4.10 may be called only a limitedmber of times within
a single execution of Algorithm 4.8. If this limit is exceefjeAlgorithm 4.8 terminates
unsuccessfully. The details will be discussed below in tirgext of Algorithm 4.10.

4. A new node representing this new feature is added to theday network that models the
class of the sample image, along with an arc from the class and any arcs required to
or from any other feature nodes, to model any known intendégecies with pre-existing
features (cf. Section 4.4.1).

5. The values of this feature, as well as any existing feattepresented by nodes linked to
or from the new feature node in the Bayes network, are medswithin each example
image. The resulting instance vectors are added to thenwesiést.

6. The new feature node is discretized such that the cutpwmimizes the distinctive power
between the true and mistaken classes (see Definition 4.2g® p7), as estimated by
counting entries in the instance list. If the distinctiveyeo is zero, the algorithm continues
at Step 3.

7. The conditional probability tables of th&ected nodes are (re)estimated by counting en-
tries in the instance list.

8. The recognition procedure (Algorithm 4.4) is run on thepke image, using the added
feature.

41



(a) If the sample image is of a true class that is erroneoustiyatognized, or if the sam-
ple image is of a false class that is erroneously recogntbea, the new feature node
is removed from the Bayes net. However, the definition of e feature (consist-
ing of its structural description and response vector) faimed until this algorithm
terminates. Now, it proceeds with Step 3.

(b) If the image is of a true class and is now recognized sebéaig or if it is of a false
class and is successfully not recognized, then this algorierminates successfully.
|

Note that this feature search procedure requires that eashfemture individually solves an
existing recognition problem. This results in a strong ey to learn few but informative
features. Each feature is learned specifically to distsigoine class from one other class (see
Step 1). Instead of using just one true and one mistaken, dasscould use all misrecognized
classes, or even all true and false classes. However, irrgahavill be much easier to find
features that discriminate well between pairs of classes) features that discriminate between
two groups of several classes. In practice, this may in facalbthat is required to solve a
given visual task. Moreover, using only a pair of classesimssthat the execution time of this
algorithm is independent of the total number of classes.

Example 4.9 (Selecting True and Mistaken Classes)able 4.1 shows some examples of how
the characterized and discriminated classes are choseeprl $f Algorithm 4.8. The first case
shows a wrong recognition result. Since all classes withepios beliefs greater than 0.5 are
said to be recognized, the system erred on classes B and €, iHisrclear that a new feature
needs to be learned for class B that will cause class B to lwgnézed in the current image.
This new feature should be discriminative with respect &s€IC, because the system mistook
class B for class C. Note that the new feature will ndeet the recognition result for class C
(nor for any other class but the characterized class B) Iy, ikewill cause an ambiguous result
like that shown in the second row. Now, a feature must be éshthat is characteristic of class
C, and that, if not found in an image, will prevent it from bgirecognized as class C. Class
A is chosen as the discriminated class because it has thetipwsterior belief among all true
classes, and is therefore presumably most likely confustédalass C.

Table 4.1. Selecting true and mistaken classes using posterior clagslpilities. Bold type
indicates the characterized class of the new feature todoedd. The discriminated classes are
shown in italics.

True Classes False Classes
A B C D E

wrong 0.7 04 08 03 0.2
ambiguous 0.7 09 0.8 0.3 0.2
ignorant 03 04 04 03 0.2
04 04 03 03 0.2
ignorant 0.0 0.0 0.0 0.0 0.0

The first (wrong) example would constitute a confused reitimgmif, for example, class D had
received a posterior belief of greater than 0.5. The thirangxe is an ignorant recognition.
Like in wrong and confused cases, the characteristic ctatbitrue class with lowest posterior
belief, and the discriminated class is the false class wijhdst posterior belief. In the final
example, Algorithm 4.4 resulted in zero belief for all cless In such a case where true and
characteristic classes cannot be determined from the &nagnition result, the system consults
the intermediate recognition result generated by the piematie iteration of Algorithm 4.4. This
result is guaranteed to contain beliefs with nonzero emtrdp this example, there are two
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potential characteristic classes because both true slasse identical belief. In this case, one
of them is chosen at random because Algorithm 4.4 requirésgéessample image. There
are also two potential discriminated classes, both of whighsimply used. In practice, such
ambiguous cases occur very rarely. [ |

The number of example images per clags,(Algorithm 4.8, Step 2), determines how ac-
curately the conditional probabilities associated with iew feature are estimated at Step 7. A
large value yields accurate estimates, but these are axpdnsvaluate. The danger of using
too small a value ofey is that many good features are discarded because of ovedynpistic
probability estimates. Optimistic estimates result in ddeition of features that later turn out
to be of little value. Consequently, these will cease to lexles they are superseded by more
discriminative features. Thus, using a smal} will result in more feature searches, each of
which will take less time than when using a lamgg. In a practical interactive application, the
choice of this parameter should depend on the relative dastquiring images vs. generating
experience in the real world. If experience is costly to obfa.g. because it involves sophisti-
cated maneuvers with physical manipulators), but a vadgetgpresentative images are cheaply
obtained at Step 2 of Algorithm 4.8, theg, should be chosen large. On the other hand, if each
real-world experience is generated cheaply but examplgesiare expensive to obtain, then a
small value ofhgy should be used. The value does not need to be fixed, nor dassxita be the
same for the true and the mistaken class. All experimentsrtegh here usegy, = 5. This value
was chosen relatively small because it emphasizes thenieertal nature of learning even if a
small, fixed training set is used. At the other extremg,could be chosen so large that the ex-
ample images always include the entire training set (sast®)x yielding immediately accurate
estimates of the distinctive power of features without teechfor incremental updating.

It remains to be explained how a feature is generated at StdpARjorithm 4.8. There
are five ways to generate a new feature théedin the structural complexity of the resulting
feature. In accord wittDccam’s razoy simple features are preferred over complex features.
Also, they are more likely to be reusable and are compute@ magidly than complex features.
The following algorithm implements a bias toward struciyraimple features by considering
features in increasing order of structural complexity.

Algorithm 4.10 (Feature Generation) These methods are applied in turn at Step 3 of Algo-
rithm 4.8:

1. (Reuse)From a Bayesian network representing an unrelated classr(titan the true or
mistaken classes), select a random feature that is not iioue true or mistaken classes,
to see if it can be reused for the current recognition probl€his promotes the emergence
of general features that are characteristic of more tharclass.

2. (New Primitive) Sample a new feature directly from the sample image by efitoding
two points and turning them into a geometric compound of tdgets, or by picking one
point and measuring a texel feature response vector. (Rbealfeatures are measured
under rotational invariance. Therefore, individual edgéd not carry any information.)
This is the only step where new features are generated fraatchc

3. (Geometric Expansion)From among the features currently in use, or from among the
failed candidate features tried earlier during this exeoubf Algorithm 4.8 (see Algo-
rithm 4.8, Step 8a), choose a feature at random. Find a tocatithe sample image where
this feature occurs most strongly (Equation 3.14), and mctpiageometrically by adding
a randomly chosen salient edgel or texel nearby. This expapgelds a new feature that
is more specific than the original feature.

4. (Conjunction) Pick two random existing features and combine them into guoctive
feature. Again, the result is a new feature that is more fipdlan either of the constituent
features individually.
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5. (Disjunction) Pick two random existing features and combine them into pirditive
feature. Here, the result is a new feature that is less spéuifn the constituent features.
|

For a given run of Algorithm 4.8 (Feature Learning, page 4Bch time Algorithm 4.8
reaches its Step 3, one method of Algorithm 4.10 is applida firstnege, times Algorithm 4.8
reaches Step 3, Method 1 of Algorithm 4.10 is performed; & nygen times, Method 2, and
so on. This continues until either a suitable feature is dpwr until the last method has been
appliedngen times, at which point the feature search (Algorithm 4.8yieates unsuccessfully.
The parametennsgen in effect controls the bias toward simple features. A large valilieexpend
more dfort using each method, while a small value will give up so@ra move on to the next
method. The current implementation usggn, = 10, which is considered to be a relatively
small value in relation to the roughly 100-1000 salient ®jpresent in typical images used
here (cf. Chapter 3).

The specific sequence of methods defined in Algorithm 4.10ckiasen because it imple-
ments a bias toward few and structurally simple features.ew feature is only generated if
the system fails to find a reusable feature. Before existagufes are expanded, new primitive
features are generated. Geometric expansions are poefaree conjunctive features because
the former are local and rigid, while the latter can encorafeary variety of individual features.
Local features are more robust to partial occlusions anamnbject distortions than are non-
local features. Nevertheless, conjunctive features maiynipertant because they encode the
presence of several subfeatures without asserting a ggomeationship between them. This
makes them more robust to object distortions than geonfesicres.

The last step involves the generation of disjunctive festulhese are susceptible to overfit-
ting because a single disjunctive feature can in principeode an entire class as a disjunction
of highly specific features, each characterizing an indialdraining image. Thus, they can help
learn a training set without generalization. On the othedhdisjunctive features are necessary
in general because objects within a class mégdstrongly in their appearance. For example, a
disjunctive feature can encode a statement such as “If | de¢ @ a number pad, | am probably
looking at a telephone.”

4.4.4 Impact of a New Feature

In Algorithm 4.8 (Feature Learning), Step 3, a new featugeiserated in the hope that it will fix
the recognition problem that triggered the execution ofodiipm 4.8. Clearly, a necessary con-
dition for success is that the new feature is actually caadly the recognition algorithm 4.4,
when called at Step 8 of Algorithm 4.8. Algorithm 4.4 contsuo consult features as long as
there are features that can potentially reduce the unogrtai any class nodes. Therefore, the
new feature will be queried if the entropy in its own class eddes not vanish as a result of
qguerying other features of this Bayesian network. The ordy Wigorithm 4.4 can terminate
without querying the new feature is if there is a feathiia this Bayesian network that drives
the entropy in its class node to zero, and that has a greatemahinformation with respect to
the class node than the new feature, causing it to be queeiedebthe new feature. Note that
this recognition is incorrect, as it triggered the presewcation of the feature learning algo-
rithm 4.8 at Step 5 of Algorithm 4.7 (Operation of the LeaghBystem). The newly generated
feature is not going to be used on this image, irrespectiv@ngfdiscriminative power it may
have.

How likely is this worst-case situation to occur? Consideage where the system failed to
recognize a true class. Figure 4.5 illustrates the clasgitonal cumulative probabilities of a
featuref that can drive the entropy in the class node to zero, conuuttiat its class is absent.
The critical property of the graph is that if the class is prasthe featuréis always present with
fi > «, allowing one to infer the absence of the clas§ ik «. (The figure also illustrates that
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class absent

class present
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Figure 4.5. KSD of a featurd that, if not found in an image, causes its Bayesian network to
infer that its class is absent with absolute certainty.

the KSD of such a feature can be quite low — roughly 0.5 in taged) Can this feature prevent
the successful generation of new features by keeping them fetting queried? The answer
is no because it will quickly lose its power to reduce the @mgrto zero. To see this, observe
that each processed image generates an instance that ts tadthe instance list, recording
the measured feature values together with the true clastslalm the situation described here,
ff < af, but the class was present. This situation is incompatibite the critical property
of Figure 4.5. Consequently, the next time the conditiomabpbilities off are re-estimated
based on the instance list, at least one of two changes mast: oEhe probability off; < af
given the presence of the class becomes greater than zettte thresholdy; is reduced. In
the first case, the feature immediately loses its power teraehe the absence of the class with
absolute certainty. The second case clearly cannot regudefinitely because; is chosen to
maximize the KSD, ensuring thdit < a; for the bulk of those cases where the class is absent.
As specified in Algorithm 4.7 (Operation of the Learning ®ys} on page 40, the cutpoinis
and the conditional probability tables of all feature nodesre-estimated after every incorrect
recognition.

In summary, a newly sampled feature is not guaranteed todwskioemediately. However,
those cases where it is not used can be expected to be raxe tls@ry require the presence of a
featuref with the specific properties described above. Importaatly,such degenerate situation
is guaranteed to resolve itself soon because the featu panrdmeters are re-estimated after
every incorrect recognition. This self-repairing proged a key aspect of the design of the
learning algorithm, and is critical to its successful opiera

4.5 Experiments

The algorithms developed in the preceding sections wereloleed for open task scenarios in
which images are encountered while the agent performs a bagfect, each newly acquired
visual scene first serves as a test image that the agent édtemecognize. If it succeeds, the
agent moves on. If the result of recognition is incorreds #tene becomes a training image.
Additional example images are then acquired to enable tbetdg generate an initial estimate
of the distinctive power of newly generated features.

Testing this algorithm on such an interactive task is a maatrendeavor. Implementing
a robot that can interact in meaningful ways with many olgjéstchallenging in its own right
and beyond the scope of this dissertation. The results oitéluis section were generated on
simulated tasks.

A second simplification concerns the number of objects shiovam image. The algorithms
described above make no assumptions regarding the numtaegef or distractor objects shown
present in any given image. For simplicity and to facilita@mparison of the results with
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conventional methods, all experiments were performeddrttimventional way, with each image
containing exactly one object. It is important to note hogrethat the learning system did
not take advantage of this in any way. The algorithms werdiegbjn their full generality as
introduced above.

A simulated task consists of a closed set of images. Thisfsatages was divided into
equally sized training and test sets, such that the numbienazfes per class was identical to
the extent possible. Each experiment was run a second tithetlvé roles of training and test
sets reversed. In the machine learning terminology, thasgature is called two-fold stratified
cross validation. Training took place as shown in the owswgiven in Figure 4.2 on page 35,
and as described in detail in Section 4.4.3. Images fromr#ieinng set were presented to the
system one by one, cycling through the training set in randaater. A new permutation was
used for each cycle. On receipt of an image, the system ahlyzsing Algorithm 4.4. If the
recognition result was not correct (in the sense of Definiticc on page 39), then a new feature
was sought according to Algorithm 4.8. At Step 2 of this ailipon, the example images were
chosen at random from the training set (not from the cyclirden. The system cycled through
the entire training set until all recognition results weoerect.

The empirical performance of the learning system are digzligh terms of the evaluation
categories given in Definition 4.5, which apply to the geheese of an arbitrary number of
target classes. Since all experiments were performed wsihga single target class, these
categories are restated here for this special case, toiirti@dir interpretation.

correct: Exactly the true class is recognized.

wrong: Exactly one false class is recognized.

ambiguous: The true class is recognized, plus one or more false classes.
confused: More than one false classes are recognized, but not theltrs® ¢
ignorant:  No class is recognized.

Experiments were conducted using three data sets with vEeyeht characteristics. These will
be discussed in the following sections. The next chaptdintibduce a simple extension to the
basic learning algorithm that results in pronounced perésrce improvements.

45.1 The COIL Task

The COIL task consisted of 20 images of each of the first sigaibjof the 20-object Columbia
Object Image Library [79]. One sample image of each clagmesenting the middle view,

is shown in Figure 4.6. Neighboring views are spaced 5 dsegapart, at constant elevation.
Neighboring images were assigned alternately to trainmdytast sets. All images are of size
128x 128 pixels.

obj1 obj2 obj3 obj4

obj5 obj6

Figure 4.6. Objects used in the COIL task. Shown are middle views fronmstiteed sequence
of viewpoints.
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Table 4.2 summarizes important performance parametetedd@OIL task (and also for the
other two tasks, Plym and Mel, but these will be discusseat)laThe most striking observation
is that the trained recognition system is very cautious &t thmakes very few mistakes. The
proportions of wrong and ambiguous recognitions are both legv. Unfortunately, the propor-
tion of correct recognition is also fairly low at about 50%.the remaining 33% ignorant cases,
no class was recognized at all.

Table 4.2. Summary of empirical results on all three tasks. The first émiries give the name
of the task, the number of classes, the fold index, and theracg according to Definition 4.6.
The five entries under “Recognition Results” in each row sararte, barring roundd errors.
Zero entries are left blank for clarity. The columns undex tieading “# Features” give the
total number of feature nodes in all Bayesian networks (BN total number of dierent fea-
tures (dif.), the average number of features queried (gitding a single recognition procedure
(Algorithm 4.4), and the total cumulative number of featusampled (sp'd), respectively. The
rightmost two columns list the number of cycles through tlaintng set, and the total number
of training image presentations.

Recognition Results # Features Tr. Set
Task Cls. Fold acc| cor. wrg. amb. cnf. ign{ BN dif. qu'd. sp'd. | cyc. imgs.
COIL 6 1 .58| .48 .08 .08 35 46 35 22.1 471 6 360
ColL 6 2 .61| .52 .08 .10 .30 60 40 22.1 911 8 480
COIL 6 avg. .60] .50 .08 .09 .33 53 38 22.1 691 7 420
Pym 8 1 57| .50 .06 .05 .02 .3§ 84 59 22.0 977 8 448
Pym 8 2 .61 .52 .02 .09 .38 86 55 32.1 1019 8 512
Plym 8 avg. .59 .51 .04 .07 .01 .3§ 85 57 27.1 998 8 480
Mel 6 1 .49| .36 .14 .11 .39 50 34 174 608 8 1288
Mel 6 2 47| .33 .08 .14 A4 47 29 19.6 477 6 216
Mel 6 avg. .48/ .35 .11 .13 42 48 32 185 543 7 252

The next two columns give the number of feature nodes summied all class-specific
Bayesian network classifiers, and the number of featurdsatigaactually dierent. The dif-
ference between these two numbers corresponds to feahakeare used by more than one
classifier (see Algorithm 4.10, Feature Generation, Stepléje, about one-third of all feature
nodes share the same feature with at least one other node. ntdowy of these features are
actually queried during an average recognition proced@tgotithm 4.4)? The next column
shows that on average, only a little more than half of alllatéde features are queried before the
entropies in the class nodes are reduced to zero, or unél abtne unqueried features has any
potential to reduce a nonzero entropy. On average, thef@asystem ended up with about 9
feature nodes per class (53 feature ngdeslasses).

The rightmost three columns in Table 4.2 give a flavor of thaltoumber of features gen-
erated during learning, the number of iterations throughtthining set performed until it was
perfectly learned, and the total number of training imagendy the learning system. These
numbers become more meaningful in the context of the foligvahapter.

Table 4.3 provides deeper insight into the recognitiongrerince, separately for each class.
Interestingly, it shows that the performance characiesistiffer widely between the two folds
of the two-fold cross validation. For example, in Fold 1 aghall instances obbj3 were
recognized correctly, while in Fold 2 most of them were nabgmized at all. However, some
trends can still be found: Performance was consistentli bigobj2, and consistently low on
obj6 andobj4. Moreover, instances ahj4 tended to be misclassified algi6, but not vice versa.
The variation between the two folds is mostly due to the ramulgss inherent in the feature
learning algorithm. This topic will be further discussedSection 4.6 and in Chapter 5.
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Table 4.3. Results on the COIL task. The table shows, for each class,rhany instances
were recognized as which class for correct and wrong retiogsj and the number of ambigu-
ougconfusedignorant recognition outcomes. In each row, these entrests the number of
test images of each class (here, 10). The rightmost columnssthe number of feature nodes
that are part of the Bayesian network representing each.clHse bottom row of the bottom
panel gives the average proportion of the test set thatifatisesach recognition category.

Confusion Matrix corregivrong # Feats.
Class| objl obj2 o0bj3 obj4 obj5 obj6 | amb. cnf. ign. BN
Fold 1:
obj1 6 4 8
obj2 8 1 1 4
obj3 8 2 9
obj4 1 2 1 2 2 2 11
obj5 3 2 5 5
obj6 1 2 7 9
Sum 6 8 10 2 4 4 5 0 21 46
Fold 2:
obj1 5 5 10
obj2 10 7
obj3 2 1 7 16
obj4 4 2 2 2 9
obj5 7 2 1 8
obj6 2 3 2 3 10
Sum 5 10 2 4 10 5 6 0 18 60
Average of both folds (proportions):
obj1 .55 .45 9
obj2 .90 .05 .05 6
obj3 .50 .05 45 13
obj4 05 30 .05 .20 .20 .2( 10
obj5 .50 .20 .30 7
obj6 .05 10 .25 .10 .50 10
Avg. | .09 15 .10 .05 .12 .08 .09 .00 .33 9
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In the cases of ambiguous recognition, which classes wertatbe positives? The answer
is given by Table 4.4. In both foldspj4 andobj5 could often not be disambiguated from each
other. These wrong and ambiguous recognitions do not seiitivie, given that they appear
very dissimilar to a casual observer (Figure 4.6). HoweweFold 1, obj4 shares one feature
with each ofobj5 andobj6. This is an indication that at some level, these classeseto senilar
to the learning system. Even more strongly in Folobi@4 shares one feature withbj5, two
features withobj6, and one more feature with botibj5 andobj6. Examples of the features
learned for each class are shown in Figure 4.7. Edgels aristard their orientations and
scales are represented as in Figure 3.9 on page 22. In adii®subfeatures of a compound
feature are linked with a line, that is solid for geometric alotted for Boolean compounds.

Table 4.4.Results on the COIL task: Confusion matrices of ambiguoasgeitions. The italic

numbers on the diagonal indicate how many times the clagnhgw the left was recognized
ambiguously (cf. Table 4.3), and the upright numbers in eagh specify the false-positive
classes.

| Class| obj1  obj2 obj3 obj4 obj5 obj6 |

Fold 1:
obj1
obj2 1 1
obj3
obj4 2
obj5 1 1 2
obj6

=
=

Fold 2:
obj1
obj2
obj3
obj4 2 2 1
obj5 1 2 1
obj6 1 1 2

To a casual human observer, the two catg3 andobj6) look very similar. Why does the
learning system not seem to have anffidilty with these two objects? The answer is that
the similarity occurs at a high level, concerning the oueshape of the body, the location of
the wheels, etc. However, the learning system does not Heset dccess to these high-level
features. It only looks at a small number of strongly loadiZeatures, and at combinations of
these. At the level of local features, the two cars in fackl@iher diferent even to humans.

What are the appearance characteristics captured by dodivieatures? Figures 4.8 and
4.9 give an intuition. Figure 4.8 shows all images of cletg$. Each image displays all features
characteristic of this class that is present in this imagpe, fr > «af; cf. Algorithm 4.4, Step 5,
page 38). Each feature is annotated with a unique idenkfigeaturek was thekth feature
learned by the system). The images show that some featw@wesli@bly located at correspond-
ing parts of the duck (features 5, 8, 25). Other featuresg#meir location with the viewpoint
(features 11, 13). Most features appear on most views, Viduleire 22 only occurs in a few
images. Feature 9 is a disjunctive feature. In most viewsldtminant subfeature is a large-scale
geometric compound of two edgels. Only the first image shtswsther subfeature, a texel.

Figure 4.9 illustrates the specificity of a representativiasst of the features characteristic
of classobjl. The two center columns indicate how strongly a featureaeded everywhere in
the image. For purposes of illustration, the feature respomlue was computed at all image
points (not just at salient points). At each point, all ssalerresponding to scale-space maxima
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Figure 4.7. Examples of features learned for the COIL task. For eaclschlsfeatures char-
acterizing this class in Fold 1 are shown that are conside&rds: present in the image by the
classifier.
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Figure 4.8. Features characteristic objl located in all images of this class where they are
present. These features were learned in Fold 1, and aredesiified by unique ID numbers.
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were considered. The gray value at a pixel corresponds tméxémum feature valudyax over
these scales. The location of a feature is identified witHdbation of its reference point (cf.
Figure 3.12, page 26). To enhance detail, the gray valuejsoptional tof+.,, as most feature
responses are quite close to unity. A pixel was left whitdné scale function did not assume
any local maxima at this image location. The figure showsgbate features are more specific
than others. Feature 13 is the least specific feature cleaisit of obj1. It responds strongly in
many areas both around the periphery and in the interioreofititk, and also the cat. Feature 5
is the most specific feature obj1, and responds primarily to certain areas interior to thekduc
This feature is very similar to feature 25. Not accidentalfature 13 assumed its strongest
response at various places in Figure 4.8, while featuresi28rare stable with respect to their
location. Feature 18 is an example of an edge feature. Inifacesponse is much more strongly
localized to edges than the texel features shown in Fig@eFeature 9 responds only weakly
everywhere, as its constituent features were sampled ftbar anages. Its presence threshold
as is correspondingly lower (not shown in the figure).

4.5.2 The Plym Task

The second task used eight artificially rendered, geomehbjects? that are shown in Figure
4.10. There are 15 views per object, covering a rangel@fdegrees about the vertical axis rel-
ative to the middle position shown in Figure 4.10 in stepsaaf tiegrees, at constant elevation.
Two views are rendered from elevations 10 degrees above elod bhe middle position, and
two views at 10 degrees in-plane rotation. The object sagfare free of texture. This makes
the Plym task dficult to learn using the feature space used here, as the @dgrdinant infor-
mation available to the learning system is given by locakta@onshading and angles between
edges — and both are adverseffieated by perspective distortions. The rendering viewgang
closer together and cover a smaller section of the viewimggpthan the COIL task. Again,
neighboring views were assigned alternately to trainingj tast sets, yielding one trainifigst
set with 8 and one with 7 images per class. The objects arereddt similar size, and the
images were cropped to leave a 16-pixel boundary arounddijeetoresulting in image sizes of
about 100x 170 pixels.

Table 4.2 reveals that the performance of the learning syste the Plym task was very
similar to the COIL task. There was about the same numberroéciorecognitions, but slightly
fewer wrong and ambiguous recognitions, which is reflected bigher proportion of ignorant
results. One of the very fewonfusedrecognition results ever encountered occurred here: A
cucon was recognized asaacy and acyl3. Incidentally, in this fold theucon Bayesian network
shared one feature each with each of they andcyl3 networks, which indicates that these
classes were considered similar by the learning systemotAdir numbers shown in Table 4.2
are roughly in proportion to the COIL task.

The confusion matrices (Table 4.5) again reveal strikingstgiencies and fierences be-
tween the two folds. For exampleyl3 was perfectly recognized in Fold 1, but poorly in Fold 2.
Objectcycu was almost perfectly recognized in both folds. This objeatharacterized by a
unique rectangular protrusion attached to a smooth surféibes turned out to be a powerful
clue to the learning system: The compound feature (from Ep&itting precisely at the attach-
ment location in Figure 4.11 has a KSD of 1.0 — it is a perfeetmtor of this object. In Fold 1,
a coarse-scale texel feature was learned that respondse tmitjue concavity created by the
protrusion. This feature (not shown) also has a KSD of 1.0.

The consistently most flicult objects to recognize wenglé andtub6. Most severely, none
of these was recognized correctly in Fold 1. It is no coinetdethatyl6 is the most featureless
object in the dataset, and it is identical to tlab6 except that the latter is hollow. This is a

2These objects were generated by Levente Toth at the Centrimtelligent Systems, University of Plymouth,
UK, and are available under the URL hifpiww.cis.plym.ac.ufcig/levi/lUoP.CIS_3D_Archive/8obj set.tar.
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Figure 4.9. Spatial distribution of feature responses of selectedufeatcharacteristic afbj1
(left columns), for comparison also shown faisj4 (right columns). In the center columns,
the gray level encodes the response strength of the fedtowensin the outer panels. Black

represents the maximal responsd ¢f 1.0; in white areas no response was computed. Features
are labeled by their ID numbers.
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con6 cube cucon cucy cycu cyl3 cylé tub6

AosmBI0d

Figure 4.10. Objects used in the Plym task. Shown are middle views fronstined sequence
of viewpoints.

Figure 4.11. Examples of features learned for the Plym task. For eacls,cddisfeatures char-
acterizing this class in Fold 2 are shown that are considerdg: present in the image by the
classifier.
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Table 4.5. Results on the Plym task. The table shows, for each class,namy instances
were recognized as which class for correct and wrong retiogsj and the number of ambigu-
ougconfusedgnorant recognition outcomes. In each row, these entraste the number of
test images of each class (here, 8 in Fold 1 and 7 in Fold 2).righ&émost column shows the
number of feature nodes that are part of the Bayesian netremiiesenting each class. The
bottom row of the bottom panel gives the average proportidhetest set that falls into each
recognition category.

Confusion Matrix correg¢ivrong # Feats.
Class | con6 cube cucon cucy cycu cyl3 cyl6 tub6 | amb. cnf. ign. BN
Fold 1:
con6 6 2 13
cube 3 5 16
cucon 1 5 1 1 5
cucy 8 3 2 10
cycu 7 1 8
cyl3 8 4
cyl6 8 15
tub6 2 1 5 13
Sum 7 3 5 3 7 10 1 O 3 1 24 84
Fold 2:
con6 4 3 6
cube 5 2 12
cucon 1 5 1 6
cucy g 4 7
cycu 7 6
cyl3 3 4 14
cylé 8 4 21
tub6 1 3 3 14
Sum 4 5 1 3 7 3 4 3 5 0 21 86
Average of both folds (proportions):
con6 .67 .33 10
cube 158 A7 14
cucon .07 .40 .33 .07 .13 6
cucy .40 .20 .40 9
cycu .93 .07 7
cyl3 73 27 9
cylé .20 .80 18
tub6 13 .13 .20 .53 14
Avg. .09 .07 .05 .05 .12 .11 .04 .03 .07 .01 .38 11
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situation where the lack of a closed-world assumption (ett®n 4.4.1) impairs recognition
performance: The only way to decide that an objectdgl@as opposed to@b6 is by asserting
the absencef features corresponding to the cavity. This type of infieeeis not performed by
the recognition system. Therefore, the learning systess trard to identify features characteris-
tic of cyl6, finding features that respond to the individual trainingges, but do not generalize.
These features fail to respond to unseen test views, whathtsan ignorant recognitions. The
similarity between these two objects is further illustcatey the fact that in both folds, their
respective Bayesian networks share three features.

No pattern is apparent in the few ambiguous recognitionbléT4.6). In each fold, only one
class experienced ambiguous recognitions. Neither obthesbiguities is reflected in shared
features.

Table 4.6. Results on the Plym task: Confusion matrices of ambiguotmgrations. The italic

numbers on the diagonal indicate how many times the clagnhgw the left was recognized
ambiguously (cf. Table 4.5), and the upright numbers in eagh specify the false-positive
classes.

Cﬂass‘ con6 cube cucon cucy cycu cyl3 cyl6 tub6‘

Fold 1:
coné6
cube
cucon
cucy 3 2 1
cycu
cyl3
cylé
tub6

Fold 2:
coné6

cube

cucon 1 5 4
cucy
cycu
cyl3
cylé
tub6

45.3 The Mel Task

The Mel task used all 12 images of each of six non-rigid objécm the image database used
to train and test Mel's SEEMORE system [71]. All images arevahin Figure 4.12. To speed
up processing, the images were subsampled ta<3240 from their original size of 648 480
pixels. The views represent random samples from the obgméiguration space, taken at two
different scales thatfliered by a factor of two. Images were randomly assigned toitigiiand
test sets, each containing six images. This data set waslgdeto test the limits of the learning
system. As the feature space derives most of its expreseivergrom geometric compound
features, it is best suited for rigid objects. The Mel taskyéver, consists of non-rigid objects
in widely varying configurations, limiting useful geometdompounds to very small scales.
Table 4.2 shows that the system did poorly on the Mel datatzeseeflected by all perfor-

mance categories except for confused recognitions. Ighogaognitions even exceeded correct
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abalone bike-chain grapes necktie phone-cord
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Figure 4.12. All images used in the Mel task.
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recognitions. According to Table 4.7, the four weakesftgrating classes werphone-cord,
grapes, abalone, andsock. In particular, no phone cords were recognized correctlye @rob-
lem was that for the smaller-scale views, much of the cruta&il was represented at scales that
approached the pixel size. Each of the other three clasgealsea limitation of the system as
presented here. Aock is primarily characterized by the gray-level statisticst®ftructureless
surface. However, the features described in Chapter 3 aigro to characterize gray-level
structure, not statistics.

Table 4.7. Results on the Mel task. The table shows, for each class, hayrimstances

were recognized as which class for correct and wrong retiogsj and the number of ambigu-
ougconfusedgnorant recognition outcomes. In each row, these entraste the number of

test images of each class (here, 6). The rightmost columwsstiee number of feature nodes
that are part of the Bayesian network representing each.clBse bottom row of the bottom
panel gives the average proportion of the test set thatifatiseach recognition category.

Confusion Matrix corregivrong # Feats.
Class abalone chain grapes necktie cord sock | amb.cnf. ign. BN
Fold 1:
abalone 2 2 2 10
bike-chain 4 2 8
grapes 2 1 3 7
necktie 1 8 2 7
phone-cord 1 1 4 9
sock 2 2 1 1 9
Sum 3 5 2 5 1 2 4 0 14 50
Fold 2:
abalone 2 1 3 6
bike-chain 4 2 6
grapes 1 1 1 3 7
necktie 8 3 8
phone-cord 1 5 12
sock 2 1 3 8
Sum 3 5 1 3 0 3 5 0 16 47
Average of both folds (proportions):
abalone ) .25 A2 8
bike-chain .67 .33 7
grapes .08 25 .08 .08 .50 7
necktie .08 .50 .25 A7 8
phone-cord .08 .08 .08 .75 11
sock 17 B8 17 .33 9
Avg. .08 .14 .04 11 .01 .07 .13 .00 .42 8

Theabalone board contains strong gray-level structure, but this stinecvaries widely be-
tween images (Figure 4.12). The most meaningful texel feataccur about at the scale of the
abalone balls. These do not have a meaningful orientati®hey will mostly be measured
at scales that areffected by changes in the board configuration. This prevestsdhstruc-
tion of powerful geometric compound features, as thesearlgredictable relative orientations
between features.

For practical, reasons, the feature sampling proceduesmah salient points and their intrin-
sic scales as extracted by scale-space methodsgrapes class exposes the critical impact of
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this procedure on recognition performance. Due to the lowraest and the high degree of self-
occlusion and clutter present in theapes images, the extracted texels and their scales rarely
corresponded to individual grapes. Moreover, similarlfheabalone board, the orientations

of individual texels is rarely meaningful for larger-scééels in thegrape images.

Table 4.8 of ambiguous recognitions does not reveal anylesine insights. Figure 4.13
shows examples of features learned for the Mel task. Cuyiotwgo background features were
found characteristic of thabalone class. From the viewpoint of task-driven learning, thisas n
considered bad. Any feature that is helpful on a task shoelcdmsidered. If the background is
predictive of a target class, then background features roatyibute to performance.

Table 4.8. Results on the Mel task: Confusion matrices of ambiguousgmitions. The italic
numbers on the diagonal indicate how many times the clagngn the left was recognized
ambiguously (cf. Table 4.7), and the upright numbers in gagh specify the false-positive
classes.

Class | abalone chain grapes necktie cord sock |

Fold 1:

abalone 2 2 1
bike-chain
grapes
necktie
phone-cord 1 1

sock 1 1

Fold 2:
abalone 1 1
bike-chain
grapes

necktie 1 1 3 1
phone-cord
sock 1 1 1

4.6 Discussion

This chapter presented an incremental and task-drivenadéth learning distinctive features
from the feature space introduced in the previous chaptiénolgh the experiments described
above used conventional data sets used in object recaymégearch, the method developed
here is far more general than most existing recognitionesyst In contrast to most methods
based on eigen-subspace decomposition, this approacidbesly on global appearance or
background segmentation (but see Colin de Verdiere angl€yd26] for an example of locally
applied eigen-features, and Black and Jepson [14] and kéienand Bischof [61] for robust
versions of global eigen-features). In contrast to most@aghes based on local features, this
system does not require a hand-built feature set, but ladistiactive features from a feature
space. No prior knowledge about the total number of targessels is used, and no assumptions
are made regarding the number of target classes present givem image. The learner learns
distinctions as required, adding classes as they arise.

The feature learning algorithm relies on two key concepténfcremental learning of condi-
tional probabilities: the example images, and the instdisteThe concept of example images
is analogous to the human capacity to keep a small numberarh@ge views in short-term
memory. A human acquires these views simply by looking atlgead for an extended period
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Figure 4.13. Examples of features learned for the Mel task. For each ,cidisteatures char-
acterizing this class in Fold 1 are shown that are conside&rde: present in the image by the
classifier.
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of time while changing the viewpoint. Importantly, thesejaiced views are not distinct, but
form a coherent motion sequence, which allows the obseoveatk features across viewpoints.
This can greatly facilitate the discovery of stable andiniisive features [129]. In the system
discussed in the present chapter, no such assumptions decabaut the example images. Fu-
ture work should investigate how to take advantage of palssprovided or actively acquired
motion sequences.

Notably, example images can be avoided altogether. In #se,evaluation of newly sam-
pled features is deferred until afBaient number of training views of the object classes in
guestion has been acquired over time. However, this defevaluation precludes the goal-
directed, simple-to-complex feature search implemenyedligorithms 4.8 and 4.10. Instead, a
number of features must be generated and kept around uticdn be evaluated. To illustrate
how this can be implemented, the second application dieduissChapter 6 operates without
example images.

The second key component, the instance list, is not easijyedisable because it is used to
estimate class-conditional feature probabilities. Theaglyic recomputation of the thresholds
a; (cf. Definition 4.2 (Distinctive Power of a Feature) on page &d Algorithm 4.8 (Feature
Learning), Step 7 on page 41) relies on the ability to couatitidividual instances. However,
this dynamic recomputation is not an essential part of tlegadalgorithm. If one is willing to
commit to an early estimate of the thresholgs then the conditional probability distributions
can be maintained in the form of parametric approximatitias ¢an be updated incrementally
as new training examples become available. In this casensgt@nce list can be completely
avoided. If an instance list is used, it may be desirablewodate it at a given length. This has
two important consequences: First, the memory requiresradrihe feature learning mechanism
are essentially constant for a fixed number of classes. 8etba learner would continually
adapt to a nonstationary environment, learning new festarerequired, and forgetting old
features as they become obsolete.

The recognition system is designed to be very general. Tihmgertant design choices that
were motivated by this goal are the use of local featuresat@more robust to the presence
of clutter and occlusions than global features, the use aesgpace theory to infer the appro-
priate local scales for image analysis, and the use of sepaessifiers for each class, each of
which decides whether an object of its class is present istkae, independently of the other
classes. These characteristics result in a very genettainsythat makes few assumptions about
the viewed scenes. On the other hand, if such prior infoonas available in the context of a
given task, any general system is clearly put at a disadgantdéth respect to more specialized
systems that explicitly exploit this information. For exale if the scale of the target objects
is known, scale-space theory (or any other method for noalésprocessing) introduces unnec-
essary ambiguity. If it is known that there is exactly ong¢hrobject present in each scene, it
would be preferable to have the classes compete in the deatsevidence found in favor of one
class reduces the belief in the presence of other classes.isTimplemented by the classical
model of a Bayesian classifier, where a single class variaddeone state for each class. If
objects are rigid and presented in isolation on controlladkgrounds, as was the case in the
COIL and Plym tasks, then superior results are typicallyeadd using global features.

To avoid unnecessary complication, all experiments wertopeed using controlled im-
agery with one well-contrasted object present in each sckloeeover, with the exception of
the Mel task, objects were rigid and subject to only minomgjes in scale. As is to be expected,
somewhat superior results were achieved by earlier veygibthe feature learning system that
took advantage of known task constraints. Instead of théipleiBayesian network classifiers
used in this chapter, a single Bayesian network classifigl 48d a decision tree [84, 86] as-
signed exactly one class label to each image. Other systensgsed imagery at a single scale
[84] or at multiple scales, spaced by a factor of two [86, 88,88].
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The principal reason for the relatively low recognition @@cies achieved in this chapter is
that the learning algorithm accepts any feature that savgisen recognition problem (Algo-
rithm 4.8 (Feature Learning), Step 8b, page 42). Howevet $eatures may have very little
distinctive power. Therefore, the generalization prdperof the resulting classifiers are subject
to the randomness of the feature sampling procedure. Thmvia Chapter 5 will present a
method for learning improved features, which leads to imedorecognition results while pre-
serving the openness of the system. Therefore, a moreatktiidcussion of the performance
characteristics of the feature learning system is defdoéthapter 5.

Another important limitation of the system as describedhis thapter is related to the com-
putation of the salient points. Due to limited computatiomsources, computation of feature
values is restricted to salient points. The fewer saliefitp@re extracted, the more the learning
success will depend on the variety and stability of the sajints, which is the flip side of the
computational savings. Moreover, in the experiments tepanere, the scale space was rela-
tively coarsely sampled at half-octave spacing. If morerimediate scales are used, more local
scale-space maxima and thus more salient points will gbiydra found, and intrinsic scales
will be measured more accurately, again at increased catigoal expense. Section 5.4.5 will
examine the computational cost in more detail.

The goal of this work is not to achieve high recognition rdtgsexploiting known prior
constraints, but to begin with a highly uncommitted systhat tearns useful visual skills with
experience. To fully evaluate the the general system, dacgée experiments would be required
to test it under various degrees of clutter and occlusioaibus scales, with various numbers of
target objects present in a scene. There is no known suitablge data set currently available.
Hence, a full-scale performance evaluation would cortstiusubstantial endeavor, which is
beyond the scope of this dissertation.
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CHAPTER 5
EXPERT LEARNING

Chapter 4 presented an algorithm for learning distincte@tres from the feature space de-
scribed in Chapter 3. This brief chapter introduces a siraplension to the learning algorithm
that produces markedly improved features. A resultingi@mt improvement in recognition
performance is reflected by all evaluation criteria.

5.1 Related Work

Most current machine vision systems are constructed owdait-line or in a dedicated training
phase. In contrast, human visual performance improvespwébtice. For example, recognition
accuracy and speed both increase with growing experietég.nbt clear what the biological
mechanisms are for this type of visual learning. Neverglthere is substantial evidence that
at least part of the performance improvement can be attdbtd better features. Tanaka and
Taylor [120] found that bird experts were as fast to recogribjects at a subordinate level
(“robin”) as they were at the basic level (“bird”). In corgtanon-experts are consistently faster
at basic-level discriminations. Thigtect is so pronounced that it has been proposed as a defi-
nition of expertise in visual recognition [120, 38]. It seethat experts, colloquially speaking,
know what to look for, suggesting they have developed higiggriminative features.

Gauthier and Tarr [38] investigated the phenomenon of ngitiog expertise using artificial,
unfamiliar stimuli, the so-calle@reebles Greebles are organized into genders and families, that
are characterized by the shapes of an individual's bod pSribjects were trained to recognize
Greebles at three levels — gender, family, and individuaitit they reached the expert criterion,
i.e., they were as fast to recognize Greebles at the indiVikhvel as at the family or gender
level. Training required between 2700 and 5400 trials, apr@cross a total of 7 to 10 one-
hour sessions. Experts thus trained were slower to rece@iegebles with slightly transformed
body parts, as compared to the Greebles they saw duringnigaiAll expert subjects reported
noticing these transformations. In contrast, for non-etsghere was no such speed or accuracy
difference, and none of them noticed the transformations. Agamresult strongly suggests
that experts had developed highly specific features. In @atithier and Tarr write:

“In our experiment, expertise training may have led to theeatbly of complex
feature-detectors, extracted from the statistical ptigmiof the Greeble set that
proved useful for performing the training discriminatidn88]

The feature space introduced in Chapter 3 fits this desaniptiThe present chapter provides
a computational model that is consistent with the empiniealilts and proposed mechanisms
reported by these authors. Regarding a possible neurarat#gsGauthier and Tarr speculate
that the complex feature detector neurons found in theatdemporal cortex are not fixed but
can be modified in response to experience, citing LogothetisPauls [65] who found that these
neurons can become highly selective for previously noweldt.

| am not aware of any work in machine vision that is relatech®s development of visual
expertise and the formation of improved features. Featut@@ion methods based on dis-
criminative eigen-subspaces generate highly distindéeg¢ures, but these methods are usually
applied dt-line, and the extracted features are typically non-log8al B7, 117].
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5.2 Objective

The basic feature learning procedure introduced in theepliag chapter is driven by a single
criterion, that is, to learn the training images. In the aleseof any misrecognitions, no learning
occurs. In analogy to human visual learning, the resultilsgial system remains a life-long
non-expert. The objective in this chapter is to extend th&cbearning procedure such that
learning can continue even in the absence of misrecoggitida motivated by the phenomenon
of human expertise, learning then focuses on improvingehtufes.

How can the learner improve its features? What is the ooitetfiat measures the quality of
a feature? In the previous chapter, no attention was paidetguality of a feature. The only
requirement of a candidate feature for inclusion in a clessivas that it solved the recognition
problem that triggered the present feature search (Alyorid.8 (Feature Learning), Step 8b,
page 42). The algorithm wasiasedtoward finding few and powerful features (by adding a
maximum of one feature for each failed recognition), andatalstructurally simple features
(by virtue of the simple-to-complex ordering of steps in fhature-generation algorithm 4.10
on page 43). However, there was egplicit pressure on the number or quality of features.
The following section defines an obvious measure for theityuaf a feature, and a simple
mechanism for learning improved features. A desired sftéeeis the reduction of the number
of features used during recognition, which resembles arghtm@xplain the fast recognition
performed by human experts.

5.3 Expert Learning Algorithm

The goal of the learning system is to leatistinctive features (Definition 4.1, page 31). To
discretize the continuous feature values, a cutpoint is@hdhat maximizes the distinctive
power of a feature (Definition 4.2, page 37). Hence, a natuesl to define the quality of a
feature for the purposes of expert learning is to equatetht it8 distinctive power between the
characterized class and one or more discriminated classes.

The basic idea of the expert learning algorithm is to reduseettainty in the recognition
result by learning features that discriminate well betwelasses that areftlicult to distinguish
by the recognition system. Thisfliculty is measured in terms of the KSD achieved by any
feature available to discriminate between these clas$ést & given pair of classes this KSD
falls below a global thresholigsp, then a new feature is sought that discriminates betweee the
classes with a KSD of at leagtsp. A high-level view of the expert learning idea is given by the
following algorithm.

Algorithm 5.1 (Expert Learning) On receipt of an image, the following steps are performed:

1. The image is recognized using Algorithm 4.4 (page 38).hdf tesult is correct (in the
sense of Definition 4.5), then continue at Step 2. Othenwligefeature learning algorithm
(4.8, page 41) is run, with one slight but important modifmat At Step 3, Algorithm
4.10 is called repeatedly until it returns a candidate featvith a KSD greater thatxsp.
The completion of Algorithm 4.8 also concludes this Algiomit 5.1.

2. Ifthere is no class with nonzero residual entropy afteogaition, the algorithm stops. No
expert learning is performed in this case — the learner isidened a fully trained expert
on this image.

3. Identify a pair €, d) of classes for which an improved distinctive feature iseddarned.
The details are given in Algorithm 5.2 below.

4. A new feature is learned that is characteristic of claasd discriminative with respect
to classd, using Algorithm 4.8, beginning at Step 2, subject to the samnmimum-KSD

requirement as described at Step 1 above.
[ |
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A crucial part of this straightforward algorithm is Step $i€fe are many ways to define a mean-
ingful pair of classes that warrant learning an improvedintiion. The method described in
Algorithm 5.2 below identifies a pair of classes that cont a “near miss” in the recognition.
Hence, one of the classes is a true class (i.e., a targetplassnt in the current image), and
the other is a false class. The specific pair of classes i®ahhsat are least well discriminated
by any feature consulted during the recognition proced8tep( 1 in Algorithm 5.1). Therefore,
this is the pair of classes that would benefit the most fronti@bfeature. Crucially, the charac-
terized class of the new feature must have had nonzero edgdtropy after recognition. This
guarantees that the new feature is going to be queried megtthie same training image is seen.
Thus, the new feature actually improves the situation, amiiess loops are avoided.

Algorithm 5.2 (Choosing a Pair of Classes for an Expert Featte) This algorithm is run at
Step 3 of Algorithm 5.1, and determines a characteristissd@and a discriminated claskthat
are least well discriminated by existing features:

1. For all classes; with nonzero residual entropy:

(a) If ¢ is atrue class, then defifizas the set of all false classes; otherwiseDdte the
set of all true classes.

(b) Determine the clasdi“‘” € D that is least well discriminated by any feature charac-
teristic of class, in terms of the KSR 4min. This is accomplished by computing for
all classegl; € D: '

e Over all featured that are characteristic of clags and that have been con-
sulted during the recognition procedure, compute the maxindSD, ¢, (f). Each
KSDy, 4;(f) is computed by counting applicable instances in the igtdist.

Then, the least-well discriminated cla#l%i” is given by the feature with the weakest
value of the KSIQ g, (f):

KSDCi’dimin = (TEIB mfaxKSDq,dj )

2. The characterized and discriminated classes are givérelpair with the weakest associ-
ated KSD. Formallye = ¢; andd = d;, where

i= argminKSDCj gmin- (5.1)
j '

The feature learning procedure defined by Algorithms 5.1%&@dattempts to learn improved
features as long as there are classes with nonzero resituapg and as there are classes that
are discriminated at a KSD less thigap by any currently available feature. The threshialish

can be increased over time. There are other possible waganwoimproved features. For exam-
ple, one can attempt to learn highly distinctive featurasvben all pairs of classes exhaustively.
However, this is impractical for even moderate numbersagsgs, and it would likely generate
a large number of features that are never going to be usedaatige. A nice property of the
above algorithms is that expert feature learning — like theidbfeature learning — is driven by
actual experience. Successfully learned features areugiesd to be used should the same sit-
uation arise again. Thus, each new feature has a well-defitilégl to the recognition system.
When there is no measurable need for better features, tlegtdeprning algorithm stops.

5.4 Experiments

Experiments were performed using the same simulated,rivamntal paradigm as in Section 4.5,
and using the same data sets. Here, training occurretd@es The purpose of these stages was
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to progressively increase the threshidp, below which a feature was considered weak and
triggered expert learning.

Algorithm 5.3 (Training Stages)

1. Initially, set the stage index ®= 0, and lettxsp(s) = O.

2. Train the system by cycling through the training set, axdeed in Section 4.5. Cycle
until either the training set has been learned completady, @ll recognitions are correct),
or give up after 20 iterations. During feature learning, lgghe tksp(s) threshold as
described in the expert learning algorithm 5.1, Step 1.

At the end of each cycle, discard all features that have rert bensulted at all during this
past cycle.
During recognition, monitor the minimum KSD encounteredAgorithm 5.2 during the
final iteration through the training set. This value is gilmn

KSDmin(s) = min  min KSDCi’dimin

recognitions i

where the first minimum is taken over all executions of Algor 5.1 during the final
iteration through the training set (cf. Equation 5.1).

3. For the next stags+ 1, set

tksp(s+1)=1- (1 _ MIN{KSDmin(S), tKSD(S)})

2

This rule attempts to ramp up the target K&igp exponentially, asymptoting at unity, but
only if the target KSD was reached during the stage just cetag] i.e. if KShhin(s) >
tksp(9). If tksp(s+ 1) > 0.98, then it was set ttxsp(s+ 1) = 1.

4. Increments, and continue at Step 2.
[ |

According to this algorithm, the first stage £ 0) is precisely the basic feature learning proce-
dure used in Section 4.5. In fact, the results reported theréhose obtained after the first stage
of a comprehensive training procedure, the results of whielpresented below.

5.4.1 The COIL Task

The first block of results listed in Table 5.1 correspondshi® €OIL results in Table 4.2 on
page 47, but were attained after expert learning. (The'‘tasks in Table 5.1 will be discussed
in Section 5.4.4.) Most of the reported parameters are Nemabfor all training stages in Figure
5.1. In these graphs, training stage 0 corresponds to themdable 4.2, and the last training
stage corresponds to Table 5.1.

The recognition results in Table 5.1, corresponding to dipepianels in Figure 5.1, indicate
a dramatic performance increase. With cumulative expaititrg, the proportion of correct
recognitions rises by about 50% compared to the initiahingi stage, ignorant recognitions are
reduced by about 70%, and wrong recognitions are almostrelted. The number of ambigu-
ous recognitions also increases somewhat. This is not eedefliect, but ambiguity is the best
recognition outcome short of correctness. The accuraghesamore than 80%, which begins
to be comparable to object recognition results reportechfore specialized machine vision
systems.

Another dramatic development can be observed in the ewplféature set. The middle
panels in Figure 5.1 reveal a typical behavior. Throughape#d learning, the number of fea-
tures queried during a recognition procedure decreaseplghBuring Stage 1, the number of
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Table 5.1. Summary of empirical results after expert learning on aksa The first four entries

give the name of the task, the number of classes, the folckjradel the accuracy according to
Definition 4.6. The five entries under “Recognition Resuits®ach row sum to one, barring
rounddt errors. Zero entries are left blank for clarity. The colununsler the heading “# Fea-
tures” give the total number of feature nodes in all Bayesiatworks (BN), the total number

of different features (dif.), the average number of features egiégu’d) during a single recog-

nition procedure (Algorithm 4.4), and the total cumulativenber of features sampled (smp'd),
respectively. The rightmost two columns list the numbenaies through the training set, and
the total number of training image presentations.

Recognition Results # Features Tr. Set
Task Cls. FId. acg.cor. wrg. amb. cnf. ign.BN dif. qu'd. smp’d.| cyc. imgs.
COIL 6 1 .86/.78 .02 .13 .07 10 8 6.4 19448 60 3600
COIL 6 2 .78 .70 .05 .12 13 23 17 11.1 19208 68 4080
COIL 6 av. .82 .74 .03 .13 10 17 13 8.8 19326 64 3840
6 :
6

COIlL-inc 1 .87 .80 12 .08 7 6 5.5 13867 6850
COIlL-inc
COIL-inc 6 av. .87 .81 .01 .11 08 9 9 6.0 15679 8925

2 .88 .82 .02 .10 .07 11 11 6.5 17491

)

COlIL-inc 10 1 .82 .77 .01 .08 14 34 21 12.4 69450 43520
i)

3

11000

COlL-inc 10 2 .80 .73 .10 .01 .16 28 16 13.0 8799 57060
COlL-inc 10 av. .81 .75 .01 .09 .01 .1531 19 12.7 7872 50290

Plym 8 1 .70 .58 .06 .22 14 23 17 8.9 33711155 8680
Plym 8 2 .80 .75 .04 .09 13 11 10 8.5 25518122 7808
Plym 8 av. .75 .67 .05 .15 A3 17 14 8.7 29612139 8244
Plym-inc 8 1 .74 .73 .02 .08 A7 21 11 8.2 71183 36274
Plym-inc 8 2 .83.79 .02 .05 14 16 10 7.5 28078 15640
Plym-inc 8 av. .80 .76 .02 .07 16 19 11 7.9 49631 25957
Mel 6 1 .61 .47 .03 .19 .03 .28 43 35 15.0 3766 38 1368
Mel 6 2 .55 .42 .14 22 .03 .1926 25 8.8 13461 64 2304
Mel 6 av. .58 .44 .08 .21 .03 .24 35 30 11.9 8614 51 1836
Mel-inc 6 1 .64 .44 .06 .39 11 25 22 104 8313 3774
Mel-inc 6 2 .56 .42 .03 .17 39 21 19 7.5 15181 3630
Mel-inc 6 av. .60 .43 .04 .28 2% 23 21 9.0 11747 3702
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Figure 5.1. Expert Learning results on the COIL task. The numbers shogide the top graphs
give the value ofxsp at the respective training stage. Where this number appeacdd face,
the training set was learned with perfect accuracy, andkiggegoal was achieved. Otherwise,
either the training set was not learned perfectly, ottag goal was not attained. The error bars
in the middle plots have a width of one standard deviation.
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different features present in all Bayesian networks increadiesinating most of the re-used

features. This constitutes a qualitative change in theufeatet, during which general features
are replaced by more specialized, distinctive featurese tbtal number of features is hardly
affected (Fold 1) or is even reduced (Fold 2). During furtheregkfgarning stages, a relatively
small number of highly distinctive features are learneddeging a large proportion of the ex-

isting features obsolete. Thus, the number of featuresdtoy the system is reduced from 53
(average over both folds) to 17. Due to the high distinctieav@r of the remaining features,

few are queried during a recognition procedure. Fold 1 doss a quite drastic example: On
average, little more than six features are queried to rézegm image (Table 5.1). This is just
one feature per class!

Figure 5.2 shows some of the expert features. Compared tootiee features shown in
Figure 4.7 on page 50, these are much more meaningful irglyitiOne car is characterized by
the texture on the roof, the other by a wheel feature. Botlitloi and the cat are characterized
by an ey#forehead feature. In fact, this feature is absolutely idaht it is one of the two
surviving shared features in Fold 1. Curiously, this is tinéydeature characteristic of a cat
(Table 5.2). How can it alone fiice to characterize a cat if it is also a distinctive duck fesu
The answer is that the threshalg for this feature to be considered present is much higher in
the cat’s Bayesian network than in the duck’s (cf. Defini##oB, Distinctive Power of a Feature,
page 37). Evidently, on all duck images contained in thenitngi set, the response valdigof
this feature remained below the correspondifnghreshold of the cat’'s network, while on all cat
images, it exceeded this threshold. Otherwise, this featlone would not have beenfBaient
to characterize a cat.

The confusion matrices of ambiguous recognitions is shawhable 5.3. Some of these
ambiguities are not surprising. For instance, in Fold 1 gasj#) was also labeled as a duck
(obj1). In both folds, the two carsbj3 andobj6) tended to be confused. Gear and ducicat
confusions also accounted for two of the four wrong recogmét shown in Table 5.2.

Finding highly distinctive features is not easy. The tmagnset was first learned after a mere
seven iterations (Table 5.1), during which about 700 catdifeatures were generated. After
complete expert training, almost 20,000 features had bésshih more than 60 iterations. As
shown in the bottom panel in Figure 5.1, the bulk of thifoe is spent at the first stage of
expert learning. The reason is that initially, most of theogmitions end with a high degree of
uncertainty, and most pairwise uncertainties discoveyedlgorithm 5.2 have KSQdm.n =0.

The superior power of expert features over novice featusesmly results in fewer features
queried per recognition, but is also manifested in incréasability across viewpoints and in-
creased specificity. Figure 5.3 shows all features chaisiiteof objl. Remarkably, all three
features are present in all views except for the very lasgretieature 665 is missing. All
features responded reliably to corresponding object ansss most of the viewpoint range.
Figure 5.4 demonstrates the superior specificity of theperékeatures compared to the novice
features (see Figure 4.9 on page 53 for comparison). Thedpasific expert feature 557 re-
sponds more specifically to distinct parts of the duck thanntost specific novice feature 5.
Even more significantly, it response on the non-duck imagedsaker in most places. Fea-
ture 566 acts as an eye detector — it responds to a small datkviih a neighboring larger
light spot. As mentioned earlier, this feature is also ctiaréstic of the catdbj4). Feature 665
detects the wing in a specific spatial relation to an outeeaafghe duck object. It responds
selectively to a few locations on the duck image, but almosgthrere on the cat image.

It is quite remarkable that the learning system was able stcoct such powerful features:
They are specific to an object, and at the same time are gaéndhalt they respond well over a
wide range of viewpoints. Interestingly, they correspaméhtuitively meaningful object parts.
It would not have been easy to construct such specific andig@point-invariant features by
hand.
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Figure 5.2. Examples of expert features learned for the COIL task, Fold 1

70



Table 5.2. Results on the COIL task after Expert Learning. The tablevshdor each class,

how many instances were recognized as which class for ¢@nelovrong recognitions, and the
number of ambiguousonfusedignorant recognition outcomes. In each row, these enttigs s
to the number of test images of each class (here, 10). Thanagh column shows the number
of feature nodes that are part of the Bayesian network reptieg) each class. The bottom row
of the bottom panel gives the average proportion of the wshat falls into each recognition

category.

Confusion Matrix corregivrong # Feats.
Class| objl obj2 obj3 obj4 obj5 obj6 | amb. cnf. ign. BN
Fold 1:
obj1 10 3
obj2 8 2 1
obj3 8 1 1 3
obj4 8 2 1
obj5 6 2 2 1
obj6 7 1 2 1
Sum 10 8 8 8 6 8 8 0 4 10
Fold 2:
obj1 9 1 8
obj2 8 2 2
obj3 5 2 3 4
obj4 1 4 1 4 1
obj5 2 8 1
obj6 8 2 7
Sum 10 8 5 6 8 8 7 0 8 23
Average of both folds (proportions):
obj1 .95 .05 6
obj2 .80 .20 2
obj3 .65 .05 15 .15 4
obj4 .05 .60 15 .20 1
obj5 10 .70 .10 .10 1
obj6 75 .15 .10 4
Avg. A7 13 11 12 12 13 13 .00 .10 3
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Figure 5.3. Expert Features characteristic afj1 located in all images of this class where they
are present. See Figure 4.8 on page 51 for comparison.
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Figure 5.4. Spatial distribution of expert feature responses of aliuiess characteristic afbj1
learned in Fold 1 (left columns), for comparison also shoamnobj4 (right columns). In the
center columns, the gray level encodes the response direftte feature shown in the outer
panels. Black represents the maximal responsé ef 1.0; in white areas no response was
computed. Features are labeled by their ID numbers. SeesHgdion page 53 for comparison.
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Table 5.3. Results on the COIL task after Expert Learning: Confusiotrices of ambiguous
recognitions. The italic numbers on the diagonal indicate many times the class given on the
left was recognized ambiguously (cf. Table 5.2), and théghpmumbers in each row specify
the false-positive classes.

| Class| obj1  obj2 obj3 obj4 obj5 obj6 |

Fold 1:
obj1
obj2 2 2
ohj3 1 1
obj4 1 1
obj5 2 2

ohj6 1 1

N

Fold 2:
obj1
obj2 1 2 1

obj3 1 1 2 1
obj4 1 1
obj5
obj6 1 1 2

The feature learning algorithm employs a random featuremgion procedure (Algorithm 4.10,
page 43). How sensitive is the performance of the trainetésy$o this randomness? To give
an intuition, the system was trained on Fold 1 a total of tere§, seeding the random-number
generator with unique values. Figure 5.5 shows the averadermance of the trained novices
and experts. According to a paired-sample one-taitedt, the superior accuracy of experts vs.
novices is highly significantg < 0.0001). There is considerable variation in the accuracies,
while the number of features queried stabilizes reliablsirduexpert learning. The reason for
this is that learning ends as soon as all recognitions lethetaasifiers with zero residual en-
tropy. By this time, all objects are characterized by a smathber of features that are highly
distinctive on the training set — however, no definitive esta¢nt can be made about their gener-
alization properties to unseen test images. In realisgiendearning scenarios, this is not going
to be a problem: If an image is misrecognized or is recognizittd less than perfect certainty,
it immediately becomes a training image, and learning com. Thus, in practice the final
performance is expected to depend much less on the randsrimessic to the learner, but is
determined by the expressiveness of the feature space.

5.4.2 The Plym Task

All of the general comments made in the previous section tatimuCOIL task apply also to
the Plym task (Figure 5.6). As is also seen in Table 5.1 in @impn to Table 4.2, all per-
formance parameters improved substantially as a resukpErelearning, with the exception
of an increased number of ambiguous recognitions. In Fofitdgress of expert learning was
markedly non-monotonic. For many stages, it failed to a@htbe goal ofixsp = 0.5. At the
end, however, it learned the training set with a remarkagg = 0.94.

Similarly to the basic learning stageylé andcucon were problematic classes (Tables 5.4
and 5.5). Examples of the features learned are shown indigar. Similarly to the COIL
task, these few but highly distinctive features make muchentduitive sense than the features
learned during the first stage (see Figure 4.11 on page 54iceNtbecon6 feature characteriz-
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Figure 5.5. Variation due to randomness in the learning procedure. arerepresent the mean
performance achieved on 10 independent learning trialsSQdf.&-old 1. The error bars extend
one standard deviation above and below the mean. Extremadicated by asterisks.

ing the converging edges, thkacon, cucy, cycu, andcyl3 features located at characteristic folds
or corners, and theb6 feature that responds to the top rim.

What is the critical limiting factor of the performance oretRlym task, the feature space or
the learning procedure? There is no absolute answer to digistign. However, if the system
can learn to discriminate well between two particularlffidult classes if more training data
are used, then this would indicate that the limited perfaroeais primarily an ffect of the
learning procedure. A leave-one-out cross validation guace was run on classesbe and
cucon. In Fold 1 of the full-scale eight-object task, these were tfithe most diicult classes
to recognize (Table 5.4), and in two casesude appeared as a false positive together with a
cucon (Table 5.5). In Fold 2¢ucon was one of the weakest classes.

Table 5.6 shows that this distinction was learned quite,weéth an accuracy of 0.93. This
suggests that the feature space is capable of expressihglstioctions. The critical limiting
factor is probably the fixed training set: Once features Heen learned that always achieve
perfect recognition with zero residual entropy, expertiga ends (cf. Section 5.3). At this
stage, the learned feature set will generally still be irfgmrin that they do not fully disam-
biguate all pairs of classes with a KSD of 1.0. It is featuré & weak KSD and the potential
to eliminate all entropy that cause the system to fail on @ngdest images. In a practical, open
task, this is not a problem because any imperfectly recegrtizst image automatically becomes
a training image, and learning continues.

5.4.3 The Mel Task

The Mel task reflects the general phenomena observed in the &@ Plym tasks, but to a
lesser extent (Figure 5.8 and Table 5.7). Contrary to thi®ldpment is the slight increase
of wrong recognitions in Fold 2, and the emergence of oneusaaf recognition in both folds
(in Fold 1, anabalone board was mistaken for phone-cord and abike-chain; in Fold 2, a
sock was mislabeled agrapes andbike-chain). In Fold 2, no instances gshone-cord were
recognized correctly, as was the case for both folds afteinikial learning stage (see Table 4.7
on page 58). In contrast, Fold 1 achieved some success oddBs but only at the expense
of 20 features dedicated to it. This is the largest numbeeafures observed for any object in
all experiments after expert learning. In fact, for bottdfthe number ophone-cord features
increased significantly during expert learning, while itidased for almost all other classes in
all experiments.
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Figure 5.6. Expert Learning results on the Plym task. The numbers shogide the top graphs
give the value ofxsp at the respective training stage. Where this number appeacd face,

the training set was learned with perfect accuracy, andkiggegoal was achieved. Otherwise,
either the training set was not learned perfectly, ottag goal was not attained. The error bars

in the middle plots have a width of one standard deviation.
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Table 5.4. Results on the Plym task after Expert Learning. The tablevshfor each class,
how many instances were recognized as which class for ¢@neonrong recognitions, and the
number of ambiguousonfusedignorant recognition outcomes. In each row, these enttigs s
to the number of test images of each class (here, 8 in Fold Fand-old 2). The rightmost
column shows the number of feature nodes that are part of dyedtan network representing
each class. The bottom row of the bottom panel gives the gegreoportion of the test set that
falls into each recognition category.

Confusion Matrix correg¢ivrong # Feats.
Class | con6 cube cucon cucy cycu cyl3 cyl6 tub6 | amb. cnf. ign. BN
Fold 1:
con6 6 2 1
cube 2 2 4 7
cucon 3 4 1 1
cucy 4 1 2 1 1
cycu 6 1 1 1
cyl3 8 3
cyl6 1 2 3 2 8
tub6 5 3 1
Sum 7 2 3 4 8 8 3 6 14 0 9 23
Fold 2:
con6 7 1
cube 5 1 1 4
cucon 4 2 1 1
cucy 6 1 1
cycu 5 2 1
cyl3 7 1
cylé 4 1 2 1
tub6 4 1 2 1
Sum 7 5 4 6 5 8 4 5 5 0 7 11
Average of both folds (proportions):
con6 .87 13 1
cube A7 .07 A3 .33 6
cucon A7 40 13 1
cucy .67 .07 13 13 1
cycu .73 .20 .07 1
cyl3 1.00 2
cylé .07 .13 A7 .07 .27 5
tub6 .60 27 13 1
Avg. 12 06 .06 .08 .11 .13 .06 .09 16 0 .13 2
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Table 5.5. Results on the Plym task after Expert Learning: Confusiotrioes of ambiguous
recognitions. The italic numbers on the diagonal indicate many times the class given on the
left was recognized ambiguously (cf. Table 5.4), and théghpmumbers in each row specify
the false-positive classes.

| Class | con6 cube cucon cucy cycu cyl3 cyl6 tub6 |

Fold 1:
con6
cube 2
cucon
cucy
cycu
cyl3
cylé
tub6 1 1 1 2 3

N
=
=

P FPDNDN
N
=
=

Fold 2:
con6

cube

cucon 2 2 1
cucy
cycu 1 1 1 2
cyl3
cylé
tub6 1 1

Table 5.6. Results on a two-class Plym subtask after 15-fold Expertriieg.

correctwrong
Class | cube cucon | amb. cnf. ign.| Sum
cube 13 1 1 15
cucon 14 1 15
Sum 13 15 1 0 1 30
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Figure 5.7. Examples of expert features learned for the Plym task, Fold 1
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Table 5.7. Results on the Mel task after Expert Learning. The table shdaor each class,
how many instances were recognized as which class for ¢@neonrong recognitions, and the
number of ambiguousonfusedignorant recognition outcomes. In each row, these enttigs s
to the number of test images of each class (here, 6). Thewagttcolumn shows the number
of feature nodes that are part of the Bayesian network reptieg) each class. The bottom row
of the bottom panel gives the average proportion of the wghat falls into each recognition
category.

Confusion Matrix corregivrong # Feats.
Class abalone chain grapes necktie cord sock | amb.cnf. ign. BN
Fold 1:
abalone 2 2 1 1 5
bike-chain g 3 7
grapes 1 1 4 7
necktie 2 2 2 1
phone-cord 4 2 20
sock 5 1 3
Sum 2 3 1 2 4 6 7 1 10 43
Fold 2:
abalone 8 1 2 1
bike-chain 1 1 2 2 1
grapes 4 2 8
necktie 4 2 1
phone-cord 3 3 14
sock 8 1 2 1
Sum 3 1 7 5 0 4 8 1 7 26
Average of both folds (proportions):
abalone 42 .08 .32 .08 .08 3
bike-chain B30 .08 42 A7 4
grapes 42 .08 A7 .33 8
necktie .50 .33 A7 1
phone-cord .25 $33 42 17
sock .67 .08 .25 2
Avg. .07 .06 .11 .10 .06 .14 .21 .03 .24 6
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In contrast to the other two tasks, performance on the Mé&lisasharacterized by widely
varying results and a lack of discernible patterns, evear aftpert learning. This is also reflected
by the many ambiguous results and the lack of agreement betthe folds (see Table 5.8). It
seems surprising that even though features were learnedishanbiguated all classes with non-
zero entropy with a KSD of 0.75 (see Figure 5.8, and Figurdd.@xamples of the features),
the test-set results were still relatively poor. This siggg¢hat the training set was too small
in relation to the enormous within-class variety of appeees, enabling the feature learning
procedure to discover highly discriminative features tieateralized poorly nevertheless. Also,
recall that expert learning acts only in the case of nonzes@ual entropy in at least one class
node. In the Mel task, expert learning was apparently haetply the abundant occurrence of
overly specific features that responded to very few imagegh $eatures, if not found in an
image, are likely to drive the belief in their class to zemdiscussed in Section 4.4.4 on page
44, disabling expert learning.

Table 5.8. Results on the Mel task after Expert Learning: Confusionrices of ambiguous
recognitions. The italic numbers on the diagonal indicate many times the class given on the
left was recognized ambiguously (cf. Table 5.7), and théghpmumbers in each row specify
the false-positive classes.

Class | abalone chain grapes necktie cord sock |

Fold 1:
abalone 2 2
bike-chain 3 1 1 1
grapes
necktie 1 2 1 1
phone-cord
sock

Fold 2:
abalone 2
bike-chain 2
grapes
necktie 1
phone-cord
sock

NN R
N

In order to find out to which extent the Mel task is learnablgh®y system, a leave-one-out
cross validation procedure was run on a two-class subtagkg two of the most problematic
classesgrapes andphone-cord. In Fold 1 of the full six-class taslgrapes were the poorest
class to be recognized (Table 5.7); in FoldpBpne-cord was the poorest class, and half of
the test images were mislabeledgaspes. A confusion matrix summarizing the results of the
twelve folds on the two-class subtask is shown in Table 518 fesults show that the feature
space has some power to express this class distinctionhdytare still not outstanding. The
accuracy is 0.83, with 0.5 being chance performance. @letim structure of the Mel task
is not easily captured by this learning algorithm. This towill receive further attention in
Section 7.3.

5.4.4 Incremental Tasks

In all experiments discussed so far, training was increaiéntthat images were presented to
the learner sequentially. Training images were chosen fabrnlasses in random order. In
many practical situations, a more realistic scenario \etjuire the learner to acquire concepts
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Figure 5.9. Examples of expert features learned for the Mel task, Fold 1.

Table 5.9.Results on a two-class Mel subtask after 12-fold Expert hiegr

correctwrong
Class grapes cord | amb. cnf. ign.| Sum
grapes 9 2 1 12
phone-cord 1 8 1 2 12
Sum 10 8 3 0 3| 24
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sequentially. In particular, this is how humans are taulititelps us to master skills if we learn
only a limited number of them in parallel. In this sectionsks are presented to the learner
incrementally, as described in the following algorithm.

Algorithm 5.4 (Incremental Task) To train the learning system on an incremental task, begin
with a blank-slate learner, and then perform the followiteps.

1. Create a training set consisting of all training imagetheffirst two classes.

2. Train the system using Algorithm 5.3, with one minor madifion: At Step 4, stop after
a maximum of 10 stages of expert learning.

3. If there are untaught classes, then add all training imaféhe next untaught class to the
training set, and continue with Step 2. Otherwise, stop.

Importantly, the experience of the learner is not discatuEtdreen executions of Step 2. Wl

The results achieved on the three tasks using Algorithm re4naluded in Table 5.1, with
‘-inc’ appended to the task name. Interestingly, in all satbe achieved accuracy was slightly
better than in the corresponding non-incremental taskgeder, the number of features sam-
pled — which is closely related to the overall running timeted system — is slightly reduced
for the COIL task. The number of cycles through the trainiagis not given in Table 5.1. It
has little meaning for incremental tasks, as the size ofrdiaihg set increases over time. The
number of training image presentations is drasticallyeéased. The reason for this is that the
growing number of already-learned images is included witdryecycle, while learning concen-
trates primarily on images of the new class. Thieet can be avoided by more sophisticated
incremental learning schemes. For example, the simulatédoament could choose the class
of a training image according to the empirical misrecognitiate attained by the learner. In any
case, the choice of a learning strategy depends on thedtitaralynamics between the learner
and its environment. An environment or a task may or may Hotvathe learner to influence
the distribution of training images.

The COIL-inc task was continued up to a total of 10 classes;wére illustrated in Figure
5.10. Figures 5.11 and 5.12 show performance parameterdeast set as they evolve during
incremental expert training. The test set contains the saasses as the training set. Usually,
the introduction of a new class causes a temporary drop iforpesince that is reflected by
most performance parameters: The proportion of correcgrtions drops, while most of the
other parameters increase. Over the next few stages oftexaiging, the system recovers.
Importantly, the transient drops in performance co-occith &an imperfectly learned training
set, as indicated by the non-bold KSD indicators in Figurdd ®and 5.12. In other words,
good performance on the training images generally prediot&l performance on unseen test
images. This is good news, given the often non-monotonitopeaance improvement during
expert learning. Nevertheless, a slight drop in accuracpikeable, as the number of classes
increases.

How difficult are individual classes to learn? There is no way to anslwe question for
the non-incremental version of expert training. Howevarémental training lends insight into
a related question: How mucHfert does it take to learn a new class, after having learned
some other classes? Figure 5.13 reveals that some classksaared after sampling only a
small number of features, while others require a lot of samgpéffort. Both folds learned the
first four objects quite fortlessly, whileobj7 andobj8 were more dficult. Interestingly, both
folds spent mostfeort disambiguatinghbj7 from obj2 — these are the two wooden blocks in the
data set. In addition, Fold 1 often confuselg7 with obj6, possibly due to the striped texture
shared by both objects. In the caseobi8, there was no such singular source of confusion.
Nevertheless, the two classes that accounted by far for oorgtisions werebjl and obj6.
Almost all confusions on the training set that occurred gttane during learning involved the
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obj1 ohj2 ohj3 obj4 obj5

Figure 5.10.Objects used in the 10-object COIL task.

most recently introduced class, especially during theyestdges of expert learning. Beyond
these qualitative remarks, it isficult to draw strong conclusions from only two folds of cross
validation, and from a single presentation order of newseas

The number of expert learning stages taken until a class @agadd is clearly correlated
with the number of features sampled. However, it is not aalble an indicator of classfiiculty,
because — in contrast to the number of features sampledlatigedy unrelated to the proportion
of difficult training images of a class. A singleffitult image can stretch expert learning over
many stages, but far fewer features are sampled than in #eeatanany diicult images. For
example, in Fold 1, foobj6 11,470 features were sampled during 4 stages, whereajfiar
only 5,760 features were sampled during 9 stages.

The results for the incremental Plym task (Figures 5.145 &id 5.16) show the same
characteristics as the COIL-inc task. Here, both folds eghhattub6, the eighth class, is the
most dificult class (Figure 5.16). Not surprisingly, confusionshniyl6 accounted for the
overwhelming majority of the feature learninats. Notably, Fold 1 had trouble with a few
individual images while learning the sixth and sevenths#astyl3 andcyl6). At almost all of
these stages, Algorithm 5.3 at Step 2 cycled through theitigiiset the maximum of 20 times,
while sampling very few features.

The Mel-inc results again show similar behavior, but to sdesxtent (Figures 5.17 and
5.18). These graphs reflect the same variability as disdufssethe other Mel experiments
above. In contrast to the COIL and Plym tasks, it appearstiigahumber of features sampled
grows purely as a function of the number of classes. This @shan indicator of the intrinsic
difficulty of the Mel data set, which makes it hard for the learrmngcedure to find powerful
and well-generalizing features. Interestingly, whilertéag the fourth classnecktie) in Fold 2,
only 69 features were sampled, all of them during Stage O.fdlkmving four stages of expert
learning only re-estimated the conditional probabilitiesthe Bayesian networks, but never
required a new feature.

In both folds, the system failed to recover after the intigiun of the sixth classspck).
This is somewhat surprising, given that this class perfarbetter than any other class after non-
incremental training (Table 5.7), and is yet another inticthat expert learning was severely
hampered on the Mel task. Expert learning essentiallyddilere because a large number of
overly specialized features caused most recognitionsstdtr zero entropy in all class nodes.
Such an #ect is only likely to occur on static, small, and heterogersetvaining sets such as
that used in the Mel task.
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5.4.5 Computational Demands

The current method attempts to find features by random sagpli image space, which is
guided by a set of simple-to-complex heuristics defined byf¢ature generation algorithm 4.10
(page 43). Highly distinctive features are rare arfidalilt to find, as illustrated by the graphs in
this chapter. This opens up the question of computationalagels. The current MATLABY
implementation of the learning system takes many days ofpctation on a 700 MHz Pen-
tium Il processor to learn a typical task. The bulk of thimdi is spent measuring the value of
features in images (Equation 3.14 on page 25). This is tegoyi reason why the extraction
of salient points is so important (Section 3.4.3, page 2j).every featuré sampled, its value
fr (1) must be computed onng, example images (Algorithm 4.8, Feature Learning, page 41,
Steps 2 and 5).

Given the number of pixels in an image (16,384 for the COILde® 76,800 for the Mel
images) and the infinite combinatorics opened up by the featpace, sampling 10,000 or
100,000 features to solve a task involving 100 training iesagoes not seem outrageous. What
would it take to run the feature learning algorithms on madgiparallel neural hardware?
Computing feature values is a pixel-level parallel operathat can plausibly be performed by
the human visual cortex. Such a parallel implementatioridcomeasure a feature value in an
image in constant time, independent of the number of saieintts in an image. Assuming an
average of 1,000 salient points in an image, and assumih§%0a of the compute time is spent
computing feature values, this would reduce the time toesalveasonably large problem from,
say, 10 days to less than 2 hours 40 minutes — about two orfleragmitude.

The above argument assumes that the time spent to compuiteigefealue is approximately
constant. This is not strictly true, as it depends on thetlen§a response vector, which is 15
filter responses for texels and 2 for edgels. It also dependkeolocal scale of a feature and its
subfeatures, which determines the size of the filter kenmsgsl in Algorithm 3.6 (Extraction of
a Geometric-Compound Feature Response Vector, page 26 Sand 4. This size varies
from about 25 coféicients up to about/16 the size of the image. The early visual cortex extracts
such response vectors in parallel, for all image locationsy a range of scales, reducing this
computation to constant time. If these factors are takemaotount, the computation time can
be reduced by at least two more orders of magnitude.

In summary, the computational demands of the expert legmmincedure limit the size of
the problems that can be addressed using today’s convahtiomputing hardware. However,
a biologically plausible implementation that exploits thigh degree of inherent parallelism
should reduce the computational demands by about four ®alenagnitude. In principle, this
would permit much larger-scale applications.

With respect to scalability, an important consideratiothessnumber of distinctions that has
to be learned by the system. In general, this number is gti@édnahe number of classes: Each
class is to be discriminated from each of the other classégurd=-5.19 plots the cumulative
number of features sampled in the incremental tasks velngusumber of classes. Clearly, the
growth is superlinear. However, there are noffisient data to allow a conclusive statement
regarding the complexity of the learning algorithm withpest to the number of classes. More
experiments using more classes are required. In any casesuberlinear growth is likely to
limit the maximal problem size that can be addressed by trites1. However, this need not
constitute a practical limitation. Humans clearly do natrfeexpert-level distinctions between
all categories that have any meaning to them in any contegthd®, at any given time, the
behavioral context constrains the relevant categoriegatatively small set. Expert learning is
only required where distinctions need to be refined thatelevant within a given context.

94



100

-6- COIL Fold 1 @
COIL Fold 2 7/
Plym Fold 1
Plym Fold 2
Mel Fold 1

—x— Mel Fold 2

80

¢

60

s

features sampled (x1000)

3 4 5 6 7 8 9 10
number of classes
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5.5 Discussion

Motivated by the human phenomenon of visual expertise ctigpter introduced a simple algo-
rithm for learning improved features. The idea is to seekufes with increased discriminative
power between pairs of classes. Thus, expert learning reglethe opposite féect of over-
training. Because explicit requirements of discriminatpower are enforced, learning can —
in principle — continue forever, without any danger of owérfg. Resembling human expert
behavior, this has the desireffexts of increased recognition accuracy afittiency. | am not
aware of any existing related work in machine learning omanmental feature improvement.
The vast majority of comparable machine learning methotteeuse a fixed feature set, per-
form feature selection, or compute new features on the lohsidixed feature set (e.g. PCA).
The expert learning idea presented here critically depemdthe ability of the algorithm to
search a virtually unlimited feature space.

The most severe limitation of the expert learning algoritmpresented here, is that it de-
pends on class nodes with nonzero entropy at the end of anigicogprocedure. Consequently,
features that have the ability to infer classification resulith absolute certainty (cf. Section
4.4.4) can #ectively disable expert learning. This is especially a fEobif these features are
poor, i.e. they have little discriminative power, becauseytprevent their own replacement by
better features. This was the case in the Mel data set. Howaueh features are only likely to
occur in small, static, and heterogeneous data sets suble dsel data. They emerge because
the exact same images are presented to the learner over endiatil they are recognized cor-
rectly. On an interactive task in a physical environmenttraming image is ever going to be
seen again, and training images from the a class are drawndroontinuum of appearances.
This prevents the memorization of individual training ireag

Other ways to trigger expert learning could possibly avbid problem even for static fea-
ture sets. A brute-force method would attempt to learn Kiglidtinctive features between all
pairs of classes, regardless of any empirical uncertaintdowever, this requires a number of
discriminations that is quadratic in the number of clasbéseover, many of these will usually
be unnecessary because many pairs of classes are nevesezbafiyway. Expert learning — like
the basic learning studied in Chapter 4 — ought to be drivethbytask: Where uncertainties
are likely to occur, improved features should be learneds phinciple is implemented by the
expert learning algorithm 5.1.
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CHAPTER 6
LEARNING FEATURES FOR GRASP PRE-SHAPING

The preceding chapters applied feature learning in a sigaehobject recognition scenario.
Many of the visual skills that humans acquire from experegtect their behavior at a very
fine granularity. For example, between about five to nine oot age, infants learn to pre-
orient their hands to match the orientation of a target dlgjedng reaching [70]. In this chapter,
visual features are learned that enable similar prosgeb@havior in a haptically-guided robotic
grasping system.

6.1 Related Work

There is extensive literature on visual servoing; a thonotgyiew is beyond the scope of this
dissertation. Most of this work falls into one of two mainegdries according to the coordinate
frame in which error signals are computed, namely, thregedsional workspace coordinates or
two-dimensional image coordinates. Three-dimensionahaus typically rely on a reasonably
complete and accurate visual reconstruction of the wodespavore related to this chapter
are two-dimensional approaches where manipulator cosigolals are directly derived from
image-space errors [105, 49]. Here, local features of theipn&ator and of workpieces are
identified, and their actual positions are compared to eefez positions. Image-space errors
are then transformed into errors in the degrees of freedotineomanipulator. Instead of local
appearance, another line of research builds on global egpeaand computes error signals in
eigen-subspaces [74].

6.2 Objective

To date, most work in sensor-guided robotic manipulatioa bancentrated on exclusively
vision-based systems. There has been much less work ordiptjuided grasping [21, 23],
or on combining haptic and visual feedback [3, 42]. This seeomewhat surprising, as these
two sensory modalities ideally complement each other,@albhewhen a dextrous manipulator
is used. The visual system is most beneficial during the rphake when no haptic feedback is
available. Relatively coarseftirential error signals in image space, using appearanuagdsa
of the wrist or the arm, are fiicient to achieve a highlyficient vision-guided reach. When
the end #ector draws close to the target object, visual informatian further contribute to
the extent that fingertips and object details are accuradelytified. However, this is dicult

to achieve because these features will often be occludetidofpand itself. Moreover, even if
detailed information about finger configurations can beiobthby the vision system, it will be
difficult to exploit in the context of a dextrous manipulator doi¢he many degrees of freedom
involved, many of which are redundant. This stage of theyim&leally suited for haptic feed-
back. Tactile fingertip sensors are highly sensitive tovealesurface characteristics such as the
orientation of the local surface tangent. Coelho [21, 23] tiemonstrated that this information
can be exploited by local grasp controllers that convergeatd stable grasp configurations,
thereby obviating the need to solve a high-dimensional ¢dimh intractable) planning problem
in global joint space.
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McCarty et al. [70] demonstrated that infants learn to piert their hand during a reach
to match the orientation of the target object. Notably, fhizsspective behavior does not depend
on the visibility of the hand or of the object during the reaBvidently, humans use an initial
visual cue to initiate a reach, that is then guided by praggdion. Once the target object is
contacted, the grasp is completed using tactile feedback.

Coelho's closed-loop grasping system is “blind” in the setigat no visual information is
exploited during the grasp process. The objective in thigptdr is to add a visual component
to this system that extracts minimal visual information te-prient the hand appropriately in
relation to the target object. Specifically, it recommenas tritical parameters to the haptic
system:

¢ the orientation (azimuthal angle) of the hand, and
¢ the number of fingers to use (two or three).

These recommendations are purely based on features ofrappedhat correlate robustly with

these two parameters, using a feature learning systemasitnithat discussed in the preceding
chapters. The learning procedure is driven entirely by #igtib grasping system, without an

external supervisor.

6.3 Background

The grasping task discussed in this chapter is based on &dibpgyuided grasping system
developed by my colleague fierson Coelho, which is introduced in the next section. Then,
Section 6.3.2 briefly introduces and illustrates prokgbidistributions on angular domains.
These play an important role in the algorithms presentelisnchapter.

6.3.1 Haptically-Guided Grasping

Coelho [21] describes a framework for closed-loop graspsigg a dextrous robotic hand (Fig-
ure 6.1) equipped with for¢g@rque touch sensors at the fingertips. Reference and feledba
error signals are expressed in terms of the object-frameech residuap, a six-element vector
summarizing the residual forces and torques acting on tfecbbThe current object wrench
is computed using the instantaneous grip Jaco@iawhich in turn is locally estimated using
sensor feedback in the form of contact positions and norriidle grasp controller receives an
error signalk, which for a zero reference wrench is simply the squared e¥reesiduak = p' p,

and computes incremental displacements for a subset ofiiperfip contacts so as to reduce the
error signal. As a result, the fingers probe the surface abltfect until their positions converge
to a local minimum in the squared-wrench-residual surface.

Plant
Reference € | Grasp Control
wrench Controller | actions
Object Contact normals
wrench G and positions

Figure 6.1. Grasp synthesis as closed-loop control. (Reproduced witmigsion from Coelho
and Grupen [21].)
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The three-fingered StanfgdPL robotic hand (Figure 6.2) employed in this work can per-
form grasps using any two- or three-fingered grasp configuraEach of these finger combina-
tionsc gives rise to an individual grasp controlley, yielding a total of four controllers. For the
purpose of this chapter, it is Sicient to distinguish between two classes of grasp contsylle
namely, two- and three-fingered grasps.

Figure 6.2. The Stanford)PL dextrous hand performing haptically-guided closexblgrasp
synthesis.

As a grasp controllet; executes, the control errerand its time derivative frace out phase
portraits that are characteristic of object shapes (Figus® In this way, the grasping system
forms haptic categories. Qualitativelyfidirent regions in a phase portrait constitute haptic
contextsand can be represented as states of a finite state machinegBig). Coelho [22, 23]
describes a reinforcement learning framework for leargrasp control policies that select a
controller 7. based on the context currently observed. The learned eslathieve grasps of
consistently higher quality than any fixedtive controller z; by escaping local minima in the
wrench residual surface.

me

-0.005 |—

-0.010 |—

Figure 6.3. Object wrench phase portraits traced during grasp syrghd@se left panel depicts
the evolution of a two fingered grasp trial from configurat{ahto (b) and to (c), the convergent
configuration. The complete, two-fingered phase portraitte irregular triangle is shown on
the right. (Reproduced with permission from Coelho et &])2

99



el Policy m,
O O i \\\\\““"””“““"'lu '
\

Figure 6.4. A hypothetical phase portrait of a native controlgr(left) and all possible context
transitions (right). (Reproduced with permission from (Boeet al. [24])

The quality of a grasp is characterized by the minimum fitttodficientyg required for a
null space to exist in the grip Jacobi&) with rank > 1. For an ideal graspy = 0, meaning
that the grasp configuration is suitable for fixing the objecplace using frictionless point
contacts. Depending on the object shape and the number efdiagailable, this ideal may not

be achievable. The right panel in Figure 6.3 is annotatel thi values ofiy associated with
the three converged configurations.

6.3.2 The von Mises Distribution

Predicting hand orientations in relation to objects ineghthe estimation of relative angular
information. Most conventional continuous probabilitytiibutions have a linear domain, for
example, the normal distribution. In the case where a rangammble represents an angle, one
probability distribution that is often used in lieu of a n@hdlistribution on a circular domain is
thevon Misedistribution [30]. It has the probability density function

T R 61)
where 0< u < 2, 0 < k < o0, andlg(x) is the modified Bessel function of order zero. The
mean direction of the distribution is given lay andx is a concentration parameter with= 0
corresponding to a circular uniform distribution, ane> oo to a point distribution. Figure 6.5
illustrates four von Mises distributions withftirent parameters. The probability density at an
angle corresponds to the radial distance from the unitecticthe density curve.

The parametenr of the von Mises distribution is not to be confused with thetion coef-
ficient ug introduced in the previous section. | use this notation ireament with established
conventions. In this chapter, the useudf consistentyug (occasionally followed by one more

index) always refers to the friction cficient, and: (often with an index other than zero) always
denotes the mean direction of a von Mises distribution.

6.4 Feature Learning

In Coelho’s haptically-guided grasping system, no visu@scguide the placement of the fingers
on the object. Here, the goal is to learn visual featuresptetict successful hand orientations,
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von Mises distributions

25 ————
PN —— unit circle
2 7 \ p=0.00, k=0.00
15l / \ — — u=2.36,k=2.00 ||
' A e ) -— . p=1.57, k=10.00
P p=0.00, k=60.00 |1
-1 0 1 2 3 4

Figure 6.5. lllustration of four von Mises probability densities on accilar domain.

given prior haptic experience. These can be used to choose-aot a three-fingered grasp
controller, and to pre-shape the hand in order to place ctmtaliably near high-quality grasp
configurations for a task. In terms of Figure 6.4, this cqrogsls to initializing the haptic
system in a context near the minimum achievable wrenchuabkid-rom here, a single native
grasp controller can lead reliably to the preferred sofutitm efect, pre-grasp visual cues are
learned to subsume haptically-guided grasp policies.

The general scenario for the grasping problem is shown iarEi§.6. The visual system
attempts to identify features of the object that correlata successful grasp parameters, includ-
ing the relative hand orientation and the number of fingeesluén overhead view of the target
object is obtained before the onset of the reach, and a pi@diof useful grasp parameters is
derived. Subsequently, the grasp is executed using thécfrddyrasp parameters. Upon con-
vergence of the haptic controller to a final grasp configaratgrasp parameters are recorded
and used for learning. The orientation of the hand duringvarggrasp configuratiorgy, is
defined as illustrated in Figure 6.7.

The robot may encounter a variety of objects théfediin their shapes. Each type of object
may require a dedicated feature to recommend a hand of@mtaObject identities are not
known to the system; the need for dedicated features musst@vered by grasping experience.
Visual features that respond selectively to haptic caieggrermit a recommendation to be made
regarding the number of fingers to use for a grasp (Figure 6.8)

Features of the type defined in Chapter 3 are sampled fromeisntadken by an overhead
camera. Assuming that these features respond to the otgelft their image-plane orientation
0: (Equation 3.5, page 15) should be related to the azimutlehtationdy of the robotic hand
by a constant additiveffsetd. A given feature, measured during many grasping expergnce
generates data points that lie on straight lines on thedataiurface spanned by the hand and
feature orientations (Figure 6.9). Hefex= 04 — 6;. There may be more than one straight line
because a given visual feature may respond to more than en#ispbject location (e.g., due
to object symmetries), or to several distinct objects thfiedin shape. GiveR, one can then
infer appropriate hand orientations as a function of olesfeature orientations:

Oh=0; +6 (6.2)

The remaining problem is to find thefsetsd. Assuming these can be modeled as random
variables with unimodal and symmetric probability distitions py(6), with thek corresponding
to the clusters of points in Figure 6.9, then this is an instaof aK-Means problem in one-
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acquire image
Step 1

!

analyze, learn features
perform grasp Step 10
Steps 2-8

useful?
Step 9

yes no

Figure 6.6. Scenario for learning features to recommend grasp parasn@tke Figure 2.1,
page 8). The step indices correspond to Algorithm 6.2, toidaidsed later in this chapter.

midpoint
between fingers

On
thumb

Figure 6.7. Definition of the hand orientation (azimuthal angle) for tvamd three-fingered
grasps.

@) Q ()Q
1 ; l E O ( > O
(@) (b) () (d)

Figure 6.8. By Coelho’s formulation, some objects are better graspéu twio fingers (a), some
with three (b), and for some this choice is unimportant (c, d)
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dimensional circular (angular) space, wkhunknown, and can be represented as a mixture
distribution

K
Prix(6) = ), P(6) P(K) (6.3)
k=1

with mixture proportions & P(k) < 1, > P(k) = 1. The following section shows how to find
the parameters of this mixture distribution, which coliesly constitute thefeature modebf

f for a particular grasp controller. Subsequent sectionsriEshow to select data points for
fitting object-specific feature models, and how to use festto predict the quality of a grasp.
Section 6.4.4 puts these pieces together and presentdlitAdgfrithm 6.2 (cf. Figure 6.6) for
learning multiple features with multiple grasp contrdadleand addresses the interaction with the
haptic grasping system.

Unwrapped Toroidal Plot Mixture of 2 von Mises distributions
3 —— unit circle
L — mu=0.10, kappa=122.09
2} | L mu=2.17, kappa=700.92
s 1
©
5
= 0 o : o
o + + -
T 7 B L
S| o ] S
T -1 + o
3. ‘ S ‘ |
-2 0 2

Orientation of Feature

Figure 6.9. Left: Data points induced by a given feature on various irsagfean object form
straight lines on a torus (two in this case); right: A mixtofdwo von Mises distributions was
fitted to these data.

6.4.1 Fitting a Parametric Orientation Model

While the system learns and performs, all features are ateduon all images. The response
magnituded of all featured, their orientation®:, the actual hand orientatiols (the training
signal), and the prediction errorsd; = |0y — 6n| produced by each feature are stored in an
instance list To compute the mixture model for a feature, this featur@tgoints (such as
those shown in Figure 6.9) are taken from this instance list.

Assume the) are drawn independently from a mixture of von Mises distidns. The
mixture distribution 6.3 (see Figure 6.9) then becomes

K
Prix(®18) = > pm (6 | i 1) PK) (6.4)
k=1

wherea is shorthand for the collection of parametggskk andP(k), 1 < k < K.

For all plausible numbers of clusteks, a (X — 1)-dimensional non-linear optimization
problem is to be solved to find theg, xx andP(k). The appropriate numbét of mixture com-
ponents is then chosen as the one that maximizes the Ireddtampleted Likelihood criterion
[13], an adaptation to clustering problems of the more \katiwwn Bayesian Information Crite-
rion [106]. In practice, the method of choosing the right tw@mof components is not critical,
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because as better features are learned, the clusters gialats will become increasingly well
separated.

For a particular value ok, a maximum-a-posteriori (MAP) estimate of a mixture model i
a parameterizatioa that maximizes the posterior probability given by Baye¢ru

L(© | a) p(a)
2mL(® | am) p(am)

whereL(® | a) is the likelihood of the observed daé = {0,,...,0n}. We now assume a
uniform prior probability density over all possible modelrpmeterizationgy,. In this case,

the MAP estimate is identical to the maximum-likelihoodiresite that maximizes the log-
likelihood of the data:

p(al ©) =

N
logL(© | 8) = " log pmix(@; | &) (6.5)
i=1

An elegant way to fit mixture models such as this is via the Etgi®n-Maximization (EM)
algorithm. The EM algorithm is most practical if the modefrgraetersuk, xx and P(k) can
be computed in closed form at the Expectation step. Unfataly this is not possible here
because the Bessel functions cannot be inverted algeltyajsae the Appendix). Facing this
added dfficulty, the mixture model (6.4) is more easily fitted direcubject to the applicable
constraints on the, andP(K), via gradient descent using the partial derivatives ofdhjective
function (6.5):

3 NPk 6
—logL(®|a) = _— ; y
e 09 ©14a) ; ALK Pum (6 | ks &)

ailq(logL(ma) = ;% aiKkva(eiHlk,Kk)
where
P01 .6) = XSG~ ) PO | .8 (6.6)
SPun(0 1) = MR ZHORD 1. 6

TheK-1 partial derivatives with respect R{k) must take into account the constraﬁﬁf:1 Pk) =
1

R0 logL(® | @)
o N K-1 1
) 2,100 > P i | e ) PK) + Pt (6 | s k) [1— P(k)]]
i=1 k=1 =

N
1
— 9 . - 9 . N k:l”K_l
; o (@5 13) (va( i s ki) — Pum (61 | KK))

Each feature is annotated with its model parameters, whiclude theuy, «x, P(k), and the
total numbem\; of valid data points modeled by this mixture.

6.4.2 Selecting Object-Specific Data Points

If different types of objects are encountered, dedicated feahagave to be learned. Without
a supervisor providing object identities, the data colbet (Figure 6.9) will be an indiscernible
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mix of feature responses corresponding to various objertd, any reliable patterns will be
obscured. The key to learning dedicated features is to éggdata points corresponding to weak
feature responses. This permits features to emerge thatméstrongly only to specific, highly
characteristic object parts, but that respond weakly iniarage that does not contain such an
object. These weak responses will be ignored, and reliablieta ofd can be fitted to the strong
responses.

Deciding whether a given point is “strong” in this sense laes a threshold. Such thresh-
olds at, specific to each feature, can be determined optimally inBégesian sense that the
number of poor recommendations made by the resulting medelrimized! To do this for a
given featurd, the history of feature responsésand the associated prediction errowg are
analyzed in order to find a threshald such that most predictions for cases wfth> a5 are
correct. To formalize this intuitive notion, a global thinetd t,e is introduced, meaning that
a prediction withAd: < tag is correct, and false otherwise. The optimal threshglds then
defined as a value that maximizes the Kolmogorov-Snfirdistance KSp between the two
conditional distributions of; under the two conditions that the associated predictioasair-
rect and false, respectively (Figure 6.10). The featureehoff is then fitted to all data points
0 with f; > a;. The threshold, is a global run-time parameter that can gradually be reduced
over time to encourage the learning of improved features.

21
=
3
) false predictions:—,
o
o
= correct
5] -
= predictions
g ABs < tpg
(&]
0 feature responsé @ 1

Figure 6.10. Kolmogorov-Smirndt distance KSIp between the conditional distributions of
feature response magnitudes given correct and false gosdic

6.4.3 Predicting the Quality of a Grasp

The quality of a grasp is defined by the minimum friction @méent ug required to execute the
grasp using a given finger configuration (cf. Section 6.3i1this model, the lower (closer to
zero) a value ofig, the better the grasp. It is not possible to separate goad framor grasps
based on a generic threshold pg alone because, for any given object, the best achievable
grasp depends on the object properties, the number of fingeds— in general — on the end-
to-end task. For example, the best achievable grasp of regtriar prism using two fingers
is far worse than if three fingers are used. Under Coelhoimditation, cubes are best grasped
with two fingers to take advantage of symmetric contact ®exoss parallel opposing surfaces
(Figure 6.8).

It is possible to estimate the expected valueu@fassociated with a given featufe For
this purpose, the actually experienced valug@fs stored in the instance list along with each

1Bayesian optimality holds only under the assumption thepitior probabilities of the two conditions are equal.
See Sections 4.3.2 and 4.4.1 for a discussion.
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executed grasp. Thegg values are regarded as samples of a continuous random leaigb
with probability density functiorp(uo) and expected value

E[Mq] = fo 410 P(0) do.

Observe that each measured valug®is associated with the measured prediction en@r=

|01 — 6hl, generated by the same graspf i indeed highly predictive of the grasp outcome,
then there should be an approximate proportional relatiprizetween thgo and theAd;: Good
grasps with smallg should tend to exhibit a small angular ered;. Thus, the probability
density functionp(uo) should be well approximated by the distributippy (A8;) of the angular
offsets observed between the feature and hand orientatiorexefdte, a sample estimate of
E[Mo(f)] for featuref can be approximated as

i Hoji Pum (A6 )
i Pum (A6 )

where the corresponding pairs @f; and A6 ; are taken from the instance list, using only in-
stances corresponding to occurrencewith fr; > «s.

E[Mo(f)] = (6.8)

6.4.4 Feature Learning Algorithm

Using the concepts introduced in the preceding sectioagrtcedure for fitting a feature model
is summarized in the following algorithm.

Algorithm 6.1 (Fitting a Feature Model) For a given featuré, the following steps are taken
to compute the associated orientation model, consistirlgenfy, «x, KSD¢, andE[ Mo(f)]:

1. Using the current value dfyy, identify those occurrences ofin the instance list that
correspond to correct and false predictions. Using theoresp magnituded of these
occurrences, compute KgRnd the associated threshald(Section 6.4.2).

2. Using theN; of these instances with > as, fit a parametric orientation model (Equation
6.4), obtainingKs, and values fop, xk, andP(k), k = 1, ..., K¢ (Section 6.4.1).

3. Using this orientation model and theAvaIuesp@fandAef corresponding to the measure-
ments off in the instance list, compute[ My(f)] (Equation 6.8, Section 6.4.3).
[ |

The system operates by recommending hand orientations lzs@iving the outcomes of
grasping procedures. New features are added to the repentgparallel to the execution of
grasping tasks, and are evaluated over the course of mamg fgtasps. This is in contrast to
the distinction-learning application (Chapter 4), whéve discriminative power of new features
was immediately estimated using example images. Here,arojghe images are necessary. The
visual system does not have any influence on the types oiitiderdf the grasped objects. Two
separate feature sefs and¥3 and two separate instance lists are maintained for two-taeé-t
fingered grasps. Out of these two sets, the feature with thesibexpected friction cdicient
o provides a recommendation of grasp parameters to the reygtiem. The operation of the
learning system is detailed in the following algorithm.

Algorithm 6.2 (Feature Learning and Application of Feature Models) Initially, the setsf>
and¥3 of features known to the system are empty.

1. Anew grasp task is presented to the grasping system, anckdmead image of the grasped
object is acquired.

2. The following steps are performed for each featurefget
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(@) The responsef of all featured € ¥ are measured in the current image.
(b) Identify the above-threshold feature with the highestgctive power:

fe = argmax KSDx
fe{feFclfi>as)

Now, choose the numberof grasp contacts that will result in the better grasp:

Cc= argminé[Mo(fz)]
ce{2,3)

3. From theK components in the angular mixture model associated fgjtidentify the most
concentrated component distribution of angular errors:

k' = argmax Kk
ke{lsks Kre |Nig P(k)zS}

To avoid singular modes, the maximum is only taken over tloeseponent distributions
that model at least three data points.

4. Using the orientation df} measured in the image and the angul@iset associated with
k*, form a recommended hand orientation (cf. Equation 6.2):

bh = O + pue

5. The robot performs @contact grasp with initial azimuthal angle@f Upon convergence
of the haptic system, a new instance vector is added to thanics list, containing the
response magnitudes, orientations, and prediction eN@rs= |9y — 6, of all features
f € ¢, as well as the actual final hand orientatityn and the achieved friction cfiicient

Ho-
6. If Abr: < tag, i.e. the recommended grasp parameters were accurate quicecelittle
adjustment by the haptic system, then continue at Step 1.

7. Using Algorithm 6.1, the KSPpare recomputed for afl € F¢, and all associated mix-
ture models are re-estimated based on the cases recordsal iimstance list of previous
experiences.

8. A new predictiorgy, is formed based on the new models, following the same proeeaki
above, but leaving fixed (Steps 2a, 2b, 3, 4).

9. If now |84 — 6| < tag, continue at Step 1.

10. Add two new features t6.: One is created by sampling a random texel or a random pair
of edgels from salient points in the current image (cf. Aitjon 4.10 (Feature Generation,
page 43), Step 2). The other feature is generated by randexpgnding an existing
feature geometrically by adding a new point (cf. Algorithmd@, Step 3). Then, continue
at Step 1.

|

Many of the features randomly sampled at Step 10 will perfpoarly, e.g. because they
respond to parts of the scene unrelated to the object to lspepta Such features will develop
a poor KSD, as there is no systematic association betweénrdsponse strengths and their
prediction accuracies. Due to their low KSD, such featuriéicease to be used at all (Step 2b).
On the other hand, if a feature performs well, its KSD will hereased, and it will more likely
be employed. Moreover, since only features are consuli@datie asserted to be present in the
image (i.e.,f; > ), features can be learned that selectively respondfierdnt object shapes
requiring diferent dfsetsd. Unused features should be discarded periodically. Thailglet
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of when this is done are unimportant, but if all features aptlaround, then those steps in
Algorithm 6.2 that involve iterating over all features willcur unnecessary computational cost.

This algorithm uses only a single feature to derive a hanehtation. Similarly to the pre-
ceding two chapters, the reason for this choice is to reteftie point that a highly uncommitted
adaptive visual system can learn powerful features. Thestoless of the recommended angles
can probably be increased by pooling the recommendatiosswvafral features. At Step 2, the
feature of choice is determined according to its KSThen, at Step 3, one of the modesf this
feature’s model is chosen to form the actual prediction. it fjlance, it seems that this choice
of a model is unstable because the actual reliability of tigévidual modes of a given feature
model may difer widely. However, this variation does not cause instgbilecause the KSD is
derived according to the actual behavior of the feature atfize, as recorded in the instance
list. Thus, a high KSD can only result if the practically useddesk perform consistently well.

In contrast to the feature learning algorithm for distinetieatures (Algorithm 4.8 on page 41),
Algorithm 6.2 does not evaluate features immediately, Bsvilould require repeated grasps of
the same object in lieu of the example images used by Algordt8. This algorithm instead
chooses to spread the evaluation of newly sampled feataressamultiple future grasps. This
prevents the use of an explicit simple-to-complex searctqmure such as Algorithm 4.10.
However, the expansion of features at Step 10 above has the dtect, spread over multi-
ple grasps. Boolean compound features are not used heraskeetteeir orientations are less
meaningful than those of geometric compounds.

Incidentally, this search for good predictive models cibatgts an Expectation-Maximiza-
tion (EM) algorithm. An EM algorithm alternates betweeniresting a set of unknown data
values based on a current estimate of a model (Expectati), sind estimating the model
based on the full data (Maximization step). Here, the patacnmodel to be optimized is the
collection of all feature-specific models that are used lgyahgular recommendation process.
The unknown data values specify which recorded data poivtsid participate in the feature-
specific models. At the Expectation step, these hidden pateEmare estimated by computing
the KSD such that the probability of making the right choice for edaka point is maximized,
given the current model. At the Maximization step, the ltkebd of the model given the par-
ticipating data points is maximized by optimizing the mopatameters according to Equation
6.5. As the system operates, these two steps alternate.

This instance of the EM algorithm is unusual in that the Exatimn step does not utilize
all available current data. Instead, the instance list ot paperiences is consulted for previ-
ous prediction results, which were generated by modelsetkfrom all data availablat that
time Taking the correct expectation using the most recent madeld involve revisiting all
previously-seen images at each Expectation step, whidbaslg impractical. Nevertheless, the
convergence properties of the EM algorithm areftewed. As data accumulate, the accuracy of
recent expectations can only increase, and the influencessily inaccurate data from early
history diminishes.

6.5 Experiments

The learning algorithm just presented is designed to oparatline. However, a single grasp
performed by the real robot using Coelho’s system (Secti@nlptakes on the order of ten
minutes, while the learning algorithm requires hundredgrasps to converge. Therefore, a
thorough on-line evaluation was impractical. Instead,eeixpents were conducted in simula-
tion in a way that closely resembles the actual integratedping system. These experiments
utilized a detailed kinematic and dynamic simulator of thieatic hangarm system, developed
by Jdterson Coelho, that cycles through the following steps:
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1. Generate a random polyhedral object geometry by drawijecbparameters from para-
metric probability distributions derived from actual expgents using the real robot. Ran-
dom parameters include the dimensions and angles defirengpilect.

2. Perform a simulated grasp of this object. The haptic cbistystem is the same as that
used for the real robot. The simulator interprets the motonrmands and generates sen-
sory feedback in the form of joint angles and (relativelysydiforcgtorque readings of
the fingertip sensors.

The three types of object geometries used included quadian@goughly square) and triangu-
lar (roughly equilateral) prisms, and cylinders. Typichjext geometries and converged grasp
configurations are illustrated in Figure 6.11. The ray ordging from the object center indi-
cates the wrist orientation in accordance with Figure 6.fe Tategorization into “good” and
“poor” grasps is for illustration only. As mentioned earlithere is no way to grasp a triangle
well using two fingers, and all grasps of the cylinder wereafsistently high quality. Visual
input for the visual learning system was generated by piliaduphoto-realistically rendered
and noise-degraded views on the basis of the object spéicifisagenerated at Step 1 above
(Figure 6.12). All results reported below were computediio-fold cross-validation. For sim-
plicity and speed, no texels were used. However, other Uighigll experiments indicate that
the presence or absence of texels does not have a noticegiaetion this task.

Good Grasps Poor Grasps
@ @)
OCRENRONG:
@) (0} O
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Figure 6.11. Representative examples of synthesized objects and gmu/simulated grasp
configurations using Coelho’s haptically-guided grasgpstem.

" -‘_:. '-.

Figure 6.12. Example views of objects used in the grasping simulations.

6.5.1 Training Visual Models

To generate training data, Coelho’s grasp simulator peréorseveral hundred simulated grasps
on instances of the three object types, using two- and tlimgered grasp controllers, and
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recorded the final grasp configurations on convergencegaidth the grasp quality indep.
These data were used by Algorithm 6.2 to train visual featnoglels. Lacking the ability to
perform an actual grasp at Step 5, the recommended graspssimaulated by comparing the
recommended hand orientati6p with the previously executed hand orientati@n associated
with the training image, modulo the known rotational symmyetroperties of the object. Since
cylinders have infinite-fold rotational symmetry, any hamgntation works equally well. Con-
sequently, no features were ever learned for cylinders.

Accuracy (clean, separated data) Accuracy (noisy, unseparated data)
20

02 46 81012 0 20 40 60
Error [degrees] Error [degrees]
(a) (b)

Figure 6.13. Quantitative results of hand orientation prediction. Tigltmost bin of the right
histogram includes all cases where the prediction erroeeded 60 degrees.

Figure 6.13 demonstrates that the system succeeds infgdaatures that are indicative of
hand orientations. The data in Figure 6.13a were producdddiyre models that were trained
using 2-fold cross validation on the 20 best two-fingeredpgaf cubes, and the 20 best three-
fingered grasps of triangular prisms available in the sitedldraining set. As always in this
chapter, the quality of a grasp was assessed in terms ofithierircodficient uo. These data
can be expected to contain only little noise in the trainiggal, i.e., the actual hand orientation
0y on grasp convergence. Performance on an independent téstadmost always excellent,
with prediction error magnitudes on the order of the vaviaiin the training signal.

The data in Figure 6.13b were produced by feature modelsitbia trained on a represen-
tative sample of 80 grasps, including 20 grasps each of ca@sriangular prisms using two-
and three-fingered grasp controllers. On such noisy trgidata that contains hand orientations
that produced a poor grasp, the system expends a I@itof &ying to learn these outliers. How-
ever, performance degrades gracefully because featwresehcted by Kolmogorov-Smirfio
distance, which prefers generic features that work welttiermajority of useful training exam-
ples. On a noisy test set, most poor recommendations ocoomtbiars. Notably, two-fingered
grasps of the triangular object are inherently unstableuapdedictable. Here, prediction errors
produced by the trained system depend on the error threimidivides “good” from “poor”
predictions during training. Choosing a low threshold gelg produces more accurate predic-
tions on a test set, as long as this threshold is larger trawatiation contained in the majority
of the training data.

6.5.2 Using Visual Models to Cue Haptic Grasping

Several experiments were performed to evaluate fiieeteof visual priming on the haptic grasp-
ing procedure. The two primary evaluation criteria wererthenber of haptic probes executed
before the grasp controller converged, and the quality ®faithieved grasp on convergence in
terms of the friction coficient ug. All experiments employ the native grasp controllers de-
scribed in Section 6.3.1.

In the first experiment, a two-fingered native grasp corgrallas cued using features trained
on the best 20 two-fingered grasps of cubes available in diirig set. An analogous experi-
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Figure 6.14. Results on two-fingered grasps of cubes (top half), and ttimgered grasps of
triangular prisms (bottom half). The left column shows pyb&ptic grasps; in the right column,
grasps were cued using learned visual feature models. ghemost bin in each histogram
includes all instances with a number of proke?0, orug > 1, respectively.
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ment was performed using three-fingered grasps of trianguisms. The feature models were
the same as those that generated the results shown in Figud@. 6The results are shown in
Figure 6.14. For cubes, the number of lengthy grasps thaireztjmore than about 13 haptic
probes was drastically reduced. Such grasps typically daaoverge to a stable configura-
tion. Likewise, the number of extremely fast grasps thatiiregl only a single probe increased
substantially. For both cubes and triangular prisms, thgeeted number of probes was not
significantly dfected. However, in both cases the number of poor graspsr(irstef o) was
dramatically reduced. Figure 6.15 shows examples of theifes learned during the training
procedure. Interestingly, one feature captures both the end the boundary of its shadow.
Apparently there were enough fitting examples in the datestnzh a feature was advantageous.

e

Figure 6.15. Examples of features obtained by training two-fingered rtsode cubes and
three-fingered models on triangular prisms, using cleaa siparated by object type (cf. Figure
6.14).

In a second experiment, a set of visual feature models waettaising a training set of 80
grasps, including 20 grasps each of cubes and triangulsmprusing two- and three-fingered
grasp controllers. This training setfidired from the one used in Figure 6.13b: There, the
training set was representative of the population of gragemences, including outliers. Here,
the best 20 grasps in each of the four categories was usedafoing. Both the two- and
three-fingered visual feature models were exposed bothidescand to triangular prisms, and
the learning procedure learned features that were spegifialies or triangular prisms exclu-
sively. Thus, these features gathered meaningful stisti the experienced friction cfie
cients, which could then be used to recommend a two- or a-firgered grasp (see Section
6.4.3, and Algorithm 6.2, Step 2). This experiment was ruadoordance with Algorithm 6.2,
Steps 1-5. Figure 6.16 shows examples of the features tbaiete that in the case of the
triangular prism, a feature spuriously responded to thd@hiawhich is not correlated with the
orientation of the object.

The results are shown in Figure 6.17. The two columns on tfiedigplay the results
achieved by the purely haptic system, for two- and thredamimative controllers. In both
cases, grasped objects included both cubes and triangisansp This explains the bimodal
distributions ofug shown in the bottom row: The modes centered ngage 0.2 mostly cor-
respond to two-fingered grasps of cubes and three-fingeespgof triangular prisms, while
the modes centered neag = 0.6 tend to correspond to three-fingered grasps of cubes and
two-fingered grasps of triangular prisms. This illustratiest neither two- nor three-fingered
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Figure 6.16. Examples of features obtained by training two- and thregefiad models on cubes

and triangular prisms, using a single dataset containilagjvely noise-free grasps of cubes and
triangular prisms (cf. Figure 6.17).
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Figure 6.17. Grasp results on cubes and triangular prisms. The numbaaspgontacts was
chosen using the learned visual feature models.
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native controllers alone are ffigient to execute high-quality grasps reliably for both cibed
triangular prisms.

The rightmost column shows the results achieved if the Eghrisual models determine
which native policy to use, and how to orient the hand at ttiseiwf a grasp. Almost all grasps
result in a very goodig; the second mode has almost completely disappeared. Maramry
long trials (more than about 20 probes) are practically ielated (cf. the two-fingered native
controller on the left). However, the expected number obproincreases slightly. The reasons
for this undesired féect are unclear. One possible explanation is that the angedammen-
dations made by the learned feature models were relativedy, @nd possibly skewed by a
systematic bias, due to the presence of many unreliablpgashe training set, predominantly
two-fingered grasps of triangular prisms. Even if this i®frihis slight drawback is more than
outweighed by the enormous gain in the quality of the rasgilgirasps, as evidenced by the low
values ofup.

6.6 Discussion

This chapter described a system for learning to recommend bdentations and finger con-
figurations to a haptically-guided grasping system. Laealiappearance-based features of the
visual scene are learned that correlate reliably with alesehand orientations. If the training
data are not overly noisy, specialized features emergeréisabnd to distinct object classes.
These can then be used to recommend the number of grasptsaiotdie used, based on the
expected quality of the grasp. In this way, visual guidarates$ place without prior knowl-
edge, explicit segmentation or geometric reconstructioth@ scene. The interaction between
haptic and visual system is a plausible model of human gngdpéhavior. Learning is on-line
and incremental; there is no distinction between learnimg) @xecution phases. The results
demonstrate the feasibility of the concept.

The main limitation of the system, as used in the experimaintse, is that its performance
was adverselyféected by noise in the training data. It was unable to iderifgl ignore noisy
training examples. However, it is important to note thas tfiiect is inherent in thefé-line na-
ture of the training process. While the algorithm is desifteeoperate on-line, the experiments
above were generatedidine using a fixed set of training data. Iffect, the visual system
learned solely by observing the haptic system in action h@\it additional information, there
was no way for it to distinguish good from poor grasp outcom@f-line training severs an
important feedback loop between the visual and the hapsitesy. During on-line training, as
described in Algorithm 6.2, the haptic system always usextles given by the visual system.
If these cues are accurate, then the quality of the resudtiagps is of consistently high quality
(Figures 6.14 and 6.17). Irffect,once highly predictive features emerge, the resultingntrey
data will contain little noise! Due to the KSD feature selection metric, good features vell b
used more often than poor features. Thus, their increasedillsshange the distribution of the
training data, with the fect that the noise is increasingly reduced. This is a streagan to
expect that an on-line training procedure will bootstraelitto yield reliable features by pro-
ducing pure training data, which are in turn produced byl features. A merely observant
learner is permanently confronted with the same statiodastyibution of noisy training data,
and wastes a lot offfort trying to learn the noise, contaminating its featurevei¢h spurious
features. In contrast, an interactive learner can actigéiyinate the noise from the training
data! The experimental verification of this argument mudefido future work.

The sensorimotor grasping system described in this chégsens about objects, and how
they are best grasped. This way of learning about actifiyrded by the environment is remi-
niscent of the Gibsonian ecological approach to perceptitn39]. The notion offfordances
is a central concept in this theory. Arf@erdance refers to the fit between an agent’s capa-
bilities and the environmental properties that make pdéssiiven actions. According to the
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Gibsons, an agent learns abotfibedances by interacting with the environment. It discovers
effects of actions and perceptual characteristics indicativaftfordances. The ecological ap-
proach emphasizes that perceptionii®ct; behaviorally useful information is extracted more
or less directly from the egocentric sensory stream, witlotiermediate comprehensive rep-
resentations such as geometric models. The Gibsonianytieeappealing to many roboticists
because of its direct link between perception and actionfotttmately, the underlying com-
putational mechanisms are largely unclear. This is adddelyg the methods described in this
chapter. The haptic sensorimotor system learns about pies tyf graspsféorded by dfferent
objects, that is, the fit between hand and object. At the sam& the visual system learns to as-
sociate theseftordances with visual appearance. Features of appearamesteaicted directly
from the sensory stream, which is compatible with the Gisonotion of direct perception. It
will be interesting to explore such activity-driven leargimechanisms in more elaborate task
scenarios.
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CHAPTER 7
CONCLUSIONS

The first two chapters of this dissertation outlined a sdenarwhich autonomous robots re-

fine their perceptual skills with growing experience, as daded by their interaction with the

environment. The following four technical chapters introdd a general framework for learn-
ing useful visual features, and applied it to two verffetient task domains. This final chapter
collects the insights gained in the technical chapters reassembles them into parts of the big
picture drawn at the outset. It discusses the contributadrthis dissertation, and highlights

some important directions for future research.

7.1 Summary of Contributions

The desire to construct autonomous robots that performrim@ittasks in the real world is
one of the driving forces of research in artificial intelige. It has long been argued that
the world is too complex to allow the design of canned, roladion policies. Therefore,
learning capabilities are generally agreed to be a crungaiedient of sophisticated autonomous
robots. However, the computer vision research communityrttd as widely embraced this
viewpoint. In Section 1.2 | argued that visual learning idispensable for agents that need to
extract task-relevant information from uncontrolled eoriments. This dynamic and purposive
paradigm of vision is commonly calleattive vision4, 15]. The crucial role of visual learning
in active vision has been pointed out in its early days [10S#)ce then however, relatively little
emphasis has been placed on the learning aspects of task-dision, although some progress
is being made [76]. A central aim of this dissertation is tdgaamcement of visual learning as
an essential ingredient of task-driven vision systems. fohewing items summarize the key
contributions of this dissertation:

e The field of computer vision has a strong tradition of viewsigjon problems in isolation.
Under this paradigm, the goal of vision is to generate scesergptions for use by higher-
level reasoning processes. | argue that this approachppriopriate in many visual tasks
that arise in the context of autonomous systems, and instdaoicate adaptive visual
systems that learn to extract just the information needed fask.

e | proposed an iterative, on-line paradigm for task-drivencpptual learning that cycles
through sensation, action, and evaluation steps (Figudesr2page 8, 4.2 on page 35,
and 6.6 on page 102). Learning takes place only when needdds aighly focused on
solving problems encountered on line. This view of incretakewisual learning departs
from established traditions in computer vision.

e Extending Amit and Geman’s work on combinatorial featuBs$] and combining it with
highly expressive and biologically plausible feature ptives, | introduced an infinite
combinatorial and parametric feature space that contaefilfeatures for a variety of
tasks. Powerful features are sought in a simple-to-comfalgixion by random sampling
directly in training images.
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| demonstrated that powerful features can be learned irkedi@gen manner by a general
system that starts out with very little prior commitment toygarticular task scenario.
To reinforce this message, my algorithms are designed ta le@ly a small number of
features that are highly distinctive individually.

¢ In the context of visual recognition, | generalized the @ntional trugfalse dichotomy
of classification by a multi-class framework that allowsleealass to be treated separately.
This paradigm unifies the traditional paradigms of objecogmition and detection. | also
motivated an implementation on the basis of multiple Bayesietworks. This represen-
tation abandons the closed-world assumption made by ctiamahrecognition systems.

e The dficacy of these algorithms and representations was evaloatetject discrimina-
tion tasks that simulated an on-line learning scenario.

e Motivated by the phenomenon of human expertise in visuabgeition, | proposed a
method for learning improved features by introducing eipliequirements of discrim-
inative power. As a result, test-set performance signifigamproves according to all
performance metrics.

e Onthe basis of the feature space, | developed a method foilgdeatures to recommend
configuration parameters for a haptically-guided grasgiysiem that resembles the way
humans use visual information to pre-shape their handswiching for an object. The
method results in improved grasps, without any explicitamtion or representation of
object geometry.

Two very diferent applications demonstrated the potential of the géapproach. The ob-
ject discrimination task is essentiallyckassificationproblem, with the goal of finding features
that are highly predictive of particular classes. A strgrfgtused feature search procedure ex-
plicitly applies simple-to-complex search heuristics.n@idate features are evaluated immedi-
ately, which requires a cooperative environment that cawige example images. The grasping
task mainly constitutes @gressiorproblem. Here, features are sought whose image-plane ori-
entations robustly correlate with hand orientations. eag¢valuation is distributed over many
successive grasping trials, and does not require examplgeisa The simple-to-complex feature
construction strategy is more implicit in this algorithm.

All experiments were performed in simulation. On-line l@ag tasks in real environments
will benefit from an dicient implementation, especially if it capitalizes on thghhdegree of
parallelism inherent in the feature search algorithms.drigmtly, the algorithms presented here
can in principle be applied in on-line, interactive taskshisTconstitutes an advancement in
the technology for building autonomous robots that perfomdine perceptual learning. The
methodology begins with an uncommitted learning systerhniakes far weaker assumptions
about the world and the task than most existing vision systelm particular, no explicit as-
sumptions are made regarding object segmentation, coetdraction, presence of clutter or
occlusions, the number of target objects or classes pré@sangcene, or the number of classes
to be learned. Nevertheless, target concepts are learriedemarkable accuracy, as reported
in Chapters 5 and 6.

In addition to advancing technology, this dissertatioro @igntributes to our understanding
of human perceptual learning in that it provides a compoati model of feature development.
Sections 2.1 and 5.1 presented strong evidence that hussmnsféatures not unlike those con-
tained in the feature space introduced in Chapter 3. Fortiietifne, a detailed computational
model of feature learning was presented that explains métigeg@henomena observed by psy-
chologists [109, 107, 120, 38, 41, 39]. Key principles of thedel are biologically plausible,
including the primitive features and the principle of corsion. It is not unlikely that hu-
mans perform a simple-to-complex feature search, produempirically useful features that
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are discarded or refined as required by additional experie@learly, biological vision systems
employ more sophisticated features not contained in thet@ined space used here, as will be
discussed in the following section.

7.2 Future Directions

The algorithms developed in this dissertation are far mereegal than the restricted scenarios
used in the experiments. Much more systematic experimentet required to illuminate their
properties. The recognition system needs to be evaluatdek tine presence of multiple target
objects, occlusions, and non-target clutter objects.viddal target classes should include dif-
ferent objects, including highly heterogeneous sets afaibjthat dfer widely in appearance.
Incremental introduction of target classes (in the sensgection 5.4.4) requires further study,
e.g. by examining thefiect of presentation order on the learning process. Most litaptly,
both the recognition and the grasping system need to beratézlyin real-world interactive
tasks, breaking away from closed training sets. It was pdiout that both the expert learning
and the grasping applications are expected to undergo eeabte performance boost if train-
ing data are generated dynamically. Possible testbedsd@d¢lumanoid or autonomous mobile
robots, smart rooms, etc.

This dissertation explored twoftierent paradigms of the general feature learning method.
One was concerned with supervised classification, the wettibrregression. A third practical
paradigm that should be explored involves an agent thandeaulti-step reactive policies in
a reinforcement learning framework. The agent takes paitjons based on the currently
observedstate The only feedback available to the agent consists of arseadardthat may be
delayed over several policy actions, or may be given onlpatse intervals. In this framework,
the state can be represented in terms of learned featurtesatbtaire task-relevant information
about the environment. For example, the agent can begin amtimpoverished perceptual
state space such that all world states are aliased. Theffedh#&e learning subsystem seeks
perceptual features that resolve hidden state, similapiiit 0 McCallum'’s U-Tree algorithm
[67].

The following sections discuss important limitations aondgible enhancements of the ideas
and methods developed in this dissertation, and outline these can be addressed by future
research.

7.2.1 Primitive Features and their Composition

The two specific primitive feature types that form the bagithe feature space introduced in
Chapter 3 were chosen because they constitute a small sekprebs complementary aspects
of appearance. For general tasks, other types of primigaéufes should be introduced. Two
of the most important features missing in the current systeencolor and statistical texture
features. Gaussian-derivative features of color-oppbimeage signals have been explored for
appearance-based object recognition [43]. Statisticdlfes analyze the local intensity distri-
bution without regard to their spatial organization, angstcomplement the highly structured
and oriented texels. For example, such features would phplmove valuable in the (gray-
scale) Mel task.

An important characteristic of the feature space introduceChapter 3 is that it can be
augmented almost arbitrarily by adding other types of pgimifeatures and rules of composi-
tion. These additions are not limited to visual operatouns$ clan include information from other
perceptual modalities, or generally, any type of asseuioout the world. Ciferent modalities
can even be combined within the same compound feature thrapgropriate compositional
rules. For example, combining visual and haptic informatiging this framework would open
up new perspectives in cross-modally-guided grasping.
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The temporal and three-dimensional nature of the worldsgiige to more features, many
of which fit into this framework. For example, primitive orropound features can be computed
on optical flow or disparity fields. These features are easityessible to interactive agents, and
are likely important in many everyday scenarios.

The current parametric representation of compound femtisraot very plausible biolog-
ically. For representations compatible with current kremige about the organization of the
visual brain, Riesenhuber and Poggio’s model [96] can sas\ee starting point.

7.2.2 Higher-Level Features

In its present form, the feature space contains primitive @mpound features. This space
excludes many types of features that are very informativeitoans, but are not easily express-
ible within this framework. Examples include Gestalt featusuch as parallelism, symmetry
(axial and radial), and continuity of contours. Anotherraxde is cardinality. To illustrate, a
bicycle wheel has many spokes, and a triangle has threersoifigese abstract concepts are not
directly expressible by the current feature set, but aptmehae very powerful cues to humans
for scene interpretation. Some higher-level features mayinciple be learnable by composing
them from lower-level features.

7.2.3 Hiicient Feature Search

The current feature learning algorithm engages a blind andam generate-and-test search pro-
cedure in static images. The only guidance available isgivéhe form of salient points, which
constrain the search space to points that are deemed to hénmpastant, independently of the
task. In reality, there are much more powerful ways to draendibn to important features. For
example, | postulate that the ability to track feature poioit a moving object can give pow-
erful cues about what appearance-based features are atabss a wide range of viewpoints.
Also, such tracking allows the construction of (at leastiphy) view-invariant features of local
three-dimensional object structure.

There may also be other, more direct ways to extract distmdeatures, in the spirit of
discriminative eigen-subspaces. | doubt that this is abyagssible, as even humans do not —
at least not always — extract distinctive features direittlthis way. On sftiiciently difficult
discrimination tasks, we struggle to identify distinctifeatures unless they are pointed out to
us. There is strong psychological evidence suggestingtliieasubjective discriminability and
organization of objects is altered by experience [107].

However, there is certainly much room for improvement on ¢beent, blind generate-
and-test method. One interesting possibility is to designesa-learning process that notices
patterns in the ways distinctive features are found, ansl ldmrns how to look for good features
efficiently.

7.2.4 Redundancy

Both mammalian and state-of-the-art feature-based canpigion systems owe their perfor-
mance largely to their use of a large number of features [@4, 96, 77, 78, 8, 6, 82, 66]. The
resulting redundancy or overcompleteness creates rasssto various kinds of image varia-
tion and degradation. The present work on feature learnimggsely did not use this type of
redundancy because without it, the distinctive power oividdal features — and thus the suc-
cess in learning — stand out much more. However, for prdajmalications such redundancy is
required to increase robustness. Future work should iigegstways of learning large numbers
of partially redundant features that are still powerfuliudually.

Recall from Chapter 5 that the trained recognition systeralygproduces wrong results.
Almost all incorrect recognitions are either ignorant orbégmous, which are caused by a fail-
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ure to find all relevant distinctive features in an image.slikian artifact of the extremely small
number of features learned by the system. The availabifitrgdundant features would greatly
enhance the likelihood of finding distinctive features, ethin turn would strongly reduce the
number of ambiguous and ignorant recognitions. This makesery confident that an exten-
sion of the current learning system with many redundant jouterful) features would achieve
results competitive with the best of today’s, much more spieed recognition systems.

7.2.5 Integrating Visual Skills

Along with related work, this dissertation demonstratetisof the great potential of appearance-
based vision. However, there are tasks that are not solvatieobasis of appearance alone.
There is a role for other technigques such as shape-from-¥mgtric model matching, or a
functional interpretation of items seen. Currently, suiffedent paradigms are usually applied
in isolation. We do not know how to integrate them into a udifighole, as the human visual
system appears to do. Ideally, an autonomous robot shoukeldidts disposal a repertoire of
essential visual tools, and should learn how to use thestyjar individually.

7.3 Uncommitted Learning in Open Environments

The above discussion pointed out some features and rulesrigposition that should be added
to extend the range of concepts expressible by the learnyistgra. However, there are two
important caveats: First, the combinatorics of the feat@@ch grow badly with the number
of primitives and rules (see Algorithm 4.10 on page 43). Téwoad caveat is an instance of
a critical problem shared by all inductive learning systeni&ven if unlimited computational
resources were available to cope with arbitrary numbersiaiifives and rules, having too many
of these will necessarily hurt the learning process. Theendegrees of freedom are available
to an inductive learning system, the more ways exist to firttepas in the data. If the number
of degrees of freedom is large in relation to the number agibées in the data, many spurious
patterns will be found. There is no way to know which of theme\alid in the sense that they
will generalize to unseen test instances. Therefore, dilgtive learners are necessarily limited
in their expressive power. The guiding principles impletirenthis limitation are collectively
called theinductive biasof the learner. In practice, the designer of a learning pfome must
tailor the inductive bias to the presumed structure of tek.ta

A novelty of this work is the introduction of an infinite featuspace based on commonly
used visual feature primitives, expressive enough to lgaining sets of almost any classifi-
cation task — if necessary, by memorizing the training insag®ithout any guiding principles,
this learning system would be bias free, and therefore eraljeneralize. The bias is given by
a simple-to-complex feature sampling procedure that mtiletearner prefesimplefeatures.
The underlying assumption is that simple features geryepativide for the best generalization,
or in other words, that the “real” structure underlying &ttends to be expressible by simple
features from the feature space (cf. Section 3.6, page 28).

This assumption is not always true, as exemplified by the ki in Chapters 4 and 5. The
features found by the learner worked well on the training lset generalized poorly neverthe-
less. It appears that the features represented accidéntztuse in the training set, which does
not generalize to test images. In some cases, spuriousustuepresented by a feature may
be supported by a large number of training images. In othegs;at may be supported by only
very few images, resulting in overfitted features. Data #&§ violate the structural assump-
tions reflected in the inductive bias are especially prorteitoproblem. This is apparently true

Yinformally, aninductivelearning system learns a function from training exampled,then generalizes to unseen
test instances on the basis of this function.
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of the Mel task, where simple combinations of edgels andsekd not tend to capture the real
structure in the data.

How do humans solve the bias problem? Adult humans seem tdlbet@ learn from
very few examples, and are often able to pick out distincteagures with apparent ease. |
suspect that the answer is related to our — learned — ahiliépmtrol our learning bias. Guided
by a wealth of background knowledge and functional undedsiey of the world, we are able
to constrain our feature space adaptively afittiently, so that relevant structure in the data
is easily found. In other words, humans are not simple indeidearners, but our learning is
supplemented by insights into functional and causal straatf the world. Likewise for artificial
systems, the bias problem implies that straightforwardiétile mechanisms are inigient to
build effective uncommitted learners; they must be supplementedhey mmechanisms [124].

Notably, it seems plausible that this knowledge is itsetfuied by inductive mechanisms.
One can envision a hierarchy of inductive learners. Mangnkera learn specialized tasks on the
basis of low-level features such as sensory signals. Thgaub signals constitute highly struc-
tured input signals to other learners, enabling these ta flegctions that would be impossible
to learn directly using the low-level features, becausehefrtexcessive degrees of freedom.
These learning components can be trained in order, indiigland largely independently, gen-
erally from the bottom up. This order can be given by a teawler knows &ective learning
schedules. Where does the teacher come from? Imagine apapidated by a large number of
such multilayer learning agents, all of which apply randearhing schedules in an attempt to
discover useful structure in the world. Because of thegdartumber, some of them will even-
tually be successful. These can then become teachers offtars,osharing their empirically
successful learning strategies.

This dissertation made progress toward building unconachifterceptual systems that can
learn to become expert at specific tasks. The next quantymtdezard understanding human
learning on the one hand, and toward constructing autonsradificial learning systems for
open environments on the other hand, requires the defda¢ bias problem. This poses a great
challenge to computer vision and machine learning research
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APPENDIX
EXPECTATION-MAXIMIZATION FOR VON MISES MIXTURES

The Expectation-Maximization (EM) algorithm [28] is an gt class of methods for estimat-
ing the parametera of a probabilistic model where only some of the underlyingalaes are
known. The EM algorithm begins with any suitable initialissite of the parameteig and
then alternates the following two steps until convergence:

Expectation: Given the current estimate of the model parameteend the observed data,
compute the expected values of the unobserved portion afdtze

Maximization: Given the observed data and the expected values of the umets#ata, com-
pute a new set of model parametarthat maximizes some objective function.

If the objective function is continuous, this procedurel wilnverge to a local maximum.
A typical application of EM is the estimation of the paramstef a mixture model

K
Prix(618) = > p(0] &) P(K) (A1)
k=1

to fit an observed sa® of data pointsg;, i = 1,...,N. The mixing proportions?(k) and
the componentg; that generated each data pofhtre unknown. The objective is to find the
parameter vectagy describing each component density | ax).

The Expectation step computes the probabiliéls | 6,) that each data poirgt was gener-
ated by componerk, given the current parameter estimaggsindP(k), using Bayes’ Rule:

PO [a) P(k) P | a) P(K)

Pk|6) = -
(k16) Zz_(:l p(éi | ;) P(j) Pmix(6 | @)

(A.2)

At the Maximization step, a new set of parametk = 1,. .., K, is computed to maximize
the log-likelihood of the observed data:

N
logL(© | 8) = " log pmix(®| 3) (A-3)
i=1

At the maximum, the partial derivatives with respect to altgmeters vanish:

9 NDOPK) 8
0= a'OQL(®|a) ; mix(0 | @) 6akp('|ak)
S PKIG) 8
Z e 7a.P0 W (A.4)

where the second line (A.4) follows from substituting EdpatA.2. The Maximization is then
computed by solving this system (A.4) for al. Moreover, the estimates of the component
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priors are updated by averaging the data-conditional compioprobabilities computed at the

Expectation step:
N

1
PK == > PK|6 A
W)= Z} (k| 6) (A5)
For the particular case of a mixture of von Mises distribogioEquation A.4 is instantiated
for the parameterg and« for each mixture componemt For ux, Equation A.4 becomes (cf.
Equation 6.6, page 104)

N
iIogL(G)la) = k) PKk|&)sin@ —u) = 0 (A.6)
Ot im1
N
Pk | 6;) sing,
fx = sint = (A.7)
N N
P(k | 6) P(k | 6;) cos@i - 6;)
i-1 =1

Only one of the two solutions given by Equation A.7 is actpallroot of Equation A.6. Which
one this is can be determined by backsubstitution into Eguat. 6. The roojuy thus determined
either minimizes or maximizes the log-likelihood (A.3), @n be verified by consulting the
second derivative:

2 N
5 10gL(©12) = —« ) Pk|#)costi ~ u) (.9)
Hk =1

If the second derivative (A.8) afis less than zero, thamn = fx maximizes the log-likelihood
(A.3); otherwisepg minimizes the log-likelihood, and its mirror image on theet®, uy = i+,
is to be used instead.

In the case ok, the partial derivatives (cf. Equation 6.7)

| -1(xi) + 11(kk) — 2lo(kk) COSO — 1) _
2lo(kk)

P N
a—lq(logL(®|a) = —;P(kw.) 0

cannot be solved fotk in closed form because the modified Bessel functions arenmettible
algebraically. They have to be approximated via numerical optimization, e.gdignt de-
scent. In other words, each iteration of the EM algorithnoinmesk one-dimensional numerical
optimizations. In the face of this complexity, it seems denpo perform a single B — 1)-
dimensional numerical optimization to find the parametgrsy, andP(k) of the mixture model
(A.1) directly, instead of using the iterative EM algorithm
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