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ABSTRACT

VISUAL FEATURE LEARNING

FEBRUARY 2001 (REVISED JUNE 14, 2001)

JUSTUS H. PIATER

Dipl.-Inform., UNIVERSITY OF MAGDEBURG, GERMANY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic A. Grupen

Humans learn robust and efficient strategies for visual tasks through interaction withtheir
environment. In contrast, most current computer vision systems have no such learning capa-
bilities. Motivated by insights from psychology and neurobiology, I combine machine learning
and computer vision techniques to develop algorithms for visual learning in open-ended tasks.
Learning is incremental and makes only weak assumptions about the task environment.

I begin by introducing an infinite feature space that contains combinations of local edge and
texture signatures not unlike those represented in the human visual cortex. Such features can
express distinctions over a wide range of specificity or generality. The learning objective is to
select asmallnumber ofhighly usefulfeatures from this space in a task-driven manner. Features
are learned by general-to-specific random sampling. This isillustrated on two different tasks,
for which I give very similar learning algorithms based on the same principles and the same
feature space.

The first system incrementally learns to discriminate visual scenes. Whenever it fails to rec-
ognize a scene, new features are sought that improve discrimination. Highly distinctive features
are incorporated into dynamically updated Bayesian network classifiers. Even after all recog-
nition errors have been eliminated, the system can continueto learn better features, resembling
mechanisms underlying human visual expertise. This tends to improve classification accuracy
on independent test images, while reducing the number of features used for recognition.

In the second task, the visual system learns to anticipate useful hand configurations for
a haptically-guided dextrous robotic grasping system, much like humans do when they pre-
shape their hand during a reach. Visual features are learnedthat correlate reliably with the
orientation of the hand. A finger configuration is recommended based on the expected grasp
quality achieved by each configuration.

The results demonstrate how a largely uncommitted visual system can adapt and specialize
to solve particular visual tasks. Such visual learning systems have great potential in application
scenarios that are hard to model in advance, e.g. autonomousrobots operating in natural envi-
ronments. Moreover, this dissertation contributes to our understanding of human visual learning
by providing a computational model of task-driven development of feature detectors.
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CHAPTER 1

INTRODUCTION

Humans have a remarkable ability to act reasonably based on perceptual information about
their environment. Our perceptual system functions with such speed and reliability that we
are deluded into underestimating the complexity of everyday perceptual tasks. In particular,
humans rely heavily on visual perception. We orient ourselves, recognize environments, objects,
and people, and manipulate items based on vision without ever thinking about it. Given the
importance of vision to humans, it is not surprising that vision has been the most-studied mode
of machine perception since the early days of artificial intelligence. Nevertheless, despite fifty
years of active research in artificial intelligence, robotics and computer vision, many real-world
visuomotor tasks remain that are easily performed by humansbut are still unsolved by machines.
The robustness and versatility of biological sensorimotorinteraction cannot yet be matched in
robotic systems.

What is it that enables higher animals, first and foremost humans, to outperform machines
so dramatically on real-world visuomotor tasks? I believe that the answer is grounded in the
following two theses that form the basis of this dissertation:

• The human visual system isadaptive. During the first years of life, the visual capabilities
of children increase dramatically. These capabilities arenot limited by the design of the
visual system alone, but are modified by learning. All throughout life, the human visual
system continues to improve performance on both novel and well-practiced tasks.

In contrast, most current machine vision systems do not learn in this way. They are
designed to perform, and their performance is limited by thedesign. They do not usually
improve over time or adapt to novel situations unforeseen bythe designer.

• The human visual system is inextricably linked with humanactivity. Activity operates
in synergy with vision and facilitates visual learning, andvision subserves activity. Hu-
man vision operates in a highly task-dependent way and is tuned to deliver exactly the
information needed.

In contrast, most research in computer vision has focused ontask-independent visual
functionality. In a typical scenario, a computer vision system produces a generic result or
representation for use by subsequent processing stages.

Both of these points will be further discussed in Chapter 2. The remainder of this opening
chapter serves to define the scope and organization of this dissertation.

1.1 Closed and Open Task Domains

The field of computer vision is commonly subdivided into low-level and high-level vision. Low-
level vision is typically concerned with task-independentimage analysis such as edge extraction
or computation of disparity or optical flow. High-level vision considers application-level prob-
lems, e.g. object recognition or vision-guided grasping. Considerable progress has been made
in both areas during the past decade. For example, machine recognition systems have achieved
unprecedented levels of performance [73, 104, 71, 77, 78]. Increasingly impressive recognition
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results are reported on large databases of various objects.Automated character recognition sys-
tems are involved in sorting most of the U.S. mail. Optical biometric identification systems have
reached commercial maturity.

While these successful systems are truly remarkable, most of them are designed for tasks
that are limited in scope and well defined at design time. For instance, most object recognition
systems operate on a fixed set of known objects. Many algorithms in fact require access to a
complete set of training images during a dedicated trainingphase. Deployed OCR and biometric
identification systems operate under highly controlled conditions where parameters such as size,
location, and approximate appearance of the visual target are known. Similar arguments can be
made for other computer vision problems such as face detection, terrain classification, or vision-
guided navigation.

Task domains that share these characteristics I callclosed. I argue that many practical vision
problems are not closed. For instance, a human activity recognition system should be able to op-
erate under many different lighting conditions and in a variety of contexts; indoors or outdoors,
with any number of people in the scene. A visually navigated mobile robot should be able to
learn distinctive landmarks by itself. If the robot is movedfrom one environment to another, one
does not want to redesign the recognition algorithm – the same algorithm should be applicable
in, and adaptive to, a variety of environments. An autonomous robot that traverses unknown
terrain or collects specimens should be able to learn to predict the effect of its actions based on
perceptual information in order to improve its actions withgrowing experience. Ultimately, it
should be the interaction of an agent with its environment – as opposed to a supervisory training
signal – that drives the formation of perceptual capabilities while performing a task [67, 114].

Table 1.1.Typical characteristics of closed vs. open task domains.

Closed Tasks Open Tasks
Task parameters: all known at the outset some to be discovered

stationary may be non-stationary
Training data: fixed dynamic, generative

fully accessible partially accessible via interaction
Learning: batch incremental

off-line on-line
Visual features: may be fixed must be learned

Thus, many realistic visual problems constituteopentask domains (see Table 1.1). Closed
and open tasks constitute two extremes along a continuum of task characteristics. Open tasks
are characterized by parameters that are unknown at design time and that may even change over
time. Therefore, the perceptual system of the artificial agent cannot be completely specified at
the outset, but must be refined through learning during interaction with the environment. There
is no fixed set of training data, complete or otherwise, that could be used to train the system
off-line. Training information is available in small amounts at a time through interaction of the
agent with its environment. Therefore, learning must be on-line and incremental.

1.2 Scope

Autonomous robots that perform nontrivial sensorimotor tasks in the real world must be able to
learn in both sensory and motor domains. A well-establishedresearch community is addressing
issues in motor learning, which has resulted in learning algorithms that allow an artificial agent
to improve its actions based on sensory feedback. Little work is being conducted in sensory
learning, here understood as the problem of improving an agent’s perceptual skills with growing
experience. The sophistication of perceptual capabilities must ultimately be measured in terms
of their value to the agent in executing its task.
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This dissertation addresses a subset of the problems outlined above. At a broad level, its goal
is to make progress toward computational models for perceptual learning in open task domains.
While most work in computer vision has focused on closed tasks, the following chapters present
learning methods for open tasks. These methods are designedto be very general. They make
few prior assumptions about the tasks, and can learn incrementally and on-line. I hope that
this work will spark new research aimed at expanding the scope of machine perception and
autonomous robots to increasingly open task domains.

A key unit of visual information employed by biological and machine vision systems is a
feature. Loosely speaking, a visual feature is a representation of some aspect of local appear-
ance, e.g. a corner formed by two intensity edges, a spatially localized texture signature, or
color. Most current feature-based machine vision systems employ hand-crafted feature sets. In
the context of open tasks, I argue that learning must take place even at the level of visual feature
extraction. Any fixed, finite feature set would constrain therange of tasks that can be learned
by the agent. This does not necessarily mean that the features cannot be computed by a fixed
operator set. If they are, then these operators must be suitably parameterized to provide for the
flexibility and adaptability demanded by a variety of open tasks.

The key technical contribution of this dissertation consists of methods for learning visual
features in support of specific visual or visuomotor tasks. These features capture local ap-
pearance properties and are sampled from an infinite featurespace. Most parameters of the
system are derived on-line using probabilistic methods. The validity of the proposed methods
are demonstrated using two very different example skills, one based on categorization (visual
discrimination) and the other on regression (visual support of haptically-guided grasping). The
sampling methods for feature generation and the associatedmodel-fitting techniques can be
adapted to other visual and non-visual perceptual tasks.

This work constitutes exploratory research in an area wherecomputer vision and machine
learning meet. This area has received relatively little attention by these subdisciplines of com-
puter science that are relatively distinct even though bothgrew out of the artificial intelligence
community. While the research questions are addressed primarily from the perspective of com-
puter vision and machine learning, much of the motivation isdrawn from observations in psy-
chology and visual neuroscience. Parts of the model accountfor relevant aspects of the function
or performance of the human visual system. The behavior of the model resembles critical as-
pects of phenomena in human learning.

1.3 Outline

The next chapter places this work into the context of research in psychology and artificial intel-
ligence and discusses the motivation, goals and means against the backdrop of related research
within and outside of computer science. Chapters 3–6 constitute the heart of this dissertation.
These technical chapters share the same general structure:A review of related work is followed
by a precise problem statement, a presentation of the contributed solution, experimental results
where applicable, and a discussion. In these chapters, a section titled “Background” briefly
introduces prerequisite concepts, terminology, and notation.

• Chapter 3 is self-contained and defines an infinite feature space that is defined to overcome
the limitations of finite feature sets for open learning tasks. Features are constructed
hierarchically by composing primitive features in specificways. The learning algorithms
discussed in subsequent chapters are based on this feature space.

• Chapter 4 describes a system for learning features in an openrecognition task, building
on the feature space defined in the preceding chapter. To reinforce the point of learning
the features themselves, the algorithm is biased to find few but highly distinctive fea-
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tures. Probabilistic pattern classification is combined with information-theoretic feature
selection.

• Chapter 5 extends the previous chapter by introducing the concept of learned visual exper-
tise in a way that resembles human expert visual behavior. Inboth cases, a visual expert
exhibits faster and more reliable recognition performancethan a non-expert. It is conjec-
tured that superior features underly expertise, and a method is introduced for continuing
to learn improved features with growing experience by the learning system.

• Chapter 6 describes a system for learning features to support a haptically-guided robotic
grasping process. Features are learned that enable reliable initializations of hand con-
figurations before the onset of the grasp, resembling human reach-and-grasp behavior.
This chapter again builds on the feature space introduced inChapter 3, but is otherwise
self-contained.

Finally, Chapter 7 concludes with a general discussion of the impact of this work and future
directions.
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CHAPTER 2

THIS WORK IN PERSPECTIVE

The questions addressed in this dissertation span a wide range of disciplines in- and outside
of computer science. This chapter places these questions into the context of other research in
perceptual skill learning in psychology and artificial intelligence. Motivated by this interdis-
ciplinary background, I pose a general research challenge that is larger than the scope of this
dissertation. Finally, I state some important personal preferences and biases – many of which are
motivated by insights from psychology and neurobiology – that influenced many of the design
choices presented in the subsequent technical chapters.

2.1 Human Visual Skill Learning

The human visual system is truly remarkable. It routinely solves a wide variety of visual tasks
with such reliability and deceiving ease that belittles their actual difficulty. These spectacular
capabilities appear to rest on at least two foundations. First, the human brain devotesenormous
computational resourcesto vision: About half of our brain is more or less directly involved
in processing visual information [54]. Second, essential visual skills arelearned in a long
process that extends throughout the first years of an individual’s life. At the lowest level, the
formation of receptive fields of neurons along the early visual pathway is likely influenced
by retinal stimulation. Some visual functions do not develop at all without adequate perceptual
stimulation within asensitive periodduring maturation, e.g. stereo vision [12, 44]. Higher-order
visual functions such as pattern discrimination capabilities are also subject to a developmental
schedule [40]:

• Neonates can distinguish certain patterns, apparently based on statistical features such as
spatial intensity variance or contour density [103].

• Infants begin to note simple coarse-level geometric relationships, but perform poorly in
the presence of distracting cues. They do not consistently pay attention to contours and
shapes [101].

• At the age of about two years, children begin to discover fine-grained details and higher-
order geometric relationships. However, attention is still limited to “salient” features
[123].

• Over much of childhood, humans learn to discover distinctive features even if they are
overshadowed by more salient distractors.

There is growing evidence that even adults learn new features when faced with a novel
recognition task [107]. In a typical experiment, subjects are presented with computer-generated
renderings of unfamiliar objects that fall into categoriesbased on specifically designed but un-
obvious features. Before and after learning the categorization, the subjects are asked to delineate
what they perceive to be characteristic features of the shapes. Before learning, the subjects show
little agreement in their perception of the features. However, after learning most subjects point
out those features that by design characterize the categories [108, 123].
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Schyns and Rodet demonstrated convincingly that humans learn features in task-driven and
task-dependent ways [109]. Subjects were presented with three categories of “Martian cells”,
two-dimensional grayscale patterns that loosely resemblebiological cells containing intracel-
lular particles. The first category was characterized by a featureX, the second by a featureY,
and the third by a featureXY, which was a composite ofX andY. Subjects were divided into
two groups that differed in the order that they had to learn the categories. Subjects in one group
first learned to discriminate categoriesX andY and then learned categoryXY, whereas the other
group learnedXY andX first, thenY. After learning the categorization, the subjects were asked
to categorize other “Martian cells” that exhibited controlled variations of the diagnostic features.
Their category assignments revealed the features used for categorization: Subjects of the first
group learned to categorize all objects based on two features (X andY), whereas the subjects of
the second group learned three features, not realizing thatXY was a compound consisting of the
other two. Evidently, feature generation was driven by the recognition task.

Feature learning does not necessarily stop after learning aconcept. Tanaka and Taylor [120]
found that bird experts were as fast to recognize objects at the subordinate level (“robin”) as
they were at the basic level (“bird”). In contrast, non-experts are consistently faster on basic-
level discriminations as compared to subordinate-level discriminations. Gauthier and Tarr [38]
trained novices to become experts on unfamiliar objects andobtained similar results. These
findings indicate that the way experts perform recognition is qualitatively different than novices.
It has been suggested that experts have developed specialized features, facilitating rapid and
reliable recognition in their domain of expertise [107].

Despite this accumulated evidence of visual feature learning in humans, little is known about
the mechanisms of visual learning. At least, recent neurophysiological and psychological stud-
ies have shed some light on what the features represent [129]. The bulk of the evidence points to
view-specific appearance-based representations in terms of local features. The view-dependence
of human object recognition has been firmly established [122]. Recognition performance de-
creases as a function of viewpoint disparity from previously learned views. In the light of this
evidence, Wallis and Bülthoff dismiss recognition theories based on geometric models – two-
or three-dimensional – by declaring that “there remains little or no neurophysiological evidence
for the explicit encoding of spatial relations or the representation of geon primitives” [129].

The strong viewpoint dependency of human visual representations is even more apparent
in the context of spatial orientation [11]. Here, the representation employed by the brain is
clearly based on a viewer-centered perceptual reference frame. Abstract spatial reasoning is a
cognitive skill that requires extensive training, involving multiple perceptual modalities as well
as physical activity [1, 2, 95, 97].

Few definitive statements can be made about the spatial extent of the features used by the
visual brain. Nevertheless, it has been shown that even for the recognition of faces – often cited
as a prime example of holistic representations – local features play a major role. Solso and
McCarthy generated artificial face images by composing facial features taken from real face
images. Subjects regarded these artificial faces as highly familiar if the constituent features
were taken from known faces, even though the complete (artificial) faces had never been seen
before [113].

2.2 Machine Perceptual Skill Learning

For the purpose of this work, machine learning is concerned with methods and algorithms that
allow an artificial sensorimotor agent to improve or adapt its actions over time, based on percep-
tual feedback from the environment that is acted upon. This definition stresses that learning is
task-driven and incremental. It excludes non-incrementalmechanisms for discovering structure
in data such as many conventional classification and regression algorithms, typically considered
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machine learning methods. Nevertheless, such algorithms may form important components of
the type of learning methods of interest here.

For a sensorimotor agent, deriving the next action to be performed involves the following
two steps:

1. Analyze the current set of sensory input to extract information – so-calledfeatures–
suitable for action selection.

2. On the basis of these features, and possibly other state information, derive the next action
to be taken.

This dichotomy is somewhat idealized, as many machine learning algorithms involve transfor-
mations of the feature set, e.g. feature selection or principal component analysis. Most work on
machine learning has focused on the second step, with the goal of identifying improved methods
for generalizing from experience given a set of (possibly transformed) features. In contrast, a
mechanism forperceptual learningfocuses on improving the extraction of features. The follow-
ing paragraphs touch on a few representative examples of perceptual learning systems. Previous
work related to specific methods and problems will be discussed in later chapters.

The goal of Draper et al.’s ADORE system is to learn reactive strategies for recognition of
man-made objects in aerial images [29]. The task is formulated as a Markov decision process,
a well-founded probabilistic framework in which apolicy maps perceptualstatesto actions. In
ADORE, an action is one of a set of image processing and computer vision operators. The
output data produced by taking an action characterize the state, and the policy is built using
reinforcement learning techniques [115]. ADORE learned reactive policies superior to any static
sequence of operators assembled by the authors.

Steels and his collaborators investigate the problems of perceptual categorization and lan-
guage acquisition by a group of communicating agents. Sensory information is available to an
agent in the form of continuous-valued “streams” [114], possibly extracted from live video [27].
An agent can decide on a “topic” characterized by certain ranges of values in a subset of the sen-
sory channels, and can invent “words” to designate this topic. The agents interact in the form of
“language games” in which one of them chooses a known topic orinvents a new one, and utters
the corresponding word(s). A listening agent matches the utterance with its current sensory in-
put. If the utterance does not match the listening agent’s concept of the words, or if it contains
unknown words, the agent refines its sensory characterization associated with the words. This
is done by successively subdividing sensory ranges and choosing additional sensory channels if
necessary. The sensory categorization thus formed is adequate for the current topic, but it does
not necessarily match the concept of the speaker. However, over the course of many language
games the agents form a shared vocabulary through which theycan communicate about what
they perceive.

A similarly motivated mechanism for discovering informative structure in sensory channels
was used by Cohen et al. [25]. Here, concepts are formed that relate perceptions to the agent’s
interaction with its environment, in contrast to Steels’ social communication.

In these two examples, perceptual distinctions are learnedby carving up the perceptual space
into meaningful regions. This can be done successfully as long as the information contained in
an instantaneous perception is sufficient to make these distinctions. In many practical cases,
however, world states that require different actions by the agent may not be distinguishable
on the basis of an instantaneous perception. In this case, the recent history of percepts may
allow the disambiguation of these perceptually aliased states. This is the basic idea underlying
McCallum’s Utile Distinction Memory and Utile Suffix Memory algorithms [68, 69]. In addition
to resolving hidden state, his U-Tree algorithm [67] performs selective perception by testing
which perceptual distinctions are meaningful.

Temporal state information is also the basis of Coelho’s system for learning haptically-
guided grasping strategies [22, 23]. Grasping experience is recorded as trajectories in a phase
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space. These trajectories are clustered and represented byparametric models that define discrete
states of the grasping system during its interaction with a target object. A reinforcement learning
procedure is used to select appropriate closed-loop grasp controllers at each of these states.

2.3 Objective

Draper’s ADORE system [29] is a rare example of perceptual strategy learning. The other
systems cited in the previous section perform perceptual learning by subdividing the feature
space spatially [114, 27, 25, 67] and/or temporally [67, 22, 23], but they do not learn the features
themselves.

It is often argued that multilayer neural networks learn features that are represented by the
nodes of the hidden layer(s). Likewise, the basis vectors extracted by eigen-subspace decom-
position and similar methods can be regarded as learned features. These methods essentially
project the input space into another space, typically of lower dimension. However, they pro-
vide little control over the properties of the resulting features with respect to criteria external
to the projection method. For example, in computer vision one may want to preserve locality
of features or invariance to various imaging conditions. This motivates the use of other types
of features that are not based on subspace decomposition, but exhibit the desired properties by
design.

The central, technical contribution of this dissertation is a mechanism for learning such
features. These are extracted directly from the raw image data, and express image properties that
are very hard to discover using general techniques for dimensionality reduction. Features are
chosen from a very largefeature space. The specification of this space constrains the structure
of the learned features. Thus, it is possible to bias or limitthe learning system to features that
have specific representational or invariance properties. For example, one may want features to
encode corners under rotational invariance.

sense

analyze,
interpret; act

useful?
yes no

learn feature

empty

(2)

(1)

Figure 2.1. A general model of incremental feature learning.

The feature learning procedure is incremental and is suitable for interactive learning. Fea-
tures are learned as demanded by a given task. Figure 2.1 depicts a general model of the interac-
tion of the system with its environment. The system starts from a blank slate, and is constrained
only by the specification of the feature space and the featurelearning algorithm. It operates in a
perception-action cycle that begins with the acquisition of an image. This image is analyzed in
order to derive a decision or action in response to the current perception. It is assumed that the
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system can observe the quality or usefulness of this decision or action. If this response reveals
the adequacy of the action, the agent proceeds with the next perception-action loop. Otherwise,
one or more new features are generated with the goal of findingone that will result in superior
future actions. The dashed lines designate two alternativeways of operation:

1. If the features can be evaluated immediately without changing the environment, then the
agent can iterate feature learning and decision making until a suitable feature has been
found. The recognition system described in Chapter 4 operates in this way. When the
system misrecognizes an image, new candidate features are generated one at a time, and
are evaluated immediately by rerunning the recognition procedure on the same image.
This is indicated by the lower dashed line in Figure 2.1.

2. If a feature cannot be evaluated immediately, then the agent proceeds with the next
perception-action loop. In this case, the generated features are evaluated over time. In the
grasping application (Chapter 6), immediate feature evaluation would require regrasping
of an object. To avoid this interference with the task context, after generating new candi-
date features the system instead proceeds with the next object, as indicated by the upper
dashed line. Evaluation of the newly sampled candidate features is distributed over many
future grasps.

These two applications differ significantly not only in their learning mechanisms, but also in
their learning objectives. The recognition application isa supervised classification task. The
utility of a feature is immediately assessed in terms of its contribution to the classification pro-
cedures. In contrast, the grasping application is primarily a regression task, where features are
learned that predict a category-specific angular parameter. The utility of a feature depends on
its contribution to the value of future behavior of the robot. Training is grounded in the robot’s
interaction with the grasped object, and does not involve anexternal supervisor. Nonetheless,
both of these applications employ the same feature space, introduced in the following chapter,
and their feature learning algorithms are based on the same basic principles. These differences
and similarities are summarized in Table 2.1.

Table 2.1. Summary of important characteristics of the two applications discussed in this dis-
sertation.

Recognition (Ch. 4) Grasping (Ch. 6)
classification regression
external supervisor learning grounded in interaction
immediate feature evaluation features evaluated over time

same feature space
same principles for feature learning

All learning algorithms presented in the following chapters are designed to operate incre-
mentally. They are very uncommitted to any specific task, andmake few assumptions about
the task environment. For example, the recognition algorithm does not know how many known
object categories – if any – are present in any given scene. This is in contrast to most existing
recognition algorithms that always assign one (or no) classlabel to each scene. Also, neither
application has any prior knowledge about the number or nature of the categories to be learned.
In short, the algorithms do not assume aclosed world, which has many implications on their
design. A consistent set of learning algorithms foropendomains constitute the second key
contribution of this dissertation.
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2.4 Motivation

In addition to the objectives stated in the preceding section, there are additional, somewhat less
tangible biases and motivations that influenced the design of the representations and algorithms
presented in the following chapters. These are introduced briefly here.

The primary goal of this dissertation is to contribute to ourunderstanding of mechanisms
of perceptual learning in humans that can be applied in machine vision systems. Many of the
ideas manifested in this work are motivated by insights fromperceptual psychology. At the
outset, I believe that humans (children and adults) learn visual features as demanded by tasks
they encounter. Above I presented evidence collected by Schyns and others in support of this
belief. A subgoal of this work is to contribute to our understanding of human vision, by devising
plausible computational models that describe certain aspects of human vision. I firmly believe
that we can learn a great deal from biology for the purpose of advancing technology in the
service of human interests. Specifically, I believe that task-driven, on-line, incremental visual
learning is essential for building sophisticated applied vision systems that operate in general,
uncontrolled environments.

With this long-term objective in mind, the mechanisms contributed are applicable in scenar-
ios where no external supervisor is available. While the basic learning framework is supervised,
the supervisory signal can be produced by the agent itself. In subsequent chapters, I will show
how this can be done.

The construction of the algorithms and the prototype implementation involved a number
of design choices, many of them concerning inessential details. Wherever reasonable, choices
were made to emulate biological vision. Some of the resulting algorithms are very efficiently
implemented on massively parallel neural hardware, but arequite expensive when run on a
conventional serial computer.
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CHAPTER 3

AN UNBOUNDED FEATURE SPACE

The necessity for a very large feature space has been motivated briefly above. This chapter
introduces a particular feature space suitable for the objectives of this work.

3.1 Related Work

The idea of representing data in terms of features from an infinite feature set (i.e., a feature
space) is quite old. A natural method is Principal ComponentAnalysis (PCA) that returns the
eigenvectors of the covariance matrix of the data. These canbe regarded as a small set of
“features” selected from anN-dimensional continuous space, whereN is the dimensionality
of the data. If the data resemble a low-dimensional zero-mean Gaussian cloud in this space,
then they can be faithfully reconstructed using only a few features corresponding to the largest
eigenvalues. Turk and Pentland [125] popularized theseeigen-featuresfor face recognition.
Figure 3.1 shows the eight principal components of a set of faces. Interestingly, some of them
correspond to intuitively meaningful facial features.

Figure 3.1. “Eigen-faces” – eigenvectors corresponding to the eight largest eigenvalues of a set
of face images. The brightness of each pixel represents the magnitude of a coefficient. Zero-
valued coefficients are rendered in intermediate gray; large positive and negative coefficients in
white and black, respectively. (Reproduced with permission from Moghaddam and Pentland
[72].)

Nayar, Murase and collaborators [74, 73, 75] developed thisgeneral approach for view-
invariant object recognition, tracking and simple roboticcontrol. It has been pointed out that
PCA is not necessarily well suited for discrimination between object classes [117]. Several
adaptations of the idea of PCA to generate discriminative (as opposed to descriptive) features
have been suggested, such as the Fisher Linear Discriminant[31], the Fukunaga-Koontz trans-
form [37], and the Most Discriminating Feature [117]. Talukder and Casasent [118, 119] suggest
an adaptation of nonlinear PCA that simultaneously optimizes the descriptive and discrimina-
tive power of the extracted features. Some types of eigen-features can be learned and updated
incrementally [130].

Hidden nodes in a neural network may be seen as computing features from an infinite set.
In particular, neural networks can implement several projection pursuit methods as well as PCA
in biologically plausible ways [47, 48, 91]. Projection pursuit iteratively seeks low-dimensional
projections of high-dimensional data that maximize a givenprojection index. The projection
index encodes some measure of “interestingness” of the data, typically based on the deviation

11



from Gaussian normality [59, 36, 99]. The projections generated by a projection index based on
second-order statistics correspond to the principal components of the data.

All of these methods, with the exception of certain types of neural networks, computeglobal
features. In contrast, it is often desirable to producelocal features that represent spatially local-
ized image characteristics. Localized variants of eigen-features have been explored [26].

A variety of local features have been proposed in the contextof recognition systems. In a
typical approach, a feature is a vector of responses to a set of locally applied basis filter kernels.
Koenderink [57] suggests that the neighborhood around an image point can be represented by
a set of Gaussian derivatives of various orders, termed alocal jet, derived from a local Taylor
series expansion of the image intensity surface. Some related schemes are based on steerable
bases of Gaussian-derivative filters [90, 104, 94, 43], which will be briefly discussed in Section
3.3.2. Others employ Gabor filters [128, 20], curved variants known asbanana wavelets[58],
or Haar wavelets [81] to represent local appearance.

A different way to generate an unbounded feature space is by defining a feature as a param-
eterized composition of several components. Cho and Dunn [18] define a corner feature by the
distance and angle between two straight line segments. Their feature set is finite because these
parameters are quantized.

Segen [110] was one of the first to consider an infinite combinatorial feature space in a
computer vision context. His shape recognition system is based on structural compounds of
local features. Geometric relations between local curvature descriptors are represented by a
multilevel graph, and concept models of 2-D shapes are constructed by matching and merging
multiple instances of such graphs. Califano and Mohan [16] combined triplets of local cur-
vature descriptors to form a multidimensional index used for recognition of 2-D shapes. Their
contributions include a quantitative probabilistic argument demonstrating that the discriminative
power of features increases with their degrees of freedom.

Amit, Geman and their coworkers create a potentially infinite variety of features from a
quantized space by means of combinatorics. Primitive localfeatures are composed to produce
increasingly complex arrangements. Primitive features are defined by co-occurrences of small
numbers of binarized pixel values, and compounds are characterized by relaxed geometric rela-
tionships. Discriminative features are constructed and queried efficiently using a decision tree
procedure. This type of approach has been applied to handwritten character recognition [8, 5]
and face detection [7, 6] with remarkable success, and has also been extended to recognition of
three-dimensional objects [50]. The approach employed in this dissertation borrows and extends
key ideas from this work.

3.2 Objective

The representational power of any system that uses featuresto represent concepts is determined
to a large extent by the available features. If the feature set is not sufficiently expressive for
the task at hand, the performance of the system will be limited forever. If the feature set is
too expressive, the system will be prone to a variety of problems, including overfitting, and to
biases introduced through pairwise correlated features ordistractor features that do not correlate
well with important distinctions. Clearly, different features may be relevant for different tasks.
Moreover, given a task, different feature sets may be suitable for different algorithms employed
to solve the same task [52].

These considerations require that features either be hand-crafted for a particular setting (con-
sisting of task, algorithm and data), or that they be learnedby the system. This chapter defines
a feature space for use with a feature learning system, subject to the following objectives:

1. As this work is concerned with visual tasks, features are computed on intensity images.
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2. The feature space should not be geared toward any task, butit should contain features that
are suitable for a variety of visual tasks at various levels of specificity and generality. In
other words, there should be some features that are highly useful for any of a variety of
tasks that the system may be asked to solve.

3. Since the characteristics of a feature learning system are best demonstrated on a system
that learns few but powerful features, the feature space should contain features that are
individually very useful for given tasks. This is in contrast to most existing feature-based
vision systems that derive their power primarily from a large numberof features that are
not necessarily very powerful individually.

4. The feature space should be sufficiently complete to demonstrate success on example
tasks using feature learning systems discussed in subsequent chapters.

5. Since image-plane orientation is important in some tasksand irrelevant in others, fea-
tures should inherently allow the measurement of feature orientation in a way that can be
exploited to achieve normalization for rotation.

6. Since in many visual tasks there is no prior scale information available, features should
be robust to variations in scale to simplify computation.

7. To enhance robustness to clutter and occlusion and to facilitate the learning of categories
characterized by unique object parts, features should be local in the image array.

8. For generality, features should be applicable in generalclassification and regression frame-
works.

9. The features should be a plausible functional model of relevant aspects of the human
visual system.1

All of the methods discussed in the preceding section satisfy some of these objectives, but
none of them satisfies all. Eigen-features and their variations are well suited for a variety of
tasks, but rotational invariance and image-plane localityare hard to achieve. Wavelets and Ga-
bor filters and their variants are local, but are not rotationally invariant. Filters based on steer-
able Gaussian-derivative filters satisfy all of the above objectives. The steerability property, to
be explained in Section 3.3.2, allows the synthesis of filters and their responses at arbitrary ori-
entations from a small set of basis filters, and can be exploited to achieve rotational invariance
at very little computational cost. However, the representational and distinctive power of indi-
vidual, well-localized (Objective 7) Gaussian-derivative filters is not sufficient for many tasks
(Objective 3). Amit and Geman [8, 5] used relatively weak individual features, sparse binary
pixel templates, and showed how to increase their power by composing them in a combinatorial
fashion.

The key idea to achieving all of the above objectives is to combine steerable Gaussian-
derivative filters with an adaptation of Amit and Geman’s idea, producing features that consist
of spatial combinations of local appearance characteristics. Before the details are presented, the
following section provides some helpful background.

3.3 Background

This section presents brief introductions to relevant concepts that have been well established in
the literature. Some familiarity with these concepts is required to understand the contributions
presented in subsequent sections.

1Since this contradicts Objective 5, rotational (non-)invariance is not considered a relevant aspect here.
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3.3.1 Gaussian-Derivative Filters

The isotropic zero-mean Gaussian function with varianceσ2 of a two-dimensional parameter
space at a pointx = [x, y]T ∈ R2 is defined as

G(x, σ) =
1

2πσ2
e−

xT x
2σ2 . (3.1)

For the purposes of this work, the oriented derivative of a Gaussian of orderd at orientation
θ = 0, i.e. in thex direction, is written as

G0
d(x, σ) =

∂d

∂dx
G(x, σ). (3.2)

For general orientationsθ, Gθd is defined as an appropriately rotated version ofG0
d(x, σ), i.e.

Gθd(x, σ) = G0
d(Rθx, σ) (3.3)

with a rotation matrix

Rθ =

[

cosθ − sinθ
sinθ cosθ

]

.

Gaussian-derivative filter kernels are discrete versions of Gaussian point spread functions
computed in this way. To generate a filtered versionIG(x) of an imageI (x), a discrete convo-
lution with a kernelG is performed. Two-dimensional convolutions with Gaussians and their
derivatives can be computed very efficiently because the kernels are separable, and highly accu-
rate and efficient recursive approximations exist [127]. Unfortunately, this is not generally true
of rotated derivatives (Equation 3.3).

Gaussian G0

First derivative G0
1 Gπ/21

Second derivative G0
2 Gπ/32 G2π/3

2

Figure 3.2.Visualization of a two-dimensional Gaussian function and some oriented derivatives
(cf. Equation 3.3). Zero values are shown as intermediate gray, positive values are lighter,
negative values darker.

Figure 3.2 illustrates some oriented Gaussian-derivativefilters used in the context of this
work. Gaussian filters act as low-pass filters, and their derivatives as bandpass filters. The
center frequency increases (see Figure 3.2) and the bandwidth decreases as the order of the
derivative increases. First-order derivative kernels respond to intensity gradients inI . To extract
edge information from an imageI , I is convolved with the two orthogonal basis filtersG0

1 and

Gπ/21 . The gradient magnitudes and orientations inI are then easily computed:

|∇I | =
√

I2
G0

1

+ I2
Gπ/21

(3.4)
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tanθ∇I = IGπ/21
/ IG0

1
(3.5)

When computingθ∇I using Equation 3.5, the full angular range of 0–2π can be recovered by tak-
ing into account the signs of the numerator and the denominator when computing the arctangent.
For a thorough discussion of Gaussian-derivative filters see a recent book chapter [93].

3.3.2 Steerable Filters

A class of filters issteerableif a filter of a particular orientation can be synthesized as alinear
combination of a set ofbasis filters[35]. For example, first-order Gaussian-derivative filtersare
steerable, since

Gθ1 = G0
1 cosθ +Gπ/21 sinθ (3.6)

as is easily verified. Due to the linearity of the convolutionoperation, an image filtered at any
orientation can be computed from the corresponding basis images:

IGθ1 = IG0
1
cosθ + IGπ/21

sinθ (3.7)

which is much more efficiently computed for many different values ofθ than by explicit convo-
lution with the individual filtersGθ1.

Gaussian-derivative filters of any orderd are steerable usingd + 1 basis filtersGθk,dd that are
equally spaced in orientation between 0 andπ, i.e.,

θk,d =
kπ

d + 1
, k = 0, . . . , d.

Incidentally, Figure 3.2 shows the basis filtersGθk,dd for the first two derivatives. To synthesize a
filter at any given orientationθ, these basis filters are combined using the rule

Gθd =
d

∑

k=0

Gθk,dd cθk,d (3.8)

where
cθk,1 = cos(θ − kπ/2) k = 0, 1

cθk,2 = 1
3

(

1+ 2 cos(2(θ − kπ/3))
)

k = 0, 1, 2

cθk,3 = 1
2

(

cos(θ − kπ/4)+ cos(3(θ − kπ/4))
)

k = 0, 1, 2, 3

which contains Equation 3.6 as a particular case [35, 90]. Again, due to the linearity of con-
volution, the same operation can be performed on the filteredimages, as opposed to the filters
themselves. See Freeman and Adelson [35] for a thorough treatment of steerable filters.

Example 3.1 (Operations on Gaussian-filtered images) Figure 3.3 illustrates some manip-
ulations on filtered images that are of interest in this context. The image shown in Figure 3.3a
is convolved with the kernelsG0

1 andGπ/21 , resulting in the vertical and horizontal edge images
shown in Figures 3.3b and 3.3c. Edge energy is computed directly from these images using
Equation 3.4 (Figure 3.3d), and edge orientation using Equation 3.5 (Figure 3.3e). In the ori-
entation image, note that the angular domain is mapped to thelinear gray scale. Consequently,
both black and white correspond to near-zero angles. Figure3.3f was generated by steering the
edge images using Equation 3.7. This image is identical to the one that would be obtained by
convolving the original image (Figure 3.3a) with the kernelGπ/41 .
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(a) (b) (c) (d) (e) (f)

I IG0
1

IGπ/21

√

I2
G0

1

+ I2
Gπ/21

tan−1
I
Gπ/21
I
G0

1

IG0
1
cosπ4

+ IGπ/21
sin π4

Figure 3.3. Example manipulations with first-derivative images. Imagea shows the original
image of size 128× 128 pixels. In images b, c, and f, zero values are encoded as intermediate
gray, and positive and negative values as lighter and darkershades, respectively. In image d,
black represents zero. In image e, the angular range of 0–2π is mapped to the range from black
to white. The derivatives were computed withσ = 2 pixels. See Example 3.1 for discussion.

3.3.3 Scale-Space Theory

A fundamental problem in computer vision is to decide on the right scale for image analysis. A
typical question is: “How large are the features of interestrelative to the pixel size?” In many
applications, no prior scale information is available. Therefore, many computer vision systems
perform their analysis over an exhaustive range of scales and integrate the results. Scale-space
theory provides a sophisticated mathematical framework for multi-scale image analysis [62],
and is consulted in this work to answer the above question. A (linear) scale-space representation,
or simply scale spacefor short, of an image is the stack of images generated by increasingly
blurring the original image. This process can be described by the diffusion equation [56]. In
practice, a scale-space representation is computed by successive smoothing (Figure 3.4). The
Gaussian kernel has been shown to be the unique smoothing operator for generating a linear
scale space [34].

Figure 3.4. Visualization of a linear scale space generated by smoothing with Gaussian kernels
of increasing standard deviation. The image size is 168× 234 pixels.
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For the purposes of this work, scale-space theory offers well-motivated ways to identify
appropriate scales for image analysis at each location in animage, based on the followingscale-
selection principle:

“In the absence of other evidence, assume that a scale level,at which some (pos-
sibly non-linear) combination of normalized derivatives assumes a local maximum
over scales, can be treated as reflecting a characteristic length of a corresponding
structure in the data.” [64]

Lindeberg [64] provides some theoretical justification forthis principle derived from the obser-
vation that if an image is rescaled by a constant factor, thenthe scale at which a combination
of normalized derivatives assumes a maximum is multiplied by the same factor. The choice
of a specific combination of normalized derivatives – in the following denoted ascale function
s(σ) – depends on the type of image structure of interest. Such structures and their associated
scales can then be detected simultaneously in an image by finding local maxima ofs in the scale
space. Thus, there are typically multipleintrinsic scalesassociated with each image location.
The normalization is done with respect to the operator scaleσ, and ensures that the values of
the scale function can be compared across scales.

Figure 3.5. Example of a scale functions(σ). The graph shows the scale function computed for
13 discrete values ofσ at the center pixel of the image (121×121 pixels). Each local maximum
defines an intrinsic scale at this point. The two intrinsic scales are illustrated by circles of
corresponding radii.

Example 3.2 (Intrinsic Scale) Figure 3.5 illustrates the computation of the intrinsic scales
at an image location. The graph plots the values ofs(σ) at this point, computed for discrete
values ofσ at half-octave spacing. The local maxima of this graph definethe intrinsic scales,
which are illustrated by circles of corresponding radii in the image. The stronger maximum
(s(5.7) = 73.6) captures the size of the dark, solid region at the center ofthe sunflower, while
the weaker maximum (s(22.6) = 7.1) roughly corresponds to the size of the entire flower. The
maximum at the minimal value ofσ = 1 is not considered a scale-space maximum because it is
not enclosed between lower values ofs.

To illustrate hows(σ) can be used to detect image structures of interest at their intrinsic scale,
Figure 3.6 shows the 200 strongest local maxima of the same scale functions(σ) computed
everywhere in the image. To generate this figure, the value ofs(σ) was computed at each
pixel for each value ofσ. The corresponding local maxima within the resulting scalespace are
illustrated by circles of the corresponding radiusσ at the corresponding locationx. The figure
clearly illustrates the correspondence of intrinsic scalewith the size of local image structures,
which is here dominated by sunflowers. The scale found for thelarge sunflower at the lower
right is smaller than expected because no larger scales wereconsidered at this point to avoid

17



artifacts caused by the the filter kernel exceeding the imageboundary. The scale functions(σ)
used for these examples is defined by Equation 3.9, discussednext.

Figure 3.6. Illustration of the 200 strongest scale-space maxima ofsblob(σ). The radius of each
circle corresponds to the local scaleσ. See Example 3.2.

The types of structures of interest in this dissertation areblobs, corners, and edges.Blob is
a commonly used term referring to a roughly circular (or ellipsoidal) image region of roughly
homogeneous intensity (or texture). A suitable isotropic scale function is defined in terms of the
trace of the Hessian:

sblob(σ) = σ2
∣

∣

∣

∣

IG0
2
+ IGπ/22

∣

∣

∣

∣

(3.9)

where the scale is given byσ which is the scale (standard deviation) of the filtersG0
2 andGπ/22 .

The normalization factor,σ2, ensures that the scale-selection principle holds [64], and the abso-
lute value is taken to remove sensitivity to the sign of the Hessian. This scale function is rotation
invariant as are the other two mentioned below. Figure 3.6, described in Example 3.2, illustrates
the image property described by a blob.

A commonly used measure for corner detection is the curvature of level curves in the inten-
sity data combined with the gradient magnitude. Lindeberg [64] recommends the product of the
level curve curvature and the gradient magnitude raised to the third power, which leads to the
scale function

scorner(σ) = σ4
∣

∣

∣

∣

∣

I2
Gπ/21

IG0
2
− 2IG0

1
IGπ/21

IGx,y + I2
G0

1
IGπ/22

∣

∣

∣

∣

∣

(3.10)

whereGx,y =
∂2

∂x∂yG. Again, the normalization factorσ4 ensures that the scale-selection prin-
ciple holds, and the absolute value removes sensitivity to the sign. Figure 3.7 shows how the
scale-space maxima detected byscornercluster at corners, and also occur at high-contrast edges.
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Figure 3.7. Illustration of scale-space maxima ofscorner(σ). The left image shows the strongest
15 scale-space maxima, and the right image the strongest 80.The radius of each circle corre-
sponds to the local scaleσ.

For intensity edges, a useful scale function is based on the first spatial derivative [63]:

sedge(σ) =

√

σ

(

I2
G0

1

+ I2
Gπ/21

)

(3.11)

The normalization factor
√
σ ensures the scale-selection principle as before. The normalization

factors for blobs and corners as formulated above are chosensuch that the recovered scales
correspond to the size of the local image structure, and willthus typically be related to the
size of objects depicted in the image. In contrast, the normalization factor for edges is chosen
to reflect the sharpness of the edge. Sharp edges attain theirscale-space maxima at smaller
scales than blurry edges. For the purposes of this dissertation, the reason for this choice of scale
normalization is that it ensures perfect localization of the recovered edges at the maxima in the
gradient magnitude along the gradient direction.

As noted above, blob and corner features are identified as local maxima of the scale function
in the scale space. To extract edges in scale space, gradient-parallel maxima are extracted from
the scale space according to the notion of non-maximum suppression [17]. This results in thin
and mostly contiguous edges. Since the details of scale-space edge extraction are unimportant
in the context of this work, the interested reader is referred to the literature [63].

3.4 Primitive Features

Sections 3.1 and 3.2 discussed important properties and various ways to generate global and
local features. Since eigen-features have a number of desirable properties, it is worth consid-
ering how their primary drawback – their global spatial extent – can be overcome. Colin de
Verdière and Crowley investigated this question and developed a recognition system based on
local descriptors derived by PCA [26]. Many of the most important eigen-features generated
by their system resemble oriented bandpass filters. This is no accident: If natural images are
decomposed into linearly independent (but not necessarilyorthogonal) basis functions, using a
sparseness or minimum-description-length objective thatfavors representations with many van-
ishing coefficients, then basis functions emerge that resemble orientedbandpass filters. Notably,
these are stronglylocalized– even without an explicit constraint or bias toward locality [80, 91].
This result has been well established in the literature, andserves as a natural explanation for the
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shape of receptive fields in the mammalian early visual pathway. The receptive fields of vi-
sual neurons in the primary visual cortex have often been modeled by oriented derivatives of
Gaussian functions [132, 57].

In this dissertation, these insights motivate the choice ofGaussian-derivative filters as a
fundamental representation of local appearance. Since principled and biologically plausible
feature extraction mechanisms tend to result in features resembling Gaussian derivatives, they
are used here directly, avoiding the added effort of eigen-subspace decomposition. Moreover,
Gaussians and their derivatives have a number of useful properties; those that are important for
this work were introduced in Section 3.3.

The feature space considered in this work is defined recursively: A feature from this space is
either aprimitive feature, or acompoundfeature. Compound features consist of other compound
features and/or primitive features, and are discussed in Section 3.5. A primitive feature is defined
by a vector of responses of Gaussian-derivative filters all computed at the same image location
x. The following sections describe two types of primitive features.

3.4.1 Edgels

Edges are a fundamental concept in vision, deemed importantby both machine and biological
vision research. Edges describe aspects of shape in terms ofintensity boundaries. Here, indi-
vidual edge elements – so-callededgels– are considered in isolation, without attempting to join
them into contours. An edgel is defined by the 2-vector

fedgel(x) =















IG0
1
(x)

IGπ/21
(x)















where the filtersG are computed at theintrinsic scaleσx that maximizessedgel(σ) at the image
locationx. An edgel encodes the orientation and magnitude of the localintensity gradient at the
intrinsic scale. Note that the gradient orientation is always numerically stable at a scale-space
maximum, because the numerator and denominator in Equation3.5 cannot both be close to zero
at a maximum of the scale functionsedgel.

3.4.2 Texels

Edgels are a weak descriptor of the local intensity surface in that they are defined by merely two
parameters. It may often be desirable to have a more expressive local descriptor that uses more
parameters and captures more structure than just the local intensity gradient. Intuitively, this
structure corresponds to a local pattern or texture, which motivates the termtexel (for texture
element). A texelftexel is defined by a vector containing the steerable bases of the first nd

Gaussian derivatives atns scales. One of these scales is the intrinsic scaleσ that maximizes
sblob(σ) or scorner(σ) at an image location.

Besides the choice of the scale function, an edgel is simply atexel withnd = ns = 1. The
motivation for using texels with several derivatives and scales is that the additional parameters
represent more information about local image structure (ortexture), increasing the specificity
of the feature [90]. This increased specificity may or may notbe desirable in a given task.
Therefore, both edgels and texels are included in the feature space, and it is up to the feature
learning algorithms (Chapters 4 and 6) to use any or both of these primitive feature types.

This work consistently uses texels composed of the first two derivatives at three scales,
yielding a total of (2+ 3)× 3 = 15 filter responses. The middle scale is the intrinsic scale at that
image location, and the other two scales are spaced half an octave below and above. Derivatives
of an order greater than about two or three rarely respond significantly in practice because of
their narrow bandpass characteristics. Therefore, they contribute little to the specificity of a
feature. The specificity can arbitrarily be increased by adding scales (within the limits imposed
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by the pixel and image sizes). However, adding larger scalesreduces the locality of the feature.
Also, good generalization properties are usually expectedof a feature. This choice of parameters
constitutes a compromise between expressive power and locality of the filter in space and scale,
and has been found useful in other applications [93].

The orientation of a texel is defined in terms of the two first-derivative responses. At what
scale should these responses be measured? This is a difficult question because the edge energy
at the intrinsic scale as determined according tosblob andscornermay be very low, rendering the
texel orientation unreliable. This was pointed out by Chomat et al. [19], who recommended
that the orientation of blobs be defined using the scale that maximizessedge at this location.
However, this scale may be very different than the texel scale, resulting in an orientation that
corresponds to an image structure other than that describedby the texel. In particular, this
can be a problem in the presence of non-rigid objects or substantial clutter in the scene. Most
of the imagery considered in this dissertation shows rigid objects and no clutter. Chomat et
al.’s empirical results and my own informal experiments confirmed the clear superiority of their
method, which is therefore applied throughout this work.

3.4.3 Salient Points

In principle, edgel and texel features can be computed at anylocation in an image. In practice,
it is often useful to concentrate onsalient image locations. For a given scale functions(σ), any
local maximum within the three-dimensional scale space defines a salient point and its intrinsic
scaleσ at which this maximum is attained (cf. Example 3.2 on page 17).

In order to identify scale-space maxima for edges, the scalespace ofsedge is first projected
onto the image plane by taking the maximum ofsedge over the scalesσ at each pixel. The
resulting image specifies the gradient magnitude, orientation, and intrinsic scale for each pixel.
Then, gradient-parallel maxima are extracted on this 2-D plane in the conventional fashion,
resulting in well-localized and mostly contiguous contoursegments.

(a) intrinsic scales (b) gradient oriens. (c) grad. magnitudes (d) extracted edges

Figure 3.8. Extracting edges from the projected scale space. See Example 3.3 for explanation.

Example 3.3 (Extracting Edges from the Projected Scale Space) Figure 3.8a shows the
intrinsic scale corresponding to each pixel location. At each pixel, the gray value encodes the
scale at whichsedge is maximized at that image location. Bright shades correspond to large
scales. High-contrast regions in the original image (cf. Figure 3.3a, page 16) clearly correspond
to smaller scales. The blocky artifacts are boundary effects; filters are not applied near the
image boundary where the filter kernel exceeds the image. Edges (Figure 3.8d) are extracted
as gradient-parallel maxima from the image shown in Figure 3.8c, containing at each pixel the
strongest edge energy across all scales, attained at the scale shown in Figure 3.8a, using the
corresponding gradients shown in Figure 3.8b.

For texels, local maxima are identified in each of the two scale spaces generated bysblob

and scorner. These local maxima are then projected onto the image plane.On those relatively
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rare occasions where two local maxima project to the same image location, the maximum cor-
responding to the larger scale is shifted slightly. The set of salient texel points is then given by
the union of the projected maxima of both scale spaces. As a result, each salient image point
has exactly one intrinsic scale (Figure 3.9).

689 edgels 130 texels (54 blobs, 76 corners)

430 edgels 77 texels (30 blobs, 47 corners)

Figure 3.9. Salient edgels and texels extracted from an example image. On the left, each
dark line segment corresponds to an edgel (i.e., a scale-space maximum ofsedge) located at
the midpoint of the line, with scaleσ identical to half the length of the line. On the right,
square markers correspond to scale-space maxima ofscorner, and circular markers to scale-space
maxima ofsblob. Collectively, these are the salient texels. The orientations of these are illustrated
by the center lines of each marker. The radius of each marker is equal to the local scaleσ. See
Example 3.4 for discussion.

Scale spaces are computed at half-octave spacing, i.e.,σi+1 = σi
√

2. This choice provides
sufficient resolution at moderate computational cost [93]. The minimum plausible scale is re-
lated to the pixel size, and the maximum is limited by the sizeof the image. This work uses
scales in the range between one pixel and one quarter of the lesser image dimension.

Example 3.4 (Salient Edgels and Texels) Figure 3.9 illustrates the salient edgels and texels
extracted from an example image. The radius of each edgel andtexel marker shown in the figure
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is equal to the local scaleσ. Circles and squares correspond to blobs and corners, respectively.
The bottom row illustrates the degree of robustness of the salient points with respect to rotation
and scale. These images were obtained by rotating the original duck image by 60 degrees and
scaling it by a factor of 0.7 and subsampling, but are shown enlarged to match the original size to
facilitate visual comparison. Naturally, some amount of detail is lost through the subsampling,
which accounts for the reduced number of salient points.

Most edgels are located at high-contrast image locations and are extracted at a very small scale.
In addition, some edgels were extracted at much larger scales, capturing large-scale image struc-
tures as opposed to pixel-level localized gradients. Likewise, texels cluster around high-contrast
image regions. While edgel scales reflect the smoothness of the local edge, texel scales corre-
spond to the size of the image structure. Note, for example, the large corner behind the neck, or
the small blob at the tip of the tail. All of these are located at local maxima in the scale function;
there was no threshold on the prominence of these local maxima. Many of the weaker max-
ima tend to occur in clusters along intensity edges, especially at smaller scales. As the figure
illustrates, such texels are less robust to image transformations than texels at more pronounced
locations, e.g. the blob centered at the eye, the large corner behind the neck, the small blob at
the tip of the tail, or the blob at the chest underneath the chin.

Figure 3.10 illustrates the extent to which texels are stable across viewpoint changes. Again,
those texels that correspond to pronounced locations tend to be more stable. Texels located
at accidental maxima along intensity edges are reliably present, but their precise number and
location varies across viewpoints.

Figure 3.10. Stability of texels across viewpoints. Adjacent viewpoints differ by 10 degrees.
See Example 3.4 for discussion.
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3.4.4 Feature Responses and the Value of a Feature

As introduced in Sections 3.4.1 and 3.4.2, a specific instance f (p) of a primitive feature is de-
fined by the numerical values comprising the feature response vector, typically generated by
computing the applicable filter responses at a locationp in some image. To find occurrences of
f (p) in an imageI , the response strength orvalue ff (p)(x) of f (p) is measured at each pointx
in I . To measure the feature value at a locationx, the feature response vectorf (x) is computed
at x, using the local intrinsic scaleσx. The feature value is then given by the normalized inner
product of the observed responsef (x) with the reference responsef (p):

ff (p)(x) = max

{

0,
f (p)T f (x)
‖f (p)‖ ‖f (x)‖

}

(3.12)

Negative values are considered as weak as orthogonal response vectors, and are therefore cut
off at zero. Hence, 0≤ ff ≤ 1. The normalized inner product is pleasing in that it returns the
cosine of the angle between the vectors in question which, for edgels, is identical to the cosine
of the angle between the edgels in the image plane:ff (p)(x) = max{0, cos(θp − θx)}. Moreover,
the feature value is invariant to linear changes in image intensity.

If the feature value is to be computed regardless of the orientation of a feature in the image
plane, the measured feature response vectorf (x) is first steered to match the orientation of the
pattern vectorf (p) before Equation 3.12 is applied. This is done using a function f̃ (x, p) that
applies the steering equation (3.8, page 15) to all components of f (x), usingθ = θp − θx. Thus,
Equation 3.12 becomes

f̃f (p)(x) = max
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(3.13)

for rotationally invariant feature value computation. Note that this rotationally-invariant match-
ing implies that ff is always equal to one iff is an edgel. Hence, individual edgels carry no
information. Rotation-invariant edgels are only useful aspart of a compound feature, as intro-
duced in the following section.

(a) f (p) (b) f (x∗) (c) f (x∗t )

Figure 3.11. Matching a texel (a) across rotation and scale, without (b) and with (c) rotational
normalization. See Example 3.5 for explanation.

Example 3.5 (Localizing a Feature) Figure 3.11a shows one of the salient texels extracted
from the familiar duck image (cf. Figure 3.9). Figures 3.11band 3.11c show the same rotated
and scaled version as used in Figure 3.9. Letp = [71, 49]T , which is the location of the texel
shown in Figure 3.11a. Then,f (p) is the feature response vector defining this texel feature.We
now want to find this feature in the rotated and scaled image. To do this without regard to feature
orientation, the locationx∗ that maximizesff (p)(x) is identified using Equation 3.12. The salient
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point x∗ that maximizes Equation 3.12 is that shown in Figure 3.11b. Here, ff (p)(x∗) = 0.956.
It is no accident that this texel has the same orientation as the pattern featuref (p) shown in
Figure 3.11a, but the two locations do not correspond (even though they are spatially close to
one another in this example). The true corresponding feature is shown in Figure 3.11c; let us
call this locationx∗t . Disregarding the difference in orientation,ff (p)(x∗t ) = 0.578< ff (p)(x∗). If
at each locationx the feature response vectorf (x) is first steered to match the orientation off (p)
using Equation 3.13, then the correct location is found withf̃f (p)(x∗t ) = 0.996 (Figure 3.11c). In
contrast, the value atx∗ increases only marginally fromff (p)(x∗) = 0.956 to f̃f (p)(x∗) = 0.960,
remaining below the value at the correct locationx∗t .

In all parts of this work, feature values are computed with rotational normalization using
Equation 3.13. From now on, the tilde will be omitted for simplicity, and the notationff will be
used with the understanding that feature response vectors are always steered to achieve rotational
invariance.

A featuref (p) is present in an imageI to the degree

ff (p)(I ) = max
x∈I

ff (p)(x). (3.14)

This computation is quite expensive, as it involves the measurement of the intrinsic scale and
the computation off (x) and ff (p)(x) at each location in the image. A large proportion of this
computation is going to be wasted because most image regionswill not contain features of
practical relevance. Therefore, the assumption is made that all features of practical relevance are
located at salient points. To identify the salient points itis still necessary to evaluates(σ) over
the entire range of scalesσ everywhere in the image, which constitutes a highly parallelizable
operation. Moreover, if the application provides a fixed setof training images, this computation
can be performed off-line. In practice, this leads to a great reduction in computation time and
space, as the maximum in Equation 3.14 is only taken over the salient points rather than the
entire image.

3.5 Compound Features

A core objective of this work is to demonstrate that featurescan be learned that are highly mean-
ingful individually. The limited descriptive power of individual primitive features is overcome
by composing two or more primitive features into compound features. Since compound fea-
tures contain more parameters and cover a larger image area than do primitive features, they
provide a potentially more specific and robust description of relevant aspects of appearance.
What it means for a feature to be relevant, and how relevant features are sought, depends on
the given task. Chapters 4 and 6 present two illustrative examples. This section describes three
complementary ways in which primitive features can be composed into compound features.

There is evidence that the mammalian visual cortex also composes simple and generic fea-
tures hierarchically into more complex and specific features. The primary visual cortex con-
tains retinotopic arrays of local and oriented receptive fields [45] which have been modeled as
Gaussian-derivative functions [132, 57]. Many neurons found in higher-order visual cortices are
tuned to more complex stimuli. Riesenhuber and Poggio [96] proposed a hierarchical model of
recognition in the visual cortex, using spatial combinations of view-tuned units not unlike the
compound features introduced below.

3.5.1 Geometric Composition

The structure of a geometric compound ofnf ≥ 2 primitive featuresf0, f1, . . . , fnf−1 (Figure 3.12)
is defined by the attitudesφi of each subfeature, and the angles∆θi , distancesdi , and scale ratios
∆σi between the constituent subfeaturesf i . The distancesdi are given relative to the intrinsic
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scaleσi−1 at pointi − 1. Each primitive feature is either an edgel or a texel. A specific instance
fgeomof a geometric feature with a given structure is defined by theconcatenation of the vectors
comprising the primitive subfeatures. Its orientation is denoted byθ, which is the orientation of
the reference point.

����

����

������

reference pointf0

θ

φ1

d1
φ2

d2

f2

f1

Figure 3.12.A geometric compound feature consisting of three primitivefeatures.

The location of a feature is defined by the location of the reference point. To extract the
filter response vector defining a geometric featuref (x) at locationx, the following procedure is
used:

Algorithm 3.6 (Extraction of a Geometric-Compound FeatureResponse Vector)

1. The response vectorf0(x) is computed atx. This defines the orientationθx and intrinsic
scaleσx of f (x). Initially, let i = 1:

2. If i = nf , then stop.

3. The locationxi , orientationθi , and scalesi of the next constituent subfeaturef i are com-
puted:

xi = xi−1 + σi−1di

[

cos(θi−1 + φi)
sin(θi−1 + φi)

]

θi = θi−1 + ∆θi

σi = σi−1∆σi

4. The feature response vectorf i(xi) is computed at scaleσi, and is rotated to orientationθi
using the steering equation 3.8 (page 15) with angular argumentθ = ∆θi . Incrementi, and
continue at step 2.

The filter response vector is given by the concatenation of the individual response vectors of the
constituent primitive featuresf (xi), i = 0, 1, . . . , nf − 1.

The value ffgeom(I ) of a geometric compound featurefgeom in an imageI is computed in the
same way as for a primitive feature (Equations 3.13 and 3.14), using the concatenated response
vectors. This involves running Algorithm 3.6 at each of thensal applicable salient image loca-
tions. These are either all salient edgels or all salient texels, depending on the type of the first
subfeaturef0 of fgeom. It is easily seen that the time required to computeffgeom is proportional to
nsalnf .

3.5.2 Boolean Composition

A Boolean compound feature consists of exactly two subfeatures, each of which can be a prim-
itive or a compound feature. The relative locations of the subfeatures are unimportant. Two
types of Boolean features have been defined:
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• The value of aconjunctivefeature is given by the product of the values of the two subfea-
tures.

• The value of adisjunctive feature is given by the maximum of the values of the two
subfeatures.

For conjunctive features, the product is used instead of theminimum because it is natural to
assign a higher value to a feature if the larger of the two component values is increased even
further. For example, the valueff of a conjunctive feature with subfeature valuesff1 = 0.6 and
ff2 = 0.9 should be larger than for a feature with subfeature valuesff1 = 0.6 and ff2 = 0.7.

Feature values of Boolean compound features are measured recursively by first measuring
the values of each of the two subfeatures individually, and then combining their values using the
product or the maximum, respectively. Hence, the time required to compute the valueffbool(I ) of
a Boolean compound featurefbool in an imageI is proportional tonsal,0t0(I ) + nsal,1t1(I ), where
nsal,i denotes the number of salient image points applicable to subfeaturef i , andti(I ) denotes the
time required to compute the valueff i (I ) of subfeaturef i in the image. Note that each subfeature
of a Boolean compound feature can be any type of feature, including primitives, or geometric,
conjunctive or disjunctive compounds.

3.6 Discussion

Section 3.2 formulated a list of objectives (page 12) to be met by the feature design. All of these
are addressed by the compositional feature space:

1. Features are computed on intensity images.

2. The feature space was designed without a specific task in mind. Features can be composed
to arbitrary structural complexity to increase their specificity.

3. Therefore, it seems justified to hope that powerful individual features are contained in this
feature space. The extent to which this goal was achieved will be discussed in Chapters
4–6.

4. Edgels and texels are complementary and capture important aspects of image structure.
Geometric and Boolean compositions are also complementaryand have intuitive seman-
tics. Subsequent chapters will illustrate possibilities and limitations of this feature space
for practical tasks.

5. Feature orientations are easily computed and compensated for using the steerability prop-
erty of the filters employed.

6. The features are computed at the intrinsic scale observedin the images. Therefore, they
are useful for scale-invariant image analysis.

7. The features are local, since the filters employed have local support. The locality of geo-
metric features can be controlled by placing constraints onthe distances between primi-
tives and the number of primitives allowed.

8. Features return a scalar value, which makes them applicable in general classification and
regression frameworks. The orientation attribute of a feature can also be used for regres-
sion, as will be seen in Chapter 6.

9. The biological relevance of this feature space was briefly discussed in the introductions
to Sections 3.4 and 3.5.
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A critical property of this compositional feature space is that it is partiallyorderedby the
structuralcomplexityof a feature, according to the number of primitives contained in a com-
pound. Also, the three compositional rules are ordered by their expressive power. A disjunctive
compound can be regarded as more complex than a conjunctive compound in that it can express
a strictly larger class of concepts. For example, a hierarchy of disjunctions of sufficiently com-
plex geometric features can memorize almost any arbitrary set of images. Conjunctive features
are more expressive than geometric features because the former can be composed out of the
latter, but not vice versa.

This orderly structure will play an important role in the following chapters, where algo-
rithms are described for learning features from this space.These algorithms create features in
a simple-to-complex manner, in the sense that features containing few primitives are preferred
over features with many primitives, and geometric composition is preferred over conjunctive
composition, which in turn is preferred over disjunctive composition. The underlying assump-
tion is that simpler features generally provide for better generalization, or in other words, that
the “real” structure underlying a task tends to be expressible by simple features.

In summary, all design goals laid out in Section 3.2 are addressed by the feature space
defined in this chapter. It is unique in its hierarchical and parametric organization that facilitates
simple-to-complex search for highly distinctive, local features in an infinite space. Because of
these key properties it is well suited for open tasks, as argued in Chapters 1 and 2. The following
chapters will demonstrate how important visual skills can be learned on the basis of this feature
space.
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CHAPTER 4

LEARNING DISTINCTIVE FEATURES

This chapter introduces the first of two feature learning applications that build on the feature
space introduced in Chapter 3. The task is to learn to distinguish visual contexts by discovering
few but highly distinctive features. The scenario addressed in this chapter is substantially less
constrained than in most conventional approaches to visualrecognition. The learning system
does not assume a closed world. Learning is incremental, andnew target object classes can be
added at any time. An image presented to the system may show any number of target objects,
including none. No explicit assumptions are made about the presence or absence of occlusions
or clutter, and no object segmentation is performed. Consequently, this chapter does not set out
to improve on the recognition rates achieved by today’s morespecialized recognition systems.
Rather, the goal is to demonstrate that a highly uncommittedsystem, starting from a nearly
blank slate, can learn useful recognition skills.

4.1 Related Work

The general problem of visual recognition is too broad and underconstrained to be addressed
comprehensively by today’s artificial systems. Therefore,the following three subproblems have
been identified in the literature that are more easily addressed separately by specialized solu-
tions:

Specific Object Recognition. In a typical scenario, a test image depicts exactly one target ob-
ject (with or without occlusion and/or clutter). The task is to recognize that object as one
of several specific objects [46, 73, 104, 71], e.g. a particular toy or a particular landmark.
The appearance or shape of the objects in the database are precisely known. Naturally,
most work concentrates on rigid objects, with the notable exception of face recognition.

Generic Object Classification. The scenario is the same as in Specific Object Recognition,
but here the task is to label the target object as belonging toone of several known object
categories or classes [133, 111]. The individual objects within a class may vary in appear-
ance. A class (“car”, “chair”) can be defined in various ways,e.g. by object prototypes,
by abstract descriptions, or by models containing enough detail to discriminate between
classes, but not enough to distinguish between objects within a class.

Object Detection. Test images contain various items and typically show natural (indoor or out-
door) scenes. The task is to localize regions of the image that depict instances of a target
object or class of objects, e.g. faces or people [81, 7, 6]. Object detection is closely related
to fundamental problems in image retrieval [92].

The requirements and difficulties differ between these subproblems. Therefore, many existing
recognition systems are designed to solve only one of them. Moreover, some practical recog-
nition problems further specialize these categories. For example, face recognition [125] is a
distinct subcategory of specific object recognition that must cope with gross non-rigid trans-
formations that are hard to model mathematically. Optical character recognition is a distinct
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subcategory of generic object recognition [8], etc. Other practical recognition problems are of-
ten addressed in related ways. For example, Weng et al. [131]treat indoor landmark recognition
as a simplified object recognition problem without generalization across size or pose. Riseman
et al. [100] represent outdoor landmarks by line models and recognize them by many-to-many
model matching in two and three dimensions. Very few promising attempts have been made to
develop systems that are applicable to more than one of thesesubproblems. Among these, most
systems employ features that explicitly allow certain image variations [128, 5, 77, 78].

For visual recognition, two major classes of techniques canbe identified:

Model-based methods employ geometric models of the target objects for feature extraction or
alignment [46, 100].

Appearance-basedor model-free methods extract features directly from example images with-
out explicitly modeling shape properties of the target objects. Various types of features
have been employed, e.g. principal components computed from the image space [73, 125],
local image statistics [116, 104, 71], locally computed templates [128], or primitive local
shape descriptors such as oriented edges or corners [104, 71].

Hybrid techniques have also been proposed in which appearance-based methods served as in-
dexing mechanisms to reduce the number of candidate object models [55]. In fact, it appears
that this was historically the primary motivation for appearance-based methods. Only later was
their full potential discovered, and systems began to emerge that omitted the model-matching
phase and relied on appearance-based methods alone.

Most appearance-based visual recognition systems expressrecognition as a pattern classi-
fication problem, and many employ standard pattern recognition algorithms [128, 71, 8, 81].
Also very common in computer vision, custom classifiers are designed for specific recognition
paradigms. For example, Swain and Ballard [116] and Schieleand Crowley [104] proposed
methods for comparing histograms. Turk and Pentland [125] and Murase and Nayar [73] find
nearest neighbors in eigen-subspaces. Fisher and MacKirdy[32] use a perceptron to learn the
weights for a weighted multivariate cross-correlation procedure.

A large variety of features have been proposed (see also Section 3.1). Those that relate to this
work fall into two broad categories: eigen-subspace methods that operate in image space [125,
48, 73, 131, 119], and locally computed image properties [128, 116, 104, 71, 5, 32, 66]. Eigen-
subspace methods are well suited for learning highly descriptive [125, 73, 119] or discriminative
features [131, 119]. Locally computed features are typically defined a priori [116, 104, 71], or
they are derived to be descriptive of specific object classes[128, 32, 6, 33, 66]. Few approaches
exist that attempt to derive discriminative local features[81, 8, 5].

4.2 Objective

Object recognition has reached a remarkable maturity in recent years. The problem of finding
and recognizing specific objects under controlled conditions can almost be considered solved,
even in the presence of significant clutter and occlusion. Generic object recognition is consider-
ably harder because the within-class variability in objectappearance can be arbitrarily large. If
the within-class variability is large in comparison to the between-class variability, it can be very
difficult to find feature sets that cleanly separate the object classes in feature space. This prob-
lem has not yet received much systematic attention. Essentially all current object recognition
and detection systems operate on the assumption that the within-class appearance variability is
small compared to the between-class variability, i.e., objects within a class appear more simi-
lar (to a human observer) than objects from distinct classes. Consequently, researchers choose
feature sets that reflect our intuitive notion of visual similarity.

In practical tasks, this assumption does not always hold. I believe that this constitutes one of
the key difficulties in generic object recognition: In practice, meaningful object classes are often
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defined not by their appearance, but by some other similaritymetric, e.g. functional properties.
A classical example is that of chairs: A chair is something that affords sitting. In a given context,
anything that has this functional property is a chair. However, chairs can look quite dissimilar.
It is very hard to specify a generic appearance model of a chair for object recognition purposes.

In contrast, I argue that humans recognize chairs on the basis of their experience that objects
that afford sitting tend to exhibit certain visual properties, e.g.a roughly horizontal surface of
appropriate size and height. It is ourexperiencethat created the association between function
and specific aspects of appearance. None of the work cited above – arguably with the exception
of Papageorgiou and Poggio’s wavelet-based trainable object detection system [81] – considers
object classes that arise from an application context otherthan subjective similarity of appear-
ance.

A corollary of the necessity of learning object models from experience is that learning must
be incremental. Some of the recognition algorithms mentioned above can be altered to learn
incrementally [130, 81], but none of these authors noted incremental learning as a desirable
property of machine vision systems.

I perceive the distinction between specific and generic object recognition and detection as
rather artificial. It is the necessity to define problems clearly and to design testable and com-
parable algorithms that has produced this taxonomy of approaches, rather than well-established
principles of vision. The same basic mechanism should produce and refine features at various
levels of distinction, as demanded by a task. Features should express just the level of specificity
or generality required along a continuum between specific and generic recognition [122, 121].
Likewise, it is hard to think of visual search or object detection without doing some recognition
of the detected objects at the same time. Ultimately, we needa uniform framework for visual
learning that addresses these subtasks in a coherent fashion.

Building on the feature space introduced in Chapter 3, this chapter presents a framework for
incremental learning of features for visual discrimination. The task scenario is not restricted to
specific objects, landmarks, etc. A design goal is to be able to learn a wide variety of perceivable
distinctions between visual contexts that may be importantin a given task. A visual context may
correspond to an individual object, a category of objects, or any other visually distinguishable
entity or category. In agreement with pattern recognition terminology, these distinct entities or
categories will be referred to asclasses. The following properties distinguish this framework
from most conventional recognition schemes (see also Table1.1 on page 2):

• At the outset, the number and nature of the classes to be distinguished are unknown to the
learner.

• Learning is performed incrementally on a stream of trainingimages. No fixed set of
training data is assumed. Only a small number of training images need to be accessed at
any one time.

• There is no distinction between training and test phases. Learning takes place on-line,
during execution of an interactive task.

• There can be any number of target objects in a scene, not just one. Prior to recognition,
this number is unknown to the system.

• In principle, there is no distinction between specific recognition, generic recognition, and
detection. The unified framework encompasses each of these types of problems.

• Prior to learning, the algorithms and representations are largely uncommitted to any par-
ticular task. The objective is to learndistinctivelocal features.

Definition 4.1 (Distinctive Feature) A feature isdistinctive if it has both of the following
properties:
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• It is characteristicof a particular class or collection of classes. These classes are called
thecharacterizedclasses. Objects of a characterized class are likely to exhibit this feature.

• It is discriminativewith respect to another class or disjoint collection of classes. Objects
of such adiscriminatedclass are unlikely to exhibit this feature.

Taken together, these properties allow one to argue that if agiven distinctive feature is found
in a scene, an instance of the characterized class(es) is likely to be present in the scene. This
reasoning forms the basis for the feature learning algorithm presented in Section 4.4. The goal
is to show that useful recognition performance can be achieved by an uncommitted system that
learns distinctive features. To reinforce this point, the system starts out with a blank slate,
without any task-specific tuning, and learns asmallnumber of features to solve a task.

It is worth pointing out that, strictly speaking, neither ofthese two characteristics is biologi-
cally correct: Firstly, the human visual system indeed shows very little hard-wired specialization
and draws much of its power from its versatility and adaptability. However, it is also true that
infant visual learning is guided by highly structured developmental processes. Secondly, we are
capable of learning individual, distinctive high-level features, e.g. corresponding to object parts.
On the other hand, the robustness of our visual capabilitiesis largely due to the redundancy of a
large number of low-level features such as line segments, corners and other descriptors of local
image structure represented by neurons along the visual pathway between the primary visual
cortex and the inferotemporal cortex.

4.3 Background

The framework for incremental learning of discriminative features, introduced in the following
section, builds on two important existing concepts – Bayesian networks and the Kolmogorov-
Smirnoff distance – that are be briefly described here.

4.3.1 Classification Using Bayesian Networks

In the context of this work,classificationrefers to the process of assigning a class label to
an instance described by afeature vector. The elements of a feature vector may be scalar or
categorical values, whereas a class label is always categorical. An abstract device that performs
classification is called aclassifier. Here, a classifier is trained inductively, i.e., by generalization
from training examples. There are many well-established frameworks for classification, e.g.
decision trees, neural networks, nearest-neighbor methods, and support vector machines.

Bayesian networks constitute a rather general graphical framework for representing and
reasoning under uncertainty. A Bayesian network encodes a joint probability distribution. Each
node represents a random variable, here assumed to be discrete. The network structure specifies
a set of conditional independence statements: The variablerepresented by a node is condition-
ally independent of its non-descendants in the graph, giventhe values of the variables repre-
sented by its parent nodes. In more intuitive terms, an arc indicates direct probabilistic influence
of one variable on another. Each nodeX has an associated table specifying the conditional
probabilities of the value ofX given the values of its parents. In other words, the conditional
probability table ofX contains the values ofP(X = x | A = a, B = b, . . .), whereA, B, . . . are
the parents ofX in the graph, andx, a, b, . . . each denote a particular value – commonly called a
state– of the corresponding random variable.

Bayesian networks permit the computation of many interesting pieces of information. Most
importantly, one can infer the probabilistic value of some variables, given the values of some
other variables. This involves the following two essentialsteps:
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Instantiation of evidence: The values of some variables are set to their observed values. These
values may themselves be (unconditional) probability distributions over the possible val-
ues of these variables.

Propagation of evidence:Using the conditional probability tables, the posterior probabilities
of neighboring nodes are iteratively computed, generally until some nodes of interest –
targetvariables – are reached. These nodes now contain the posterior probabilities of their
values given all evidence entered into the net, also calledbeliefs: BEL(X = x) = P(X =
x | A = a, B = b, . . .) whereA, B, . . . include all nodes in the net that contain evidence
[83]. If evidence is propagated exhaustively throughout the entire network, the net is said
to be inequilibrium.

Mathematical methods exist that allow these two steps to be freely intermixed. In general, exact
inference is NP-hard. In practice however, due to the sparseness of most practical networks,
inference is performed very quickly for up to a few tens or hundreds of nodes.

Often it is useful to know the influence of one variable on another. The influence of variable
X on variableY is conveniently defined by the mutual information [112] betweenX andY, that
is, the potential of knowingX to reduce uncertainty regarding the value ofY:

I (Y,X) = H(Y) − H(Y | X) (4.1)

where1 the uncertainty inY is given by the entropy function

H(Y) = −
∑

y

P(y) log P(y)

and

H(Y | X) =
∑

x

H(Y | x) P(x)

= −
∑

x

∑

y

P(y | x) P(x) log P(y | x)

= −
∑

x

∑

y

P(y, x) log P(y | x)

is the expected residual uncertainty given that the value ofX is known. Expanding the condi-
tional probabilities and using belief notation, Equation 4.1 becomes

I (Y,X) = −
∑

x

∑

y

BEL(y, x) log
BEL(y, x)

BEL(y) BEL(x)
. (4.2)

To computeI (Y,X), note thatBEL(y, x) = BEL(x | y) BEL(x). One can computeBEL(x |
y) by temporarily settingY to valuey, propagating beliefs through the network to establish
equilibrium, and using the resulting posterior probabilities at nodeX as theBEL(x | y) [83,
98]. The unconditional beliefsBEL(y) andBEL(x) are available at the respective nodes prior to
application of this procedure.

The theory of Bayesian networks has been best developed for discrete random variables.
With some restrictions, inference is also possible with so-called conditional Gaussian distri-
butions [60], and the theory is constantly being advanced. For more information on Bayesian
networks, excellent texts are available [83, 51].

A naive Bayesian classifieris easily represented using a Bayesian network. It has the topol-
ogy of a star, with a node representing the class random variable in the center, and arcs going
out to each feature variable. Intuitively, each arc specifies that the presence of a class gives rise
to the feature pointed to by the arc. A general Bayesian classifier models dependencies between
features by inserting arcs between them, where applicable.

1The notationI , conventionally used to denote mutual information, is not to be confused with the use ofI for an
image intensity function introduced in Section 3.3.1. In the following, the context will always indicate the referent
of I .

33



4.3.2 Kolmogorov-Smirnoff Distance

Let X be a continuous random variable, and letp(x | a) and p(x | b) describe the conditional
probability densities ofX under two conditionsa andb. Suppose one is asked to partition the
domain ofX into two bins using a single cutpointα such that most values ofX that fall into
one bin are generated under conditiona, and most values in the other bin under conditionb. A
Bayes-optimal value ofα is one that minimizes the probability of any given instancex ending
up in the wrong bin.
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Figure 4.1. Definition of the Kolmogorov-Smirnoff distance.

Let cdf(x | a) and cdf(x | b) denote the cumulative conditional densities corresponding to
p(x | a) and p(x | b), respectively. TheKolmogorov-Smirnoff distanceor KSD for variableX
under conditionsa andb is defined as

KSDa,b(X) = max
α

∣

∣

∣

∣

cdf(α | a) − cdf(α | b)
∣

∣

∣

∣

(4.3)

(see Figure 4.1). A value ofα maximizing this expression constitutes a Bayes-optimal cutpoint
in the above sense, if the prior probabilities of a given instancex having been generated under
conditionsa andb are equal.

In practice, the cumulative distributions are often not available in analytic form. Fortunately,
it is easy to estimate these from sampled data. Given a particular cutpointα, simply count the
data samples that fall into each bin, and normalize the counts to convert them into cumulative
probabilities [126]. To find an optimalα, this procedure is performed for all candidate cutpoints
that include all midpoints between adjacent values in the sorted sequence of the available data.

4.4 Feature Learning

Figure 4.2 is intended to serve as a road map to the algorithmsdefined in the present chapter.
It shows an instantiation of the generic model of incremental learning (Figure 2.1 on page 8)
applied to learning distinctive features. This is the task scenario underlying this chapter: At
the outset, the agent does not know anything about the types of distinctions and classes to be
learned, and it has no features available. As it performs itstask, it acquires one image at a time,
and attempts to recognize its contents as far as they are relevant to the task. If the recognition
succeeds, the agent simply continues to perform its task. Ifnot, it attempts to learn a new feature
that solves the recognition problem.

In the basic form introduced below, the feature learning algorithm requires two key proper-
ties of the task environment:

1. The agent must be able to compare its recognition result with the correct answer (i.e., the
learning algorithm issupervised).
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recognize classes
Algorithm 4.4
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Figure 4.2. A model of incremental discrimination learning (cf. Figure2.1, page 8).

2. The agent must be able to acquire randomexample imagesof scenes containing instances
of specific classes. This permits statistical evaluation ofcandidate features.

The second requirement is not a critical limitation in many realistic interactive scenarios. For
example, an infant can pick up a known object and view it from various viewpoints; or a child
receives various examples of letters of the alphabet from a teacher. A robot may aim its camera
at known locations, or may pick up a known object from a known location.

The subsequent sections introduce the key components of thevisual learning algorithm in
turn; namely, the classifier subsystem, the recognition algorithm, and the feature learning pro-
cedure.

4.4.1 Classifier

Conventionally, a Bayesian network classifier models the classes using a single discrete random
variable that has one state for each class. This representation assumes that there is exactly one
correct class label associated with each instance. Also, each feature – if instantiated – always
contributes to the classification process, no matter what the current class is, because each feature
node contains a full conditional probability table thatfor each classrepresents the probability of
this feature being observed. This is contrary to the conceptof distinctive features that specialize
in specific distinctions between a characteristic class anda small subset of the other classes. In a
naive Bayesian classifier, the number of entries contained in the probability table at each feature
node is equal to the product of the number of classes times thenumber of states of the feature
variable. If there are many classes, these tables can becomequite large. All their conditional
probability entries must be estimated. Even worse, all of them must be re-estimated whenever a
new class is added to the system.

A natural way to avoid these problems is to represent each class by an individual Bayesian
network classifier. An example is shown in Figure 4.3. The class node of each network has
two states, representing presence or absence of an instanceof this class. Here, each feature is
characteristic (in the sense of Definition 4.1, page 31) of the class represented by its Bayesian
network, and is discriminative with respect to one or more specific other classes. In Figure 4.3,
all features are characteristic of classC, and the discriminated classes are shown inside the
feature nodes.
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Figure 4.3. A hypothetical example Bayesian network.

This representation keeps the classes and their characteristic features separate. When a new
class is learned, a corresponding network is instantiated,but the existing networks and their
conditional probability tables remain unaffected. Moreover, this representation builds in the as-
sumption that the probability of the presence of each class is independent from all other classes.
Since each network separately decides whether an object of its class is present, multiple target
classes within a scene are easily handled without interference. Each network effectively acts as
an objectdetectionsystem. In contrast, most current recognition systems act as classification
systems and assign exactly one class label to each image.

Together with the concept of distinctive features, an important implication of this represen-
tation is that the absence of a feature in an image never increases the belief in the presence of a
class. Inference in favor of a class is only drawn as a result of detected features. This behavior
is a design choice reflecting the openness of the uncommittedlearning system. It is noteworthy
that this design is in contrast to conventional recognitionsystems that always assign exactly one
of a given set of class labels to an image. Under this paradigm, calledforced-choicerecognition
by psychologists, not detecting a characteristic feature will inevitably increase the belief in the
presence of other classes. This effect may be desirable in aclosed world, but can be detrimental
in realistic open scenarios. Many conventional recognition systems adopt confidence thresholds
that avoid the assignment of a class label in the absence of sufficient evidence for any class,
which reduces but does not eliminate this problem.

Like class nodes, feature nodes also have two states, corresponding to presence or absence
of the feature. As in a typical naive Bayesian network classifier, arcs are directed from the class
node to the feature nodes. To model known dependencies between features, additional arcs
connect features where appropriate. Such dependencies arise by the construction of compound
features. Specifically, if a geometric compound feature (say, Feature 3 in Figure 4.3) has a com-
ponent feature that is also present in the network (e.g., Feature 2 in Figure 4.3), then it is clear
that the presence of Feature 3 implies a high probability of finding Feature 2 in the scene also.
Feature 2 does not necessarily have to be present because thethresholds that define “presence”
are determined independently for each feature node (see Definition 4.2 below). An analogous
argument holds for the components of a conjunctive feature.In the case of a disjunctive feature,
the direction of the argument – and that of the arcs – is reversed. Say, Feature 4 is a disjunctive
feature, and Feature 5 is one of its components. Then, findingFeature 5 in a scene implies the
likely presence of the disjunctive Feature 4 in the same scene. The reverse is not necessarily
true because Feature 4 may be present by virtue of its other subfeature, with Feature 5 being
completely absent. Therefore, the causal influence is modeled by an arc from the component
feature to the compound.

Note that the same feature (defined by its structure and its response vector) may occur in
more than one Bayesian network classifier. Feature values are measured using Equation 3.14
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(page 25). Since these feature values are real numbers, theymust be discretized by applying a
threshold marking the minimum value required of a feature inorder to be considered present.
This threshold is determined individually for each featurenode so as to maximize its distinctive
power:

Definition 4.2 (Distinctive Power of a Feature) Thediscriminative powerof a featuref is the
Kolmogorov-Smirnoff distance (KSD) between the conditional distributions of feature values
observed under (a) the discriminated classes versus (b) the characterized class (cf. Equation 4.3
and Figure 4.1). Thedistinctive powerof a feature is identical to its discriminative power, if
cdf(αf | a) > cdf(αf | b) for the cutpointαf associated with the KSD, i.e., the feature is in fact
characteristic of its class. Otherwise, the distinctive power is defined to be zero.

As was noted in Section 4.3.2, this definition yields an optimal cutpoint in the Bayesian sense
that if the presence of a class is to be inferred on the basis ofthis feature alone, the probability
of error is minimized, given that the prior probability of the presence of this class equals 0.5.
In general, however, the prior probability of a class will not be equal to 0.5. In this case, this
choice of a cutpoint is not optimal in any known sense. Nevertheless, Utgoff and Clouse [126]
make a strong argument in favor of using the KSDwithout paying attention to the prior class
probabilitiesas a test selection metric for decision trees. It is based on the observation that even
in cases where the Bayesian choice is always the same regardless of the test, the cutpoint given
by the KSD separates two very different regions of certainty regarding the presence of the class.

Example 4.3 (KSD and Disparate Priors) Consider the class-conditional distributions shown
in Figure 4.4. There are many more samples from the discriminated classes than from the
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Figure 4.4. Highly uneven and overlapping feature value distributions.

characterized class. In other words, given an unclassified sample, the prior probability that it
belongs to the discriminated classes is much higher than that it belongs to the characterized class.
Where should the Bayes-optimal cutpoint be placed that allows one to guess what conditional
distribution generated a given sample? The two distributions fully overlap! Because of this and
the disparate priors, it is clear from Figure 4.4 that no matter where a cutpoint is placed, the
expected error rate is minimized by always guessing that a sample came from the discriminated
classes, irrespective of the sample’s feature value. However, it is also obvious that a cutpoint
can be found that is meaningful in the sense that almost all samples of the characterized class
fall above it, and almost none below it. While a decision rulebased on such a cutpoint is not
Bayes-optimal, this cutpoint would tell us something aboutthe posterior probability of a sample
belonging to each of the two conditional distributions. Utgoff and Clause simply suggest that
the simple definition of the KSD given in Equation 4.3 be applied, which – being based on
cumulative distributions – ignores the prior probabilities.

The computation of a KSD requires a description of the two conditional probability distri-
butions. Here, these distributions are approximated by thecumulative experience of the agent:
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The agent maintains aninstance listof experiences. Each image encountered adds to the in-
stance list a newinstance vectorcontaining the feature values measured and the true class label
of this training image. All probability estimates relatingto the Bayesian network classifiers are
estimated by counting entries in the instance list. This includes the cumulative distributions
for estimating the KSDs to discretize feature variables, the conditional probability tables at the
feature nodes, and the prior class probabilities at the class nodes.

4.4.2 Recognition

Recognition of a scene can be performed in the conventional way by first measuring the strength
of each feature in the image, setting the feature nodes of theBayesian networks to the corre-
sponding values, and computing the posterior probability of the presence of each class. In this
case, the absence of a feature is meaningful to the system. Alternatively, robustness to occlu-
sion can be built into the system by setting only feature nodes corresponding to found features,
and leaving the others unspecified. In this case, the posterior probability of these features be-
ing present (but occluded) can easily be computed. Incorporating positive evidence into the
net will monotonically increase the posterior probabilityof a class. In particular, the posterior
probability is always greater than or equal to the prior. Without effective countermeasures how-
ever, in practice this monotonic increase will often resultin very high posterior probabilities for
many classes. Since the posterior class probabilities are computed independently by separate
networks for each class, evidence found for one class does not reduce the posterior belief in
any other class. To avoid these problems, in this work both positive and negative evidence is
incorporated into the network by setting the applicable feature nodes to the corresponding state,
presence or absence.

Computing a feature value in an image is expensive (cf. Equation 3.14) in comparison to
propagating evidence in a Bayesian network of moderate size. Moreover, the contribution of
individual features to the classification decision is unclear if all of them are computed at once.
Therefore, features are computed sequentially, and the classification decisions are made incre-
mentally within each Bayesian network, according to the following algorithm.

Algorithm 4.4 (Sequential Computation of Class Beliefs)

1. Bring the Bayesian network to equilibrium by propagatingevidence.

2. Find the maximally informative feature among all features of all classes. LetC and Ff

denote two-state random variables representing the presence or absence of a class and
of a featuref , respectively. Then, the maximally informative featurefmax is the one that
maximizes

Imax = max
f

max
C

I (C, Ff )

whereI (C, Ff ) is the mutual information defined in Equation 4.2 on page 33.

3. If Imax = 0, then stop.

4. Measure the value of this featurefmax, ffmax, in the current image using Equation 3.14.

5. Instantiate all nodes corresponding tofmax in all networks to the appropriate values by
comparingffmax against the respective thresholdsαf (cf. Definition 4.2).

6. To keep track of the usage of each feature, labelfmax with the running number of the
current training image. Then, continue with Step 1.

Note that at each iteration of this algorithm, one feature isinstantiated. For an instantiated
featuref , the uncertainty in its characterized classC is H(C) = H(C | Ff ), and thusI (C, Ff ) = 0
(Equation 4.1). Therefore, the algorithm stops at Step 3 after all features have been instantiated.
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In practice, it often stops sooner because among the uninstantiated features there are none with
nonzero mutual information. This results if the entropies in all of the class nodes have been
reduced to zero, or if none of the remaining features are informative with respect to any class
variable with nonzero entropy. The labeling in Step 6 allowsthe algorithm to detect obsolete
features. If a feature ceases to be used, it can be discarded.This will further be discussed in
Section 4.5.

There are various ways to add sophistication to this basic algorithm. Instead of consult-
ing features exhaustively, a stopping criterion can be introduced that terminates Algorithm 4.4
once I (C, Ff ) drops below a threshold at Step 2. By definition, features with low mutual in-
formation have little potential to affect the posterior class distributions. The tradeoff between
computational expense and confidence in the recognition result can be adjusted in terms of this
threshold. Another computational tradeoff concerns the relative cost of measuring feature val-
ues. Large compound features consisting of many subfeatures are more costly to evaluate than
smaller features, as are Boolean compounds relative to geometric compounds (see Section 3.5.1
on page 26, and Section 3.5.2). This cost can be considered atStep 2 of Algorithm 4.4, for
example using the framework of decision theory [102, 98]. Such thresholds and costs depend
on specific applications. For simplicity, these issues are avoided here.

Since each class is represented by its own Bayesian network,the possibility of multiple
classes present in a scene is built into the system. The presence of each class is determined
independently of all others. The possibility of arbitrary numbers of target classes within a scene
makes the evaluation of recognition results somewhat more complicated than the conventional
correct/wrong dichotomy. A recognition result is derived from the posterior class probabilities
according to the following definition:

Definition 4.5 (Evaluation of Recognition Results) Those classes with a posterior probabil-
ity greater than 0.5 are said to berecognized. A class is calledtrue if it is present in the scene,
andfalseotherwise. Each recognition falls into exactly one of the following categories:

correct: Exactly the true classes are recognized.

wrong: The correct number of classes are recognized, but these include at least one false
class. At least one true class was missed.

ambiguous:All of the true classes are recognized, plus one or more falseclasses.

confused: None or some (but not all) of the true classes, and some false classes are recog-
nized. The number of recognized classes is different from the number of target
classes present in the scene. (Otherwise, it is considered awrongrecognition.)

ignorant: None or some (but not all) of the true classes, and none of the false classes are
recognized.

The category ofwrongrecognitions constitutes a special case of misrecognitions that are other-
wise in theconfusedcategory. Wrong recognitions are important in that they contain pairwise
errors where one class is mistaken for one other class. In a classical forced-choice scenario, this
is the only type of incorrect recognitions.

In conventional forced-choice classification, there are only correct and wrong categories.
Since this system has the additional freedom to assign multiple class labels or no label at all,
the number of correct recognitions may be lower than in a forced-choice situation. To facilitate
comparison with forced-choice scenarios, at least the number of ambiguous recognitions should
somehow be taken into account. These contain the right answer, which is valuable especially if
the number of false positive labels in an ambiguous recognition is low. Similarly, an ignorant
recognition should contribute to the same extent as a randomresult. This idea is formalized in
the following definition.

39



Definition 4.6 (Accuracy) A recognition resultis a set of classes recognized in an imageI by
Algorithm 4.4. This set includesnt true positives andnf false positives, wherent + nf ≤ nc, the
total number of classes known to the system. LetnT denote the actual number of target objects
depicted in the scene. Then,

acc(I ) =































nT

nc
if nt + nf = 0

nt

nT + nf
otherwise

is theaccuracyof this recognition result. The accuracy achieved on a setI of images is given
by

acc(I) =
1
|I|

∑

I∈I
acc(I ).

This definition is a generalization of the notion of correct recognition that values ambiguous
recognitions according to the number of false positives involved. An ignorant recognition is
regarded as equivalent to a fully ambiguous recognition, i.e., a result that lists allnc class la-
bels. The accuracy is a value between zero and one, where the maximum corresponds to 100%
correct recognition. If all recognitions are ignorant or fully ambiguous, then the accuracy is the
inverse of the number of classes known to the system. IfnT = 1 everywhere, this is identical to
the chance-level proportion of correct recognitions attained by uniformly random forced-choice
classifiers. Thus, the accuracy can be directly compared to the percentage-correct result deliv-
ered by a conventional forced-choice classifier.

4.4.3 Feature Learning Algorithm

In the incremental learning scenario (Figure 4.2 on page 35), the agent receives training images
one by one. Initially, the agent does not know about any classes or features. When it is presented
with the first image, it simply remembers the correct answer.When it is shown the second
image, it will guess the same answer. This will continue, andno features will be learned, until
this answer turns out to be incorrect.

Algorithm 4.7 (Operation of the Learning System) This algorithm provides details of the
basic model of incremental discrimination learning shown in Figure 4.2, page 35.

1. A new training image is acquired, denotedI .

2. ImageI is run through the recognition algorithm 4.4 as described inSection 4.4.2. If
recognition is correct according to Definition 4.5, then continue at Step 1.

3. Assume recognition failed because of inaccurate conditional probability estimates stored
in the Bayesian networks. To remedy, all feature nodes are re-discretized to maximize
their distinctive power (cf. Definition 4.2, page 37). Theirconditional probabilities are
estimated by counting co-occurring feature values and class labels in the instance list (cf.
Section 4.4.1, page 38). In the same way, the prior probabilities associated with the class
nodes are re-estimated.

4. Re-run the recognition algorithm 4.4 on the imageI . If I is now recognized correctly, then
continue at Step 1.

5. Conclude that at least one new feature must be added to at least one Bayesian network to
recognizeI correctly. Attempt to do this by invoking Algorithm 4.8 (described below).
Then, continue at Step 1.
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This algorithm re-estimates the conditional probability tables of the Bayesian networks only
when an image is misrecognized (Step 3). Alternatively, after each recognition – successful
or otherwise – the conditional probability tables of all nodes related to queried features could
be updated, maintaining a best estimate of the actual probabilities at all times. A drawback
of this approach is that the behavior of the system would fluctuate even in the absence of any
mistakes. For example, two consecutive presentations of the same image could result in two
different recognition results. Since it is easier to characterize the behavior of the system if its
behavior does not depend on a recent history of correct recognitions, it is designed to learn only
from mistakes.

At Step 5 in this algorithm, the objective is to derive a new feature to discriminate one or
more true classes from one or moremistakenclasses, i.e., those false classes that were erro-
neously recognized. Two cases must be distinguished. In thefirst case, a true class is not among
the recognized classes (wrong, confused, or ignorant recognition). The agent needs to find a
new feature of this true class in the current image – thesample image– that, if detected, will
cause this class to be recognized. In the second case, some false classes were recognized in
addition to the true classes (ambiguous recognition). Here, the agent needs to find a feature in
an image of a false class that is not present in the currently misrecognized image, and that, if
not detected, will prevent this false class from being recognized. Again, this image is called the
sample image.

Algorithm 4.8 (Feature Learning)

1. For the purpose of learning this feature, the true and mistaken classes are (re)defined so
that there is generally exactly one true and one mistaken class. The classes selected are
the true class with minimum belief and the false class with maximum belief, respectively,
representing the most drastic case. In either case, if thereis no such unique class, belief
values from earlier (non-final) recognition stages (Algorithm 4.4) are consulted. In partic-
ular, this covers the case of ignorant recognition. See below for further discussion and an
example.

2. A set ofexample imagesis retrieved from the environment. This set containsnex ran-
dom views of each of the true class and the mistaken class. Theprecise value ofnex is
unimportant, but involves a tradeoff that will be discussed below.

3. A new feature is generated, generally by random sampling from the sample image, using
Algorithm 4.10. Algorithm 4.10 may be called only a limited number of times within
a single execution of Algorithm 4.8. If this limit is exceeded, Algorithm 4.8 terminates
unsuccessfully. The details will be discussed below in the context of Algorithm 4.10.

4. A new node representing this new feature is added to the Bayesian network that models the
class of the sample image, along with an arc from the class node and any arcs required to
or from any other feature nodes, to model any known interdependencies with pre-existing
features (cf. Section 4.4.1).

5. The values of this feature, as well as any existing features represented by nodes linked to
or from the new feature node in the Bayes network, are measured within each example
image. The resulting instance vectors are added to the instance list.

6. The new feature node is discretized such that the cutpointmaximizes the distinctive power
between the true and mistaken classes (see Definition 4.2 on page 37), as estimated by
counting entries in the instance list. If the distinctive power is zero, the algorithm continues
at Step 3.

7. The conditional probability tables of the affected nodes are (re)estimated by counting en-
tries in the instance list.

8. The recognition procedure (Algorithm 4.4) is run on the sample image, using the added
feature.
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(a) If the sample image is of a true class that is erroneously not recognized, or if the sam-
ple image is of a false class that is erroneously recognized,then the new feature node
is removed from the Bayes net. However, the definition of the new feature (consist-
ing of its structural description and response vector) is retained until this algorithm
terminates. Now, it proceeds with Step 3.

(b) If the image is of a true class and is now recognized successfully, or if it is of a false
class and is successfully not recognized, then this algorithm terminates successfully.

Note that this feature search procedure requires that each new feature individually solves an
existing recognition problem. This results in a strong tendency to learn few but informative
features. Each feature is learned specifically to distinguish one class from one other class (see
Step 1). Instead of using just one true and one mistaken class, one could use all misrecognized
classes, or even all true and false classes. However, in general it will be much easier to find
features that discriminate well between pairs of classes, than features that discriminate between
two groups of several classes. In practice, this may in fact be all that is required to solve a
given visual task. Moreover, using only a pair of classes ensures that the execution time of this
algorithm is independent of the total number of classes.

Example 4.9 (Selecting True and Mistaken Classes)Table 4.1 shows some examples of how
the characterized and discriminated classes are chosen in Step 1 of Algorithm 4.8. The first case
shows a wrong recognition result. Since all classes with posterior beliefs greater than 0.5 are
said to be recognized, the system erred on classes B and C. Here, it is clear that a new feature
needs to be learned for class B that will cause class B to be recognized in the current image.
This new feature should be discriminative with respect to class C, because the system mistook
class B for class C. Note that the new feature will not affect the recognition result for class C
(nor for any other class but the characterized class B). Likely, it will cause an ambiguous result
like that shown in the second row. Now, a feature must be learned that is characteristic of class
C, and that, if not found in an image, will prevent it from being recognized as class C. Class
A is chosen as the discriminated class because it has the lowest posterior belief among all true
classes, and is therefore presumably most likely confused with class C.

Table 4.1. Selecting true and mistaken classes using posterior class probabilities. Bold type
indicates the characterized class of the new feature to be learned. The discriminated classes are
shown in italics.

True Classes False Classes
A B C D E

wrong 0.7 0.4 0.8 0.3 0.2
ambiguous 0.7 0.9 0.8 0.3 0.2
ignorant 0.3 0.4 0.4 0.3 0.2

0.4 0.4 0.3 0.3 0.2
ignorant 0.0 0.0 0.0 0.0 0.0

The first (wrong) example would constitute a confused recognition if, for example, class D had
received a posterior belief of greater than 0.5. The third example is an ignorant recognition.
Like in wrong and confused cases, the characteristic class is the true class with lowest posterior
belief, and the discriminated class is the false class with highest posterior belief. In the final
example, Algorithm 4.4 resulted in zero belief for all classes. In such a case where true and
characteristic classes cannot be determined from the final recognition result, the system consults
the intermediate recognition result generated by the penultimate iteration of Algorithm 4.4. This
result is guaranteed to contain beliefs with nonzero entropy. In this example, there are two
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potential characteristic classes because both true classes have identical belief. In this case, one
of them is chosen at random because Algorithm 4.4 requires a single sample image. There
are also two potential discriminated classes, both of whichare simply used. In practice, such
ambiguous cases occur very rarely.

The number of example images per class,nex (Algorithm 4.8, Step 2), determines how ac-
curately the conditional probabilities associated with the new feature are estimated at Step 7. A
large value yields accurate estimates, but these are expensive to evaluate. The danger of using
too small a value ofnex is that many good features are discarded because of overly pessimistic
probability estimates. Optimistic estimates result in theaddition of features that later turn out
to be of little value. Consequently, these will cease to be used as they are superseded by more
discriminative features. Thus, using a smallnex will result in more feature searches, each of
which will take less time than when using a largenex. In a practical interactive application, the
choice of this parameter should depend on the relative cost of acquiring images vs. generating
experience in the real world. If experience is costly to obtain (e.g. because it involves sophisti-
cated maneuvers with physical manipulators), but a varietyof representative images are cheaply
obtained at Step 2 of Algorithm 4.8, thennex should be chosen large. On the other hand, if each
real-world experience is generated cheaply but example images are expensive to obtain, then a
small value ofnex should be used. The value does not need to be fixed, nor does it need to be the
same for the true and the mistaken class. All experiments reported here usenex = 5. This value
was chosen relatively small because it emphasizes the incremental nature of learning even if a
small, fixed training set is used. At the other extreme,nex could be chosen so large that the ex-
ample images always include the entire training set (so it exists), yielding immediately accurate
estimates of the distinctive power of features without the need for incremental updating.

It remains to be explained how a feature is generated at Step 3of Algorithm 4.8. There
are five ways to generate a new feature that differ in the structural complexity of the resulting
feature. In accord withOccam’s razor, simple features are preferred over complex features.
Also, they are more likely to be reusable and are computed more rapidly than complex features.
The following algorithm implements a bias toward structurally simple features by considering
features in increasing order of structural complexity.

Algorithm 4.10 (Feature Generation) These methods are applied in turn at Step 3 of Algo-
rithm 4.8:

1. (Reuse)From a Bayesian network representing an unrelated class (other than the true or
mistaken classes), select a random feature that is not in usefor the true or mistaken classes,
to see if it can be reused for the current recognition problem. This promotes the emergence
of general features that are characteristic of more than oneclass.

2. (New Primitive) Sample a new feature directly from the sample image by eitherpicking
two points and turning them into a geometric compound of two edgels, or by picking one
point and measuring a texel feature response vector. (Recall that features are measured
under rotational invariance. Therefore, individual edgels do not carry any information.)
This is the only step where new features are generated from scratch.

3. (Geometric Expansion)From among the features currently in use, or from among the
failed candidate features tried earlier during this execution of Algorithm 4.8 (see Algo-
rithm 4.8, Step 8a), choose a feature at random. Find a location in the sample image where
this feature occurs most strongly (Equation 3.14), and expand it geometrically by adding
a randomly chosen salient edgel or texel nearby. This expansion yields a new feature that
is more specific than the original feature.

4. (Conjunction) Pick two random existing features and combine them into a conjunctive
feature. Again, the result is a new feature that is more specific than either of the constituent
features individually.
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5. (Disjunction) Pick two random existing features and combine them into a disjunctive
feature. Here, the result is a new feature that is less specific than the constituent features.

For a given run of Algorithm 4.8 (Feature Learning, page 41),each time Algorithm 4.8
reaches its Step 3, one method of Algorithm 4.10 is applied. The firstnfgen times Algorithm 4.8
reaches Step 3, Method 1 of Algorithm 4.10 is performed; the next nfgen times, Method 2, and
so on. This continues until either a suitable feature is found, or until the last method has been
appliednfgen times, at which point the feature search (Algorithm 4.8) terminates unsuccessfully.
The parameternfgen in effect controls the bias toward simple features. A large value will expend
more effort using each method, while a small value will give up soonerand move on to the next
method. The current implementation usesnfgen = 10, which is considered to be a relatively
small value in relation to the roughly 100–1000 salient points present in typical images used
here (cf. Chapter 3).

The specific sequence of methods defined in Algorithm 4.10 waschosen because it imple-
ments a bias toward few and structurally simple features. A new feature is only generated if
the system fails to find a reusable feature. Before existing features are expanded, new primitive
features are generated. Geometric expansions are preferred over conjunctive features because
the former are local and rigid, while the latter can encompass any variety of individual features.
Local features are more robust to partial occlusions and minor object distortions than are non-
local features. Nevertheless, conjunctive features may beimportant because they encode the
presence of several subfeatures without asserting a geometric relationship between them. This
makes them more robust to object distortions than geometricfeatures.

The last step involves the generation of disjunctive features. These are susceptible to overfit-
ting because a single disjunctive feature can in principle encode an entire class as a disjunction
of highly specific features, each characterizing an individual training image. Thus, they can help
learn a training set without generalization. On the other hand, disjunctive features are necessary
in general because objects within a class may differ strongly in their appearance. For example, a
disjunctive feature can encode a statement such as “If I see adial or a number pad, I am probably
looking at a telephone.”

4.4.4 Impact of a New Feature

In Algorithm 4.8 (Feature Learning), Step 3, a new feature isgenerated in the hope that it will fix
the recognition problem that triggered the execution of Algorithm 4.8. Clearly, a necessary con-
dition for success is that the new feature is actually consulted by the recognition algorithm 4.4,
when called at Step 8 of Algorithm 4.8. Algorithm 4.4 continues to consult features as long as
there are features that can potentially reduce the uncertainty in any class nodes. Therefore, the
new feature will be queried if the entropy in its own class node does not vanish as a result of
querying other features of this Bayesian network. The only way Algorithm 4.4 can terminate
without querying the new feature is if there is a featuref in this Bayesian network that drives
the entropy in its class node to zero, and that has a greater mutual information with respect to
the class node than the new feature, causing it to be queried before the new feature. Note that
this recognition is incorrect, as it triggered the present execution of the feature learning algo-
rithm 4.8 at Step 5 of Algorithm 4.7 (Operation of the Learning System). The newly generated
feature is not going to be used on this image, irrespective ofany discriminative power it may
have.

How likely is this worst-case situation to occur? Consider acase where the system failed to
recognize a true class. Figure 4.5 illustrates the class-conditional cumulative probabilities of a
featuref that can drive the entropy in the class node to zero, concluding that its class is absent.
The critical property of the graph is that if the class is present, the featuref is always present with
ff > α, allowing one to infer the absence of the class ifff ≤ α. (The figure also illustrates that
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Figure 4.5. KSD of a featuref that, if not found in an image, causes its Bayesian network to
infer that its class is absent with absolute certainty.

the KSD of such a feature can be quite low – roughly 0.5 in this case.) Can this feature prevent
the successful generation of new features by keeping them from getting queried? The answer
is no because it will quickly lose its power to reduce the entropy to zero. To see this, observe
that each processed image generates an instance that is added to the instance list, recording
the measured feature values together with the true class labels. In the situation described here,
ff ≤ αf , but the class was present. This situation is incompatible with the critical property
of Figure 4.5. Consequently, the next time the conditional probabilities off are re-estimated
based on the instance list, at least one of two changes must occur: The probability offf ≤ αf

given the presence of the class becomes greater than zero, orthe thresholdαf is reduced. In
the first case, the feature immediately loses its power to determine the absence of the class with
absolute certainty. The second case clearly cannot reoccurindefinitely becauseαf is chosen to
maximize the KSD, ensuring thatff < αf for the bulk of those cases where the class is absent.
As specified in Algorithm 4.7 (Operation of the Learning System) on page 40, the cutpointsα
and the conditional probability tables of all feature nodesare re-estimated after every incorrect
recognition.

In summary, a newly sampled feature is not guaranteed to be used immediately. However,
those cases where it is not used can be expected to be rare, since they require the presence of a
featuref with the specific properties described above. Importantly,any such degenerate situation
is guaranteed to resolve itself soon because the feature node parameters are re-estimated after
every incorrect recognition. This self-repairing property is a key aspect of the design of the
learning algorithm, and is critical to its successful operation.

4.5 Experiments

The algorithms developed in the preceding sections were developed for open task scenarios in
which images are encountered while the agent performs a task. In effect, each newly acquired
visual scene first serves as a test image that the agent attempts to recognize. If it succeeds, the
agent moves on. If the result of recognition is incorrect, this scene becomes a training image.
Additional example images are then acquired to enable the agent to generate an initial estimate
of the distinctive power of newly generated features.

Testing this algorithm on such an interactive task is a nontrivial endeavor. Implementing
a robot that can interact in meaningful ways with many objects is challenging in its own right
and beyond the scope of this dissertation. The results citedin this section were generated on
simulated tasks.

A second simplification concerns the number of objects shownin an image. The algorithms
described above make no assumptions regarding the number oftarget or distractor objects shown
present in any given image. For simplicity and to facilitatecomparison of the results with
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conventional methods, all experiments were performed in the conventional way, with each image
containing exactly one object. It is important to note however that the learning system did
not take advantage of this in any way. The algorithms were applied in their full generality as
introduced above.

A simulated task consists of a closed set of images. This set of images was divided into
equally sized training and test sets, such that the number ofimages per class was identical to
the extent possible. Each experiment was run a second time with the roles of training and test
sets reversed. In the machine learning terminology, this procedure is called two-fold stratified
cross validation. Training took place as shown in the overview given in Figure 4.2 on page 35,
and as described in detail in Section 4.4.3. Images from the training set were presented to the
system one by one, cycling through the training set in randomorder. A new permutation was
used for each cycle. On receipt of an image, the system analyzed it using Algorithm 4.4. If the
recognition result was not correct (in the sense of Definition 4.5 on page 39), then a new feature
was sought according to Algorithm 4.8. At Step 2 of this algorithm, the example images were
chosen at random from the training set (not from the cycling order). The system cycled through
the entire training set until all recognition results were correct.

The empirical performance of the learning system are discussed in terms of the evaluation
categories given in Definition 4.5, which apply to the general case of an arbitrary number of
target classes. Since all experiments were performed usingonly a single target class, these
categories are restated here for this special case, to simplify their interpretation.

correct: Exactly the true class is recognized.

wrong: Exactly one false class is recognized.

ambiguous:The true class is recognized, plus one or more false classes.

confused: More than one false classes are recognized, but not the true class.

ignorant: No class is recognized.

Experiments were conducted using three data sets with very different characteristics. These will
be discussed in the following sections. The next chapter will introduce a simple extension to the
basic learning algorithm that results in pronounced performance improvements.

4.5.1 The COIL Task

The COIL task consisted of 20 images of each of the first six objects of the 20-object Columbia
Object Image Library [79]. One sample image of each class, representing the middle view,
is shown in Figure 4.6. Neighboring views are spaced 5 degrees apart, at constant elevation.
Neighboring images were assigned alternately to training and test sets. All images are of size
128× 128 pixels.

obj1 obj2 obj3 obj4 obj5 obj6

Figure 4.6. Objects used in the COIL task. Shown are middle views from thesorted sequence
of viewpoints.
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Table 4.2 summarizes important performance parameters forthe COIL task (and also for the
other two tasks, Plym and Mel, but these will be discussed later). The most striking observation
is that the trained recognition system is very cautious in that it makes very few mistakes. The
proportions of wrong and ambiguous recognitions are both very low. Unfortunately, the propor-
tion of correct recognition is also fairly low at about 50%. In the remaining 33% ignorant cases,
no class was recognized at all.

Table 4.2.Summary of empirical results on all three tasks. The first four entries give the name
of the task, the number of classes, the fold index, and the accuracy according to Definition 4.6.
The five entries under “Recognition Results” in each row sum to one, barring roundoff errors.
Zero entries are left blank for clarity. The columns under the heading “# Features” give the
total number of feature nodes in all Bayesian networks (BN),the total number of different fea-
tures (dif.), the average number of features queried (qu’d)during a single recognition procedure
(Algorithm 4.4), and the total cumulative number of features sampled (sp’d), respectively. The
rightmost two columns list the number of cycles through the training set, and the total number
of training image presentations.

Recognition Results # Features Tr. Set
Task Cls. Fold acc. cor. wrg. amb. cnf. ign. BN dif. qu’d. sp’d. cyc. imgs.

COIL 6 1 .58 .48 .08 .08 .35 46 35 22.1 471 6 360
COIL 6 2 .61 .52 .08 .10 .30 60 40 22.1 911 8 480
COIL 6 avg. .60 .50 .08 .09 .33 53 38 22.1 691 7 420
Plym 8 1 .57 .50 .06 .05 .02 .38 84 59 22.0 977 8 448
Plym 8 2 .61 .52 .02 .09 .38 86 55 32.1 1019 8 512
Plym 8 avg. .59 .51 .04 .07 .01 .38 85 57 27.1 998 8 480
Mel 6 1 .49 .36 .14 .11 .39 50 34 17.4 608 8 288
Mel 6 2 .47 .33 .08 .14 .44 47 29 19.6 477 6 216
Mel 6 avg. .48 .35 .11 .13 .42 48 32 18.5 543 7 252

The next two columns give the number of feature nodes summed over all class-specific
Bayesian network classifiers, and the number of features that are actually different. The dif-
ference between these two numbers corresponds to features that are used by more than one
classifier (see Algorithm 4.10, Feature Generation, Step 1). Here, about one-third of all feature
nodes share the same feature with at least one other node. Howmany of these features are
actually queried during an average recognition procedure (Algorithm 4.4)? The next column
shows that on average, only a little more than half of all available features are queried before the
entropies in the class nodes are reduced to zero, or until none of the unqueried features has any
potential to reduce a nonzero entropy. On average, the classifier system ended up with about 9
feature nodes per class (53 feature nodes/ 6 classes).

The rightmost three columns in Table 4.2 give a flavor of the total number of features gen-
erated during learning, the number of iterations through the training set performed until it was
perfectly learned, and the total number of training images seen by the learning system. These
numbers become more meaningful in the context of the following chapter.

Table 4.3 provides deeper insight into the recognition performance, separately for each class.
Interestingly, it shows that the performance characteristics differ widely between the two folds
of the two-fold cross validation. For example, in Fold 1 almost all instances ofobj3 were
recognized correctly, while in Fold 2 most of them were not recognized at all. However, some
trends can still be found: Performance was consistently high on obj2, and consistently low on
obj6 andobj4. Moreover, instances ofobj4 tended to be misclassified asobj6, but not vice versa.
The variation between the two folds is mostly due to the randomness inherent in the feature
learning algorithm. This topic will be further discussed inSection 4.6 and in Chapter 5.
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Table 4.3. Results on the COIL task. The table shows, for each class, howmany instances
were recognized as which class for correct and wrong recognitions, and the number of ambigu-
ous/confused/ignorant recognition outcomes. In each row, these entries sum to the number of
test images of each class (here, 10). The rightmost column shows the number of feature nodes
that are part of the Bayesian network representing each class. The bottom row of the bottom
panel gives the average proportion of the test set that fallsinto each recognition category.

Confusion Matrix correct/wrong # Feats.
Class obj1 obj2 obj3 obj4 obj5 obj6 amb. cnf. ign. BN

Fold 1:
obj1 6 4 8
obj2 8 1 1 4
obj3 8 2 9
obj4 1 2 1 2 2 2 11
obj5 3 2 5 5
obj6 1 2 7 9
Sum 6 8 10 2 4 4 5 0 21 46

Fold 2:
obj1 5 5 10
obj2 10 7
obj3 2 1 7 16
obj4 4 2 2 2 9
obj5 7 2 1 8
obj6 2 3 2 3 10
Sum 5 10 2 4 10 5 6 0 18 60

Average of both folds (proportions):
obj1 .55 .45 9
obj2 .90 .05 .05 6
obj3 .50 .05 .45 13
obj4 .05 .30 .05 .20 .20 .20 10
obj5 .50 .20 .30 7
obj6 .05 .10 .25 .10 .50 10
Avg. .09 .15 .10 .05 .12 .08 .09 .00 .33 9
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In the cases of ambiguous recognition, which classes were the false positives? The answer
is given by Table 4.4. In both folds,obj4 andobj5 could often not be disambiguated from each
other. These wrong and ambiguous recognitions do not seem intuitive, given that they appear
very dissimilar to a casual observer (Figure 4.6). However,in Fold 1, obj4 shares one feature
with each ofobj5 andobj6. This is an indication that at some level, these classes do seem similar
to the learning system. Even more strongly in Fold 2,obj4 shares one feature withobj5, two
features withobj6, and one more feature with bothobj5 and obj6. Examples of the features
learned for each class are shown in Figure 4.7. Edgels and texels and their orientations and
scales are represented as in Figure 3.9 on page 22. In addition, the subfeatures of a compound
feature are linked with a line, that is solid for geometric and dotted for Boolean compounds.

Table 4.4.Results on the COIL task: Confusion matrices of ambiguous recognitions. The italic
numbers on the diagonal indicate how many times the class given on the left was recognized
ambiguously (cf. Table 4.3), and the upright numbers in eachrow specify the false-positive
classes.

Class obj1 obj2 obj3 obj4 obj5 obj6

Fold 1:
obj1
obj2 1 1
obj3
obj4 2 1 1
obj5 1 1 2
obj6

Fold 2:
obj1
obj2
obj3
obj4 2 2 1
obj5 1 2 1
obj6 1 1 2

To a casual human observer, the two cars (obj3 andobj6) look very similar. Why does the
learning system not seem to have any difficulty with these two objects? The answer is that
the similarity occurs at a high level, concerning the overall shape of the body, the location of
the wheels, etc. However, the learning system does not have direct access to these high-level
features. It only looks at a small number of strongly localized features, and at combinations of
these. At the level of local features, the two cars in fact look rather different even to humans.

What are the appearance characteristics captured by individual features? Figures 4.8 and
4.9 give an intuition. Figure 4.8 shows all images of classobj1. Each image displays all features
characteristic of this class that is present in this image (i.e., ff > αf ; cf. Algorithm 4.4, Step 5,
page 38). Each feature is annotated with a unique identifierk (featurek was thekth feature
learned by the system). The images show that some features are reliably located at correspond-
ing parts of the duck (features 5, 8, 25). Other features change their location with the viewpoint
(features 11, 13). Most features appear on most views, whilefeature 22 only occurs in a few
images. Feature 9 is a disjunctive feature. In most views, its dominant subfeature is a large-scale
geometric compound of two edgels. Only the first image shows its other subfeature, a texel.

Figure 4.9 illustrates the specificity of a representative subset of the features characteristic
of classobj1. The two center columns indicate how strongly a feature responded everywhere in
the image. For purposes of illustration, the feature response value was computed at all image
points (not just at salient points). At each point, all scales corresponding to scale-space maxima
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Figure 4.7. Examples of features learned for the COIL task. For each class, all features char-
acterizing this class in Fold 1 are shown that are consideredto be present in the image by the
classifier.

50



Figure 4.8. Features characteristic ofobj1 located in all images of this class where they are
present. These features were learned in Fold 1, and are here identified by unique ID numbers.
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were considered. The gray value at a pixel corresponds to themaximum feature valuefmax over
these scales. The location of a feature is identified with thelocation of its reference point (cf.
Figure 3.12, page 26). To enhance detail, the gray value is proportional tof 4

max, as most feature
responses are quite close to unity. A pixel was left white if the scale function did not assume
any local maxima at this image location. The figure shows thatsome features are more specific
than others. Feature 13 is the least specific feature characteristic ofobj1. It responds strongly in
many areas both around the periphery and in the interior of the duck, and also the cat. Feature 5
is the most specific feature ofobj1, and responds primarily to certain areas interior to the duck.
This feature is very similar to feature 25. Not accidentally, feature 13 assumed its strongest
response at various places in Figure 4.8, while features 5 and 25 are stable with respect to their
location. Feature 18 is an example of an edge feature. In fact, its response is much more strongly
localized to edges than the texel features shown in Figure 4.9. Feature 9 responds only weakly
everywhere, as its constituent features were sampled from other images. Its presence threshold
αf is correspondingly lower (not shown in the figure).

4.5.2 The Plym Task

The second task used eight artificially rendered, geometricobjects,2 that are shown in Figure
4.10. There are 15 views per object, covering a range of±10 degrees about the vertical axis rel-
ative to the middle position shown in Figure 4.10 in steps of two degrees, at constant elevation.
Two views are rendered from elevations 10 degrees above and below the middle position, and
two views at 10 degrees in-plane rotation. The object surfaces are free of texture. This makes
the Plym task difficult to learn using the feature space used here, as the only discriminant infor-
mation available to the learning system is given by local contour shading and angles between
edges – and both are adversely affected by perspective distortions. The rendering viewpoints are
closer together and cover a smaller section of the viewing sphere than the COIL task. Again,
neighboring views were assigned alternately to training and test sets, yielding one training/test
set with 8 and one with 7 images per class. The objects are rendered at similar size, and the
images were cropped to leave a 16-pixel boundary around the object, resulting in image sizes of
about 100× 170 pixels.

Table 4.2 reveals that the performance of the learning system on the Plym task was very
similar to the COIL task. There was about the same number of correct recognitions, but slightly
fewer wrong and ambiguous recognitions, which is reflected by a higher proportion of ignorant
results. One of the very fewconfusedrecognition results ever encountered occurred here: A
cucon was recognized as acucy and acyl3. Incidentally, in this fold thecucon Bayesian network
shared one feature each with each of thecucy and cyl3 networks, which indicates that these
classes were considered similar by the learning system. Allother numbers shown in Table 4.2
are roughly in proportion to the COIL task.

The confusion matrices (Table 4.5) again reveal striking consistencies and differences be-
tween the two folds. For example,cyl3 was perfectly recognized in Fold 1, but poorly in Fold 2.
Objectcycu was almost perfectly recognized in both folds. This object is characterized by a
unique rectangular protrusion attached to a smooth surface. This turned out to be a powerful
clue to the learning system: The compound feature (from Fold2) sitting precisely at the attach-
ment location in Figure 4.11 has a KSD of 1.0 – it is a perfect predictor of this object. In Fold 1,
a coarse-scale texel feature was learned that responds to the unique concavity created by the
protrusion. This feature (not shown) also has a KSD of 1.0.

The consistently most difficult objects to recognize werecyl6 andtub6. Most severely, none
of these was recognized correctly in Fold 1. It is no coincidence thatcyl6 is the most featureless
object in the dataset, and it is identical to thetub6 except that the latter is hollow. This is a

2These objects were generated by Levente Tóth at the Centre For Intelligent Systems, University of Plymouth,
UK, and are available under the URL http://www.cis.plym.ac.uk/cis/levi/UoP CIS 3D Archive/8obj set.tar.
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Figure 4.9. Spatial distribution of feature responses of selected features characteristic ofobj1
(left columns), for comparison also shown forobj4 (right columns). In the center columns,
the gray level encodes the response strength of the feature shown in the outer panels. Black
represents the maximal response off = 1.0; in white areas no response was computed. Features
are labeled by their ID numbers.
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con6 cube cucon cucy cycu cyl3 cyl6 tub6

Figure 4.10.Objects used in the Plym task. Shown are middle views from thesorted sequence
of viewpoints.

con6 cube cucon cucy

cycu cyl3 cyl6 tub6

Figure 4.11. Examples of features learned for the Plym task. For each class, all features char-
acterizing this class in Fold 2 are shown that are consideredto be present in the image by the
classifier.
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Table 4.5. Results on the Plym task. The table shows, for each class, howmany instances
were recognized as which class for correct and wrong recognitions, and the number of ambigu-
ous/confused/ignorant recognition outcomes. In each row, these entries sum to the number of
test images of each class (here, 8 in Fold 1 and 7 in Fold 2). Therightmost column shows the
number of feature nodes that are part of the Bayesian networkrepresenting each class. The
bottom row of the bottom panel gives the average proportion of the test set that falls into each
recognition category.

Confusion Matrix correct/wrong # Feats.
Class con6 cube cucon cucy cycu cyl3 cyl6 tub6 amb. cnf. ign. BN

Fold 1:
con6 6 2 13
cube 3 5 16
cucon 1 5 1 1 5
cucy 3 3 2 10
cycu 7 1 8
cyl3 8 4
cyl6 8 15
tub6 2 1 5 13
Sum 7 3 5 3 7 10 1 0 3 1 24 84

Fold 2:
con6 4 3 6
cube 5 2 12
cucon 1 5 1 6
cucy 3 4 7
cycu 7 6
cyl3 3 4 14
cyl6 3 4 21
tub6 1 3 3 14
Sum 4 5 1 3 7 3 4 3 5 0 21 86

Average of both folds (proportions):
con6 .67 .33 10
cube .53 .47 14
cucon .07 .40 .33 .07 .13 6
cucy .40 .20 .40 9
cycu .93 .07 7
cyl3 .73 .27 9
cyl6 .20 .80 18
tub6 .13 .13 .20 .53 14
Avg. .09 .07 .05 .05 .12 .11 .04 .03 .07 .01 .38 11
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situation where the lack of a closed-world assumption (cf. Section 4.4.1) impairs recognition
performance: The only way to decide that an object is acyl6 as opposed to atub6 is by asserting
theabsenceof features corresponding to the cavity. This type of inference is not performed by
the recognition system. Therefore, the learning system tries hard to identify features characteris-
tic of cyl6, finding features that respond to the individual training images, but do not generalize.
These features fail to respond to unseen test views, which results in ignorant recognitions. The
similarity between these two objects is further illustrated by the fact that in both folds, their
respective Bayesian networks share three features.

No pattern is apparent in the few ambiguous recognitions (Table 4.6). In each fold, only one
class experienced ambiguous recognitions. Neither of these ambiguities is reflected in shared
features.

Table 4.6.Results on the Plym task: Confusion matrices of ambiguous recognitions. The italic
numbers on the diagonal indicate how many times the class given on the left was recognized
ambiguously (cf. Table 4.5), and the upright numbers in eachrow specify the false-positive
classes.

Class con6 cube cucon cucy cycu cyl3 cyl6 tub6

Fold 1:
con6
cube
cucon
cucy 3 2 1
cycu
cyl3
cyl6
tub6

Fold 2:
con6
cube
cucon 1 5 4
cucy
cycu
cyl3
cyl6
tub6

4.5.3 The Mel Task

The Mel task used all 12 images of each of six non-rigid objects from the image database used
to train and test Mel’s SEEMORE system [71]. All images are shown in Figure 4.12. To speed
up processing, the images were subsampled to 320× 240 from their original size of 640× 480
pixels. The views represent random samples from the objects’ configuration space, taken at two
different scales that differed by a factor of two. Images were randomly assigned to training and
test sets, each containing six images. This data set was intended to test the limits of the learning
system. As the feature space derives most of its expressive power from geometric compound
features, it is best suited for rigid objects. The Mel task, however, consists of non-rigid objects
in widely varying configurations, limiting useful geometric compounds to very small scales.

Table 4.2 shows that the system did poorly on the Mel database, as reflected by all perfor-
mance categories except for confused recognitions. Ignorant recognitions even exceeded correct
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abalone bike-chain grapes necktie phone-cord sock

Figure 4.12.All images used in the Mel task.
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recognitions. According to Table 4.7, the four weakest-performing classes werephone-cord,
grapes, abalone, andsock. In particular, no phone cords were recognized correctly. One prob-
lem was that for the smaller-scale views, much of the crucialdetail was represented at scales that
approached the pixel size. Each of the other three classes reveals a limitation of the system as
presented here. Asock is primarily characterized by the gray-level statistics ofits structureless
surface. However, the features described in Chapter 3 are designed to characterize gray-level
structure, not statistics.

Table 4.7. Results on the Mel task. The table shows, for each class, how many instances
were recognized as which class for correct and wrong recognitions, and the number of ambigu-
ous/confused/ignorant recognition outcomes. In each row, these entries sum to the number of
test images of each class (here, 6). The rightmost column shows the number of feature nodes
that are part of the Bayesian network representing each class. The bottom row of the bottom
panel gives the average proportion of the test set that fallsinto each recognition category.

Confusion Matrix correct/wrong # Feats.
Class abalone chain grapes necktie cord sock amb.cnf. ign. BN

Fold 1:
abalone 2 2 2 10
bike-chain 4 2 8
grapes 2 1 3 7
necktie 1 3 2 7
phone-cord 1 1 4 9
sock 2 2 1 1 9
Sum 3 5 2 5 1 2 4 0 14 50

Fold 2:
abalone 2 1 3 6
bike-chain 4 2 6
grapes 1 1 1 3 7
necktie 3 3 8
phone-cord 1 5 12
sock 2 1 3 8
Sum 3 5 1 3 0 3 5 0 16 47

Average of both folds (proportions):
abalone .33 .25 .42 8
bike-chain .67 .33 7
grapes .08 .25 .08 .08 .50 7
necktie .08 .50 .25 .17 8
phone-cord .08 .08 .08 .75 11
sock .17 .33 .17 .33 9
Avg. .08 .14 .04 .11 .01 .07 .13 .00 .42 8

Theabalone board contains strong gray-level structure, but this structure varies widely be-
tween images (Figure 4.12). The most meaningful texel features occur about at the scale of the
abalone balls. These do not have a meaningful orientation, as they will mostly be measured
at scales that are affected by changes in the board configuration. This prevents the construc-
tion of powerful geometric compound features, as these relyon predictable relative orientations
between features.

For practical, reasons, the feature sampling procedure relies on salient points and their intrin-
sic scales as extracted by scale-space methods. Thegrapes class exposes the critical impact of
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this procedure on recognition performance. Due to the low contrast and the high degree of self-
occlusion and clutter present in thegrapes images, the extracted texels and their scales rarely
corresponded to individual grapes. Moreover, similarly tothe abalone board, the orientations
of individual texels is rarely meaningful for larger-scaletexels in thegrape images.

Table 4.8 of ambiguous recognitions does not reveal any conclusive insights. Figure 4.13
shows examples of features learned for the Mel task. Curiously, two background features were
found characteristic of theabalone class. From the viewpoint of task-driven learning, this is not
considered bad. Any feature that is helpful on a task should be considered. If the background is
predictive of a target class, then background features may contribute to performance.

Table 4.8. Results on the Mel task: Confusion matrices of ambiguous recognitions. The italic
numbers on the diagonal indicate how many times the class given on the left was recognized
ambiguously (cf. Table 4.7), and the upright numbers in eachrow specify the false-positive
classes.

Class abalone chain grapes necktie cord sock

Fold 1:
abalone 2 2 1
bike-chain
grapes
necktie
phone-cord 1 1
sock 1 1

Fold 2:
abalone 1 1
bike-chain
grapes
necktie 1 1 3 1
phone-cord
sock 1 1 1

4.6 Discussion

This chapter presented an incremental and task-driven method for learning distinctive features
from the feature space introduced in the previous chapter. Although the experiments described
above used conventional data sets used in object recognition research, the method developed
here is far more general than most existing recognition systems. In contrast to most methods
based on eigen-subspace decomposition, this approach doesnot rely on global appearance or
background segmentation (but see Colin de Verdière and Crowley [26] for an example of locally
applied eigen-features, and Black and Jepson [14] and Leonardis and Bischof [61] for robust
versions of global eigen-features). In contrast to most approaches based on local features, this
system does not require a hand-built feature set, but learnsdistinctive features from a feature
space. No prior knowledge about the total number of target classes is used, and no assumptions
are made regarding the number of target classes present in any given image. The learner learns
distinctions as required, adding classes as they arise.

The feature learning algorithm relies on two key concepts for incremental learning of condi-
tional probabilities: the example images, and the instancelist. The concept of example images
is analogous to the human capacity to keep a small number of example views in short-term
memory. A human acquires these views simply by looking at an object for an extended period
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Figure 4.13. Examples of features learned for the Mel task. For each class, all features char-
acterizing this class in Fold 1 are shown that are consideredto be present in the image by the
classifier.
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of time while changing the viewpoint. Importantly, these acquired views are not distinct, but
form a coherent motion sequence, which allows the observer to track features across viewpoints.
This can greatly facilitate the discovery of stable and distinctive features [129]. In the system
discussed in the present chapter, no such assumptions are made about the example images. Fu-
ture work should investigate how to take advantage of passively provided or actively acquired
motion sequences.

Notably, example images can be avoided altogether. In this case, evaluation of newly sam-
pled features is deferred until a sufficient number of training views of the object classes in
question has been acquired over time. However, this deferred evaluation precludes the goal-
directed, simple-to-complex feature search implemented by Algorithms 4.8 and 4.10. Instead, a
number of features must be generated and kept around until they can be evaluated. To illustrate
how this can be implemented, the second application discussed in Chapter 6 operates without
example images.

The second key component, the instance list, is not easily dispensable because it is used to
estimate class-conditional feature probabilities. The dynamic recomputation of the thresholds
αf (cf. Definition 4.2 (Distinctive Power of a Feature) on page 37, and Algorithm 4.8 (Feature
Learning), Step 7 on page 41) relies on the ability to count the individual instances. However,
this dynamic recomputation is not an essential part of the overall algorithm. If one is willing to
commit to an early estimate of the thresholdsαf , then the conditional probability distributions
can be maintained in the form of parametric approximations that can be updated incrementally
as new training examples become available. In this case, theinstance list can be completely
avoided. If an instance list is used, it may be desirable to truncate it at a given length. This has
two important consequences: First, the memory requirements of the feature learning mechanism
are essentially constant for a fixed number of classes. Second, the learner would continually
adapt to a nonstationary environment, learning new features as required, and forgetting old
features as they become obsolete.

The recognition system is designed to be very general. Threeimportant design choices that
were motivated by this goal are the use of local features thatare more robust to the presence
of clutter and occlusions than global features, the use of scale-space theory to infer the appro-
priate local scales for image analysis, and the use of separate classifiers for each class, each of
which decides whether an object of its class is present in thescene, independently of the other
classes. These characteristics result in a very general system that makes few assumptions about
the viewed scenes. On the other hand, if such prior information is available in the context of a
given task, any general system is clearly put at a disadvantage with respect to more specialized
systems that explicitly exploit this information. For example, if the scale of the target objects
is known, scale-space theory (or any other method for multiscale processing) introduces unnec-
essary ambiguity. If it is known that there is exactly one target object present in each scene, it
would be preferable to have the classes compete in the sense that evidence found in favor of one
class reduces the belief in the presence of other classes. This is implemented by the classical
model of a Bayesian classifier, where a single class variablehas one state for each class. If
objects are rigid and presented in isolation on controlled backgrounds, as was the case in the
COIL and Plym tasks, then superior results are typically achieved using global features.

To avoid unnecessary complication, all experiments were performed using controlled im-
agery with one well-contrasted object present in each scene. Moreover, with the exception of
the Mel task, objects were rigid and subject to only minor changes in scale. As is to be expected,
somewhat superior results were achieved by earlier versions of the feature learning system that
took advantage of known task constraints. Instead of the multiple Bayesian network classifiers
used in this chapter, a single Bayesian network classifier [85] and a decision tree [84, 86] as-
signed exactly one class label to each image. Other systems processed imagery at a single scale
[84] or at multiple scales, spaced by a factor of two [86, 88, 87, 89].
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The principal reason for the relatively low recognition accuracies achieved in this chapter is
that the learning algorithm accepts any feature that solvesa given recognition problem (Algo-
rithm 4.8 (Feature Learning), Step 8b, page 42). However, such features may have very little
distinctive power. Therefore, the generalization properties of the resulting classifiers are subject
to the randomness of the feature sampling procedure. The following Chapter 5 will present a
method for learning improved features, which leads to improved recognition results while pre-
serving the openness of the system. Therefore, a more detailed discussion of the performance
characteristics of the feature learning system is deferredto Chapter 5.

Another important limitation of the system as described in this chapter is related to the com-
putation of the salient points. Due to limited computational resources, computation of feature
values is restricted to salient points. The fewer salient points are extracted, the more the learning
success will depend on the variety and stability of the salient points, which is the flip side of the
computational savings. Moreover, in the experiments reported here, the scale space was rela-
tively coarsely sampled at half-octave spacing. If more intermediate scales are used, more local
scale-space maxima and thus more salient points will generally be found, and intrinsic scales
will be measured more accurately, again at increased computational expense. Section 5.4.5 will
examine the computational cost in more detail.

The goal of this work is not to achieve high recognition ratesby exploiting known prior
constraints, but to begin with a highly uncommitted system that learns useful visual skills with
experience. To fully evaluate the the general system, large-scale experiments would be required
to test it under various degrees of clutter and occlusion at various scales, with various numbers of
target objects present in a scene. There is no known suitableimage data set currently available.
Hence, a full-scale performance evaluation would constitute a substantial endeavor, which is
beyond the scope of this dissertation.
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CHAPTER 5

EXPERT LEARNING

Chapter 4 presented an algorithm for learning distinctive features from the feature space de-
scribed in Chapter 3. This brief chapter introduces a simpleextension to the learning algorithm
that produces markedly improved features. A resulting significant improvement in recognition
performance is reflected by all evaluation criteria.

5.1 Related Work

Most current machine vision systems are constructed or trained off-line or in a dedicated training
phase. In contrast, human visual performance improves withpractice. For example, recognition
accuracy and speed both increase with growing experience. It is not clear what the biological
mechanisms are for this type of visual learning. Nevertheless, there is substantial evidence that
at least part of the performance improvement can be attributed to better features. Tanaka and
Taylor [120] found that bird experts were as fast to recognize objects at a subordinate level
(“robin”) as they were at the basic level (“bird”). In contrast, non-experts are consistently faster
at basic-level discriminations. This effect is so pronounced that it has been proposed as a defi-
nition of expertise in visual recognition [120, 38]. It seems that experts, colloquially speaking,
know what to look for, suggesting they have developed highlydiscriminative features.

Gauthier and Tarr [38] investigated the phenomenon of recognition expertise using artificial,
unfamiliar stimuli, the so-calledGreebles. Greebles are organized into genders and families, that
are characterized by the shapes of an individual’s body parts. Subjects were trained to recognize
Greebles at three levels – gender, family, and individual – until they reached the expert criterion,
i.e., they were as fast to recognize Greebles at the individual level as at the family or gender
level. Training required between 2700 and 5400 trials, spread across a total of 7 to 10 one-
hour sessions. Experts thus trained were slower to recognize Greebles with slightly transformed
body parts, as compared to the Greebles they saw during training. All expert subjects reported
noticing these transformations. In contrast, for non-experts there was no such speed or accuracy
difference, and none of them noticed the transformations. Again, this result strongly suggests
that experts had developed highly specific features. In fact, Gauthier and Tarr write:

“In our experiment, expertise training may have led to the assembly of complex
feature-detectors, extracted from the statistical properties of the Greeble set that
proved useful for performing the training discriminations.” [38]

The feature space introduced in Chapter 3 fits this description. The present chapter provides
a computational model that is consistent with the empiricalresults and proposed mechanisms
reported by these authors. Regarding a possible neural substrate, Gauthier and Tarr speculate
that the complex feature detector neurons found in the inferotemporal cortex are not fixed but
can be modified in response to experience, citing Logothetisand Pauls [65] who found that these
neurons can become highly selective for previously novel stimuli.

I am not aware of any work in machine vision that is related to the development of visual
expertise and the formation of improved features. Feature extraction methods based on dis-
criminative eigen-subspaces generate highly distinctivefeatures, but these methods are usually
applied off-line, and the extracted features are typically non-local [31, 37, 117].
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5.2 Objective

The basic feature learning procedure introduced in the preceding chapter is driven by a single
criterion, that is, to learn the training images. In the absence of any misrecognitions, no learning
occurs. In analogy to human visual learning, the resulting visual system remains a life-long
non-expert. The objective in this chapter is to extend the basic learning procedure such that
learning can continue even in the absence of misrecognitions. As motivated by the phenomenon
of human expertise, learning then focuses on improving the features.

How can the learner improve its features? What is the criterion that measures the quality of
a feature? In the previous chapter, no attention was paid to the quality of a feature. The only
requirement of a candidate feature for inclusion in a classifier was that it solved the recognition
problem that triggered the present feature search (Algorithm 4.8 (Feature Learning), Step 8b,
page 42). The algorithm wasbiasedtoward finding few and powerful features (by adding a
maximum of one feature for each failed recognition), and toward structurally simple features
(by virtue of the simple-to-complex ordering of steps in thefeature-generation algorithm 4.10
on page 43). However, there was noexplicit pressure on the number or quality of features.
The following section defines an obvious measure for the quality of a feature, and a simple
mechanism for learning improved features. A desired side effect is the reduction of the number
of features used during recognition, which resembles and might explain the fast recognition
performed by human experts.

5.3 Expert Learning Algorithm

The goal of the learning system is to learndistinctive features (Definition 4.1, page 31). To
discretize the continuous feature values, a cutpoint is chosen that maximizes the distinctive
power of a feature (Definition 4.2, page 37). Hence, a naturalway to define the quality of a
feature for the purposes of expert learning is to equate it with its distinctive power between the
characterized class and one or more discriminated classes.

The basic idea of the expert learning algorithm is to reduce uncertainty in the recognition
result by learning features that discriminate well betweenclasses that are difficult to distinguish
by the recognition system. This difficulty is measured in terms of the KSD achieved by any
feature available to discriminate between these classes. If for a given pair of classes this KSD
falls below a global thresholdtKSD, then a new feature is sought that discriminates between these
classes with a KSD of at leasttKSD. A high-level view of the expert learning idea is given by the
following algorithm.

Algorithm 5.1 (Expert Learning) On receipt of an image, the following steps are performed:

1. The image is recognized using Algorithm 4.4 (page 38). If the result is correct (in the
sense of Definition 4.5), then continue at Step 2. Otherwise,the feature learning algorithm
(4.8, page 41) is run, with one slight but important modification: At Step 3, Algorithm
4.10 is called repeatedly until it returns a candidate feature with a KSD greater thantKSD.
The completion of Algorithm 4.8 also concludes this Algorithm 5.1.

2. If there is no class with nonzero residual entropy after recognition, the algorithm stops. No
expert learning is performed in this case – the learner is considered a fully trained expert
on this image.

3. Identify a pair (c, d) of classes for which an improved distinctive feature is to be learned.
The details are given in Algorithm 5.2 below.

4. A new feature is learned that is characteristic of classc and discriminative with respect
to classd, using Algorithm 4.8, beginning at Step 2, subject to the same minimum-KSD
requirement as described at Step 1 above.
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A crucial part of this straightforward algorithm is Step 3. There are many ways to define a mean-
ingful pair of classes that warrant learning an improved distinction. The method described in
Algorithm 5.2 below identifies a pair of classes that constitutes a “near miss” in the recognition.
Hence, one of the classes is a true class (i.e., a target classpresent in the current image), and
the other is a false class. The specific pair of classes is chosen that are least well discriminated
by any feature consulted during the recognition procedure (Step 1 in Algorithm 5.1). Therefore,
this is the pair of classes that would benefit the most from a better feature. Crucially, the charac-
terized class of the new feature must have had nonzero residual entropy after recognition. This
guarantees that the new feature is going to be queried next time the same training image is seen.
Thus, the new feature actually improves the situation, and endless loops are avoided.

Algorithm 5.2 (Choosing a Pair of Classes for an Expert Feature) This algorithm is run at
Step 3 of Algorithm 5.1, and determines a characteristic classc and a discriminated classd that
are least well discriminated by existing features:

1. For all classesci with nonzero residual entropy:

(a) If ci is a true class, then defineD as the set of all false classes; otherwise, letD be the
set of all true classes.

(b) Determine the classdmin
i ∈ D that is least well discriminated by any feature charac-

teristic of classci , in terms of the KSDci ,dmin
i

. This is accomplished by computing for
all classesd j ∈ D:

• Over all featuresf that are characteristic of classci , and that have been con-
sulted during the recognition procedure, compute the maximum KSDci ,dj (f ). Each
KSDci ,dj (f ) is computed by counting applicable instances in the instance list.

Then, the least-well discriminated classdmin
i is given by the feature with the weakest

value of the KSDci ,dj (f ):

KSDci ,dmin
i
= min

dj∈D
max

f
KSDci ,dj (f )

2. The characterized and discriminated classes are given bythe pair with the weakest associ-
ated KSD. Formally,c = ci andd = di , where

i = argmin
j

KSDcj ,dmin
j
. (5.1)

The feature learning procedure defined by Algorithms 5.1 and5.2 attempts to learn improved
features as long as there are classes with nonzero residual entropy, and as there are classes that
are discriminated at a KSD less thantKSD by any currently available feature. The thresholdtKSD

can be increased over time. There are other possible ways to learn improved features. For exam-
ple, one can attempt to learn highly distinctive features between all pairs of classes exhaustively.
However, this is impractical for even moderate numbers of classes, and it would likely generate
a large number of features that are never going to be used in practice. A nice property of the
above algorithms is that expert feature learning – like the basic feature learning – is driven by
actual experience. Successfully learned features are guaranteed to be used should the same sit-
uation arise again. Thus, each new feature has a well-definedutility to the recognition system.
When there is no measurable need for better features, the expert learning algorithm stops.

5.4 Experiments

Experiments were performed using the same simulated, incremental paradigm as in Section 4.5,
and using the same data sets. Here, training occurred instages. The purpose of these stages was
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to progressively increase the thresholdtKSD, below which a feature was considered weak and
triggered expert learning.

Algorithm 5.3 (Training Stages)

1. Initially, set the stage index tos= 0, and lettKSD(s) = 0.

2. Train the system by cycling through the training set, as described in Section 4.5. Cycle
until either the training set has been learned completely (i.e., all recognitions are correct),
or give up after 20 iterations. During feature learning, apply the tKSD(s) threshold as
described in the expert learning algorithm 5.1, Step 1.

At the end of each cycle, discard all features that have not been consulted at all during this
past cycle.

During recognition, monitor the minimum KSD encountered byAlgorithm 5.2 during the
final iteration through the training set. This value is givenby

KSDmin(s) = min
recognitions

min
i

KSDci ,dmin
i

where the first minimum is taken over all executions of Algorithm 5.1 during the final
iteration through the training set (cf. Equation 5.1).

3. For the next stages+ 1, set

tKSD(s+ 1) = 1−
(

1− min{KSDmin(s), tKSD(s)}
2

)

This rule attempts to ramp up the target KSDtKSD exponentially, asymptoting at unity, but
only if the target KSD was reached during the stage just completed, i.e. if KSDmin(s) ≥
tKSD(s). If tKSD(s+ 1) > 0.98, then it was set totKSD(s+ 1) = 1.

4. Increments, and continue at Step 2.

According to this algorithm, the first stage (s= 0) is precisely the basic feature learning proce-
dure used in Section 4.5. In fact, the results reported thereare those obtained after the first stage
of a comprehensive training procedure, the results of whichare presented below.

5.4.1 The COIL Task

The first block of results listed in Table 5.1 corresponds to the COIL results in Table 4.2 on
page 47, but were attained after expert learning. (The ‘-inc’ tasks in Table 5.1 will be discussed
in Section 5.4.4.) Most of the reported parameters are visualized for all training stages in Figure
5.1. In these graphs, training stage 0 corresponds to the data in Table 4.2, and the last training
stage corresponds to Table 5.1.

The recognition results in Table 5.1, corresponding to the top panels in Figure 5.1, indicate
a dramatic performance increase. With cumulative expert training, the proportion of correct
recognitions rises by about 50% compared to the initial training stage, ignorant recognitions are
reduced by about 70%, and wrong recognitions are almost eliminated. The number of ambigu-
ous recognitions also increases somewhat. This is not a desired effect, but ambiguity is the best
recognition outcome short of correctness. The accuracy reaches more than 80%, which begins
to be comparable to object recognition results reported formore specialized machine vision
systems.

Another dramatic development can be observed in the evolving feature set. The middle
panels in Figure 5.1 reveal a typical behavior. Throughout expert learning, the number of fea-
tures queried during a recognition procedure decreases sharply. During Stage 1, the number of
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Table 5.1.Summary of empirical results after expert learning on all tasks. The first four entries
give the name of the task, the number of classes, the fold index, and the accuracy according to
Definition 4.6. The five entries under “Recognition Results”in each row sum to one, barring
roundoff errors. Zero entries are left blank for clarity. The columnsunder the heading “# Fea-
tures” give the total number of feature nodes in all Bayesiannetworks (BN), the total number
of different features (dif.), the average number of features queried (qu’d) during a single recog-
nition procedure (Algorithm 4.4), and the total cumulativenumber of features sampled (smp’d),
respectively. The rightmost two columns list the number of cycles through the training set, and
the total number of training image presentations.

Recognition Results # Features Tr. Set
Task Cls. Fld. acc.cor. wrg. amb. cnf. ign.BN dif. qu’d. smp’d. cyc. imgs.

COIL 6 1 .86 .78 .02 .13 .07 10 8 6.4 19448 60 3600
COIL 6 2 .78 .70 .05 .12 .13 23 17 11.1 19203 68 4080
COIL 6 av. .82 .74 .03 .13 .10 17 13 8.8 19326 64 3840
COIL-inc 6 1 .87 .80 .12 .08 7 6 5.5 13867 6850
COIL-inc 6 2 .88 .82 .02 .10 .07 11 11 6.5 17491 11000
COIL-inc 6 av. .87 .81 .01 .11 .08 9 9 6.0 15679 8925
COIL-inc 10 1 .82 .77 .01 .08 .14 34 21 12.4 69450 43520
COIL-inc 10 2 .80 .73 .10 .01 .16 28 16 13.0 87996 57060
COIL-inc 10 av. .81 .75 .01 .09 .01 .15 31 19 12.7 78723 50290
Plym 8 1 .70 .58 .06 .22 .14 23 17 8.9 33711155 8680
Plym 8 2 .80 .75 .04 .09 .13 11 10 8.5 25513122 7808
Plym 8 av. .75 .67 .05 .15 .13 17 14 8.7 29612139 8244
Plym-inc 8 1 .77 .73 .02 .08 .17 21 11 8.2 71183 36274
Plym-inc 8 2 .83 .79 .02 .05 .14 16 10 7.5 28078 15640
Plym-inc 8 av. .80 .76 .02 .07 .16 19 11 7.9 49631 25957
Mel 6 1 .61 .47 .03 .19 .03 .28 43 35 15.0 3766 38 1368
Mel 6 2 .55 .42 .14 .22 .03 .19 26 25 8.8 13461 64 2304
Mel 6 av. .58 .44 .08 .21 .03 .24 35 30 11.9 8614 51 1836
Mel-inc 6 1 .64 .44 .06 .39 .11 25 22 10.4 8313 3774
Mel-inc 6 2 .56 .42 .03 .17 .39 21 19 7.5 15181 3630
Mel-inc 6 av. .60 .43 .04 .28 .25 23 21 9.0 11747 3702
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Figure 5.1.Expert Learning results on the COIL task. The numbers shown inside the top graphs
give the value oftKSD at the respective training stage. Where this number appearsin bold face,
the training set was learned with perfect accuracy, and thetKSD goal was achieved. Otherwise,
either the training set was not learned perfectly, or thetKSD goal was not attained. The error bars
in the middle plots have a width of one standard deviation.
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different features present in all Bayesian networks increases,eliminating most of the re-used
features. This constitutes a qualitative change in the feature set, during which general features
are replaced by more specialized, distinctive features. The total number of features is hardly
affected (Fold 1) or is even reduced (Fold 2). During further expert learning stages, a relatively
small number of highly distinctive features are learned, rendering a large proportion of the ex-
isting features obsolete. Thus, the number of features stored by the system is reduced from 53
(average over both folds) to 17. Due to the high distinctive power of the remaining features,
few are queried during a recognition procedure. Fold 1 constitutes a quite drastic example: On
average, little more than six features are queried to recognize an image (Table 5.1). This is just
one feature per class!

Figure 5.2 shows some of the expert features. Compared to thenovice features shown in
Figure 4.7 on page 50, these are much more meaningful intuitively. One car is characterized by
the texture on the roof, the other by a wheel feature. Both theduck and the cat are characterized
by an eye/forehead feature. In fact, this feature is absolutely identical; it is one of the two
surviving shared features in Fold 1. Curiously, this is the only feature characteristic of a cat
(Table 5.2). How can it alone suffice to characterize a cat if it is also a distinctive duck feature?
The answer is that the thresholdαf for this feature to be considered present is much higher in
the cat’s Bayesian network than in the duck’s (cf. Definition4.2, Distinctive Power of a Feature,
page 37). Evidently, on all duck images contained in the training set, the response valueff of
this feature remained below the correspondingαf threshold of the cat’s network, while on all cat
images, it exceeded this threshold. Otherwise, this feature alone would not have been sufficient
to characterize a cat.

The confusion matrices of ambiguous recognitions is shown in Table 5.3. Some of these
ambiguities are not surprising. For instance, in Fold 1 a cat(obj4) was also labeled as a duck
(obj1). In both folds, the two cars (obj3 andobj6) tended to be confused. Car/car and duck/cat
confusions also accounted for two of the four wrong recognitions shown in Table 5.2.

Finding highly distinctive features is not easy. The training set was first learned after a mere
seven iterations (Table 5.1), during which about 700 candidate features were generated. After
complete expert training, almost 20,000 features had been tried in more than 60 iterations. As
shown in the bottom panel in Figure 5.1, the bulk of this effort is spent at the first stage of
expert learning. The reason is that initially, most of the recognitions end with a high degree of
uncertainty, and most pairwise uncertainties discovered by Algorithm 5.2 have KSDci ,dmin

i
= 0.

The superior power of expert features over novice features not only results in fewer features
queried per recognition, but is also manifested in increased stability across viewpoints and in-
creased specificity. Figure 5.3 shows all features characteristic of obj1. Remarkably, all three
features are present in all views except for the very last, where feature 665 is missing. All
features responded reliably to corresponding object partsacross most of the viewpoint range.
Figure 5.4 demonstrates the superior specificity of these expert features compared to the novice
features (see Figure 4.9 on page 53 for comparison). The least specific expert feature 557 re-
sponds more specifically to distinct parts of the duck than the most specific novice feature 5.
Even more significantly, it response on the non-duck image isweaker in most places. Fea-
ture 566 acts as an eye detector – it responds to a small dark spot with a neighboring larger
light spot. As mentioned earlier, this feature is also characteristic of the cat (obj4). Feature 665
detects the wing in a specific spatial relation to an outer edge of the duck object. It responds
selectively to a few locations on the duck image, but almost nowhere on the cat image.

It is quite remarkable that the learning system was able to construct such powerful features:
They are specific to an object, and at the same time are generalin that they respond well over a
wide range of viewpoints. Interestingly, they correspond to intuitively meaningful object parts.
It would not have been easy to construct such specific and yet viewpoint-invariant features by
hand.
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Figure 5.2. Examples of expert features learned for the COIL task, Fold 1.
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Table 5.2. Results on the COIL task after Expert Learning. The table shows, for each class,
how many instances were recognized as which class for correct and wrong recognitions, and the
number of ambiguous/confused/ignorant recognition outcomes. In each row, these entries sum
to the number of test images of each class (here, 10). The rightmost column shows the number
of feature nodes that are part of the Bayesian network representing each class. The bottom row
of the bottom panel gives the average proportion of the test set that falls into each recognition
category.

Confusion Matrix correct/wrong # Feats.
Class obj1 obj2 obj3 obj4 obj5 obj6 amb. cnf. ign. BN

Fold 1:
obj1 10 3
obj2 8 2 1
obj3 8 1 1 3
obj4 8 2 1
obj5 6 2 2 1
obj6 7 1 2 1
Sum 10 8 8 8 6 8 8 0 4 10

Fold 2:
obj1 9 1 8
obj2 8 2 2
obj3 5 2 3 4
obj4 1 4 1 4 1
obj5 2 8 1
obj6 8 2 7
Sum 10 8 5 6 8 8 7 0 8 23

Average of both folds (proportions):
obj1 .95 .05 6
obj2 .80 .20 2
obj3 .65 .05 .15 .15 4
obj4 .05 .60 .15 .20 1
obj5 .10 .70 .10 .10 1
obj6 .75 .15 .10 4
Avg. .17 .13 .11 .12 .12 .13 .13 .00 .10 3
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Figure 5.3. Expert Features characteristic ofobj1 located in all images of this class where they
are present. See Figure 4.8 on page 51 for comparison.
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Figure 5.4. Spatial distribution of expert feature responses of all features characteristic ofobj1
learned in Fold 1 (left columns), for comparison also shown for obj4 (right columns). In the
center columns, the gray level encodes the response strength of the feature shown in the outer
panels. Black represents the maximal response off = 1.0; in white areas no response was
computed. Features are labeled by their ID numbers. See Figure 4.9 on page 53 for comparison.
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Table 5.3. Results on the COIL task after Expert Learning: Confusion matrices of ambiguous
recognitions. The italic numbers on the diagonal indicate how many times the class given on the
left was recognized ambiguously (cf. Table 5.2), and the upright numbers in each row specify
the false-positive classes.

Class obj1 obj2 obj3 obj4 obj5 obj6

Fold 1:
obj1
obj2 2 2
obj3 1 1
obj4 1 1 2
obj5 2 2
obj6 1 1

Fold 2:
obj1
obj2 1 2 1
obj3 1 1 2 1
obj4 1 1
obj5
obj6 1 1 2

The feature learning algorithm employs a random feature generation procedure (Algorithm 4.10,
page 43). How sensitive is the performance of the trained system to this randomness? To give
an intuition, the system was trained on Fold 1 a total of ten times, seeding the random-number
generator with unique values. Figure 5.5 shows the average performance of the trained novices
and experts. According to a paired-sample one-tailedt test, the superior accuracy of experts vs.
novices is highly significant (p < 0.0001). There is considerable variation in the accuracies,
while the number of features queried stabilizes reliably during expert learning. The reason for
this is that learning ends as soon as all recognitions leave all classifiers with zero residual en-
tropy. By this time, all objects are characterized by a smallnumber of features that are highly
distinctive on the training set – however, no definitive statement can be made about their gener-
alization properties to unseen test images. In realistic, open learning scenarios, this is not going
to be a problem: If an image is misrecognized or is recognizedwith less than perfect certainty,
it immediately becomes a training image, and learning continues. Thus, in practice the final
performance is expected to depend much less on the randomness intrinsic to the learner, but is
determined by the expressiveness of the feature space.

5.4.2 The Plym Task

All of the general comments made in the previous section about the COIL task apply also to
the Plym task (Figure 5.6). As is also seen in Table 5.1 in comparison to Table 4.2, all per-
formance parameters improved substantially as a result of expert learning, with the exception
of an increased number of ambiguous recognitions. In Fold 1,progress of expert learning was
markedly non-monotonic. For many stages, it failed to achieve the goal oftKSD = 0.5. At the
end, however, it learned the training set with a remarkabletKSD = 0.94.

Similarly to the basic learning stage,cyl6 andcucon were problematic classes (Tables 5.4
and 5.5). Examples of the features learned are shown in Figure 5.7. Similarly to the COIL
task, these few but highly distinctive features make much more intuitive sense than the features
learned during the first stage (see Figure 4.11 on page 54). Notice thecon6 feature characteriz-
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Figure 5.5. Variation due to randomness in the learning procedure. The bars represent the mean
performance achieved on 10 independent learning trials of COIL-Fold 1. The error bars extend
one standard deviation above and below the mean. Extrema areindicated by asterisks.

ing the converging edges, thecucon, cucy, cycu, andcyl3 features located at characteristic folds
or corners, and thetub6 feature that responds to the top rim.

What is the critical limiting factor of the performance on the Plym task, the feature space or
the learning procedure? There is no absolute answer to this question. However, if the system
can learn to discriminate well between two particularly difficult classes if more training data
are used, then this would indicate that the limited performance is primarily an effect of the
learning procedure. A leave-one-out cross validation procedure was run on classescube and
cucon. In Fold 1 of the full-scale eight-object task, these were two of the most difficult classes
to recognize (Table 5.4), and in two cases acube appeared as a false positive together with a
cucon (Table 5.5). In Fold 2,cucon was one of the weakest classes.

Table 5.6 shows that this distinction was learned quite well, with an accuracy of 0.93. This
suggests that the feature space is capable of expressing such distinctions. The critical limiting
factor is probably the fixed training set: Once features havebeen learned that always achieve
perfect recognition with zero residual entropy, expert learning ends (cf. Section 5.3). At this
stage, the learned feature set will generally still be imperfect in that they do not fully disam-
biguate all pairs of classes with a KSD of 1.0. It is features with a weak KSD and the potential
to eliminate all entropy that cause the system to fail on unseen test images. In a practical, open
task, this is not a problem because any imperfectly recognized test image automatically becomes
a training image, and learning continues.

5.4.3 The Mel Task

The Mel task reflects the general phenomena observed in the COIL and Plym tasks, but to a
lesser extent (Figure 5.8 and Table 5.7). Contrary to this development is the slight increase
of wrong recognitions in Fold 2, and the emergence of one confused recognition in both folds
(in Fold 1, anabalone board was mistaken for aphone-cord and abike-chain; in Fold 2, a
sock was mislabeled asgrapes and bike-chain). In Fold 2, no instances ofphone-cord were
recognized correctly, as was the case for both folds after the initial learning stage (see Table 4.7
on page 58). In contrast, Fold 1 achieved some success on thisclass, but only at the expense
of 20 features dedicated to it. This is the largest number of features observed for any object in
all experiments after expert learning. In fact, for both folds the number ofphone-cord features
increased significantly during expert learning, while it decreased for almost all other classes in
all experiments.

75



0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

0 .5 .5 .5 .5 .5 .5 .75 .88 .94

training stages

pr
op

or
tio

n 
of

 te
st

 s
et

Plym Fold 1

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

0 .5 .75 .5 .75 .88 .5 .75

training stages

pr
op

or
tio

n 
of

 te
st

 s
et

Plym Fold 2

correct  
wrong    
ambiguous
confused 
ignorant 

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

training stages

nu
m

be
r 

of
 fe

at
ur

es

Plym Fold 1

total feature nodes 
different features  
max. per recognition
min. per recognition
avg. per recognition

0 1 2 3 4 5 6 7
0

20

40

60

80

100

training stages

nu
m

be
r 

of
 fe

at
ur

es
Plym Fold 2

total feature nodes 
different features  
max. per recognition
min. per recognition
avg. per recognition

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

training stages

cu
m

ul
at

iv
e 

nu
m

be
r 

(×
10

00
)

Plym Fold 1

features sampled
images presented

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

training stages

cu
m

ul
at

iv
e 

nu
m

be
r 

(×
10

00
)

Plym Fold 2

features sampled
images presented

Figure 5.6. Expert Learning results on the Plym task. The numbers shown inside the top graphs
give the value oftKSD at the respective training stage. Where this number appearsin bold face,
the training set was learned with perfect accuracy, and thetKSD goal was achieved. Otherwise,
either the training set was not learned perfectly, or thetKSD goal was not attained. The error bars
in the middle plots have a width of one standard deviation.

76



Table 5.4. Results on the Plym task after Expert Learning. The table shows, for each class,
how many instances were recognized as which class for correct and wrong recognitions, and the
number of ambiguous/confused/ignorant recognition outcomes. In each row, these entries sum
to the number of test images of each class (here, 8 in Fold 1 and7 in Fold 2). The rightmost
column shows the number of feature nodes that are part of the Bayesian network representing
each class. The bottom row of the bottom panel gives the average proportion of the test set that
falls into each recognition category.

Confusion Matrix correct/wrong # Feats.
Class con6 cube cucon cucy cycu cyl3 cyl6 tub6 amb. cnf. ign. BN

Fold 1:
con6 6 2 1
cube 2 2 4 7
cucon 3 4 1 1
cucy 4 1 2 1 1
cycu 6 1 1 1
cyl3 8 3
cyl6 1 2 3 2 8
tub6 5 3 1
Sum 7 2 3 4 8 8 3 6 14 0 9 23

Fold 2:
con6 7 1
cube 5 1 1 4
cucon 4 2 1 1
cucy 6 1 1
cycu 5 2 1
cyl3 7 1
cyl6 4 1 2 1
tub6 4 1 2 1
Sum 7 5 4 6 5 8 4 5 5 0 7 11

Average of both folds (proportions):
con6 .87 .13 1
cube .47 .07 .13 .33 6
cucon .47 .40 .13 1
cucy .67 .07 .13 .13 1
cycu .73 .20 .07 1
cyl3 1.00 2
cyl6 .07 .13 .47 .07 .27 5
tub6 .60 .27 .13 1
Avg. .12 .06 .06 .08 .11 .13 .06 .09 .16 0 .13 2
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Table 5.5. Results on the Plym task after Expert Learning: Confusion matrices of ambiguous
recognitions. The italic numbers on the diagonal indicate how many times the class given on the
left was recognized ambiguously (cf. Table 5.4), and the upright numbers in each row specify
the false-positive classes.

Class con6 cube cucon cucy cycu cyl3 cyl6 tub6

Fold 1:
con6 2 1 1
cube 2 2
cucon 2 4 1 1
cucy 1 2 1
cycu 1 1
cyl3
cyl6
tub6 1 1 1 2 3

Fold 2:
con6
cube
cucon 2 2 1
cucy
cycu 1 1 1 2
cyl3
cyl6
tub6 1 1

Table 5.6.Results on a two-class Plym subtask after 15-fold Expert Learning.

correct/wrong
Class cube cucon amb. cnf. ign. Sum
cube 13 1 1 15
cucon 14 1 15
Sum 13 15 1 0 1 30
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con6 cube cucon cucy

cycu cyl3 cyl6 tub6

Figure 5.7. Examples of expert features learned for the Plym task, Fold 1.
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Figure 5.8. Expert Learning results on the Mel task. The numbers shown inside the top graphs
give the value oftKSD at the respective training stage. Where this number appearsin bold face,
the training set was learned with perfect accuracy, and thetKSD goal was achieved. Otherwise,
either the training set was not learned perfectly, or thetKSD goal was not attained. The error bars
in the middle plots have a width of one standard deviation.
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Table 5.7. Results on the Mel task after Expert Learning. The table shows, for each class,
how many instances were recognized as which class for correct and wrong recognitions, and the
number of ambiguous/confused/ignorant recognition outcomes. In each row, these entries sum
to the number of test images of each class (here, 6). The rightmost column shows the number
of feature nodes that are part of the Bayesian network representing each class. The bottom row
of the bottom panel gives the average proportion of the test set that falls into each recognition
category.

Confusion Matrix correct/wrong # Feats.
Class abalone chain grapes necktie cord sock amb.cnf. ign. BN

Fold 1:
abalone 2 2 1 1 5
bike-chain 3 3 7
grapes 1 1 4 7
necktie 2 2 2 1
phone-cord 4 2 20
sock 5 1 3
Sum 2 3 1 2 4 6 7 1 10 43

Fold 2:
abalone 3 1 2 1
bike-chain 1 1 2 2 1
grapes 4 2 8
necktie 4 2 1
phone-cord 3 3 14
sock 3 1 2 1
Sum 3 1 7 5 0 4 8 1 7 26

Average of both folds (proportions):
abalone .42 .08 .33 .08 .08 3
bike-chain .33 .08 .42 .17 4
grapes .42 .08 .17 .33 8
necktie .50 .33 .17 1
phone-cord .25 .33 .42 17
sock .67 .08 .25 2
Avg. .07 .06 .11 .10 .06 .14 .21 .03 .24 6
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In contrast to the other two tasks, performance on the Mel task is characterized by widely
varying results and a lack of discernible patterns, even after expert learning. This is also reflected
by the many ambiguous results and the lack of agreement between the folds (see Table 5.8). It
seems surprising that even though features were learned that disambiguated all classes with non-
zero entropy with a KSD of 0.75 (see Figure 5.8, and Figure 5.9for examples of the features),
the test-set results were still relatively poor. This suggests that the training set was too small
in relation to the enormous within-class variety of appearances, enabling the feature learning
procedure to discover highly discriminative features thatgeneralized poorly nevertheless. Also,
recall that expert learning acts only in the case of nonzero residual entropy in at least one class
node. In the Mel task, expert learning was apparently hampered by the abundant occurrence of
overly specific features that responded to very few images. Such features, if not found in an
image, are likely to drive the belief in their class to zero, as discussed in Section 4.4.4 on page
44, disabling expert learning.

Table 5.8. Results on the Mel task after Expert Learning: Confusion matrices of ambiguous
recognitions. The italic numbers on the diagonal indicate how many times the class given on the
left was recognized ambiguously (cf. Table 5.7), and the upright numbers in each row specify
the false-positive classes.

Class abalone chain grapes necktie cord sock

Fold 1:
abalone 2 2
bike-chain 3 1 1 1
grapes
necktie 1 2 1 1
phone-cord
sock

Fold 2:
abalone 2 1 2
bike-chain 2 1 1
grapes 2 2
necktie 1 2 2
phone-cord
sock

In order to find out to which extent the Mel task is learnable bythe system, a leave-one-out
cross validation procedure was run on a two-class subtask, using two of the most problematic
classes,grapes andphone-cord. In Fold 1 of the full six-class task,grapes were the poorest
class to be recognized (Table 5.7); in Fold 2,phone-cord was the poorest class, and half of
the test images were mislabeled asgrapes. A confusion matrix summarizing the results of the
twelve folds on the two-class subtask is shown in Table 5.9. The results show that the feature
space has some power to express this class distinction, but they are still not outstanding. The
accuracy is 0.83, with 0.5 being chance performance. Clearly, the structure of the Mel task
is not easily captured by this learning algorithm. This topic will receive further attention in
Section 7.3.

5.4.4 Incremental Tasks

In all experiments discussed so far, training was incremental in that images were presented to
the learner sequentially. Training images were chosen fromall classes in random order. In
many practical situations, a more realistic scenario will require the learner to acquire concepts
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Figure 5.9. Examples of expert features learned for the Mel task, Fold 1.

Table 5.9.Results on a two-class Mel subtask after 12-fold Expert Learning.

correct/wrong
Class grapes cord amb. cnf. ign. Sum
grapes 9 2 1 12
phone-cord 1 8 1 2 12
Sum 10 8 3 0 3 24
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sequentially. In particular, this is how humans are taught.It helps us to master skills if we learn
only a limited number of them in parallel. In this section, tasks are presented to the learner
incrementally, as described in the following algorithm.

Algorithm 5.4 (Incremental Task) To train the learning system on an incremental task, begin
with a blank-slate learner, and then perform the following steps.

1. Create a training set consisting of all training images ofthe first two classes.

2. Train the system using Algorithm 5.3, with one minor modification: At Step 4, stop after
a maximum of 10 stages of expert learning.

3. If there are untaught classes, then add all training images of the next untaught class to the
training set, and continue with Step 2. Otherwise, stop.

Importantly, the experience of the learner is not discardedbetween executions of Step 2.

The results achieved on the three tasks using Algorithm 5.4 are included in Table 5.1, with
‘-inc’ appended to the task name. Interestingly, in all cases the achieved accuracy was slightly
better than in the corresponding non-incremental tasks. Moreover, the number of features sam-
pled – which is closely related to the overall running time ofthe system – is slightly reduced
for the COIL task. The number of cycles through the training set is not given in Table 5.1. It
has little meaning for incremental tasks, as the size of the training set increases over time. The
number of training image presentations is drastically increased. The reason for this is that the
growing number of already-learned images is included with every cycle, while learning concen-
trates primarily on images of the new class. This effect can be avoided by more sophisticated
incremental learning schemes. For example, the simulated environment could choose the class
of a training image according to the empirical misrecognition rate attained by the learner. In any
case, the choice of a learning strategy depends on the interaction dynamics between the learner
and its environment. An environment or a task may or may not allow the learner to influence
the distribution of training images.

The COIL-inc task was continued up to a total of 10 classes, which are illustrated in Figure
5.10. Figures 5.11 and 5.12 show performance parameters on atest set as they evolve during
incremental expert training. The test set contains the sameclasses as the training set. Usually,
the introduction of a new class causes a temporary drop in performance that is reflected by
most performance parameters: The proportion of correct recognitions drops, while most of the
other parameters increase. Over the next few stages of expert training, the system recovers.
Importantly, the transient drops in performance co-occur with an imperfectly learned training
set, as indicated by the non-bold KSD indicators in Figures 5.11 and 5.12. In other words,
good performance on the training images generally predictsgood performance on unseen test
images. This is good news, given the often non-monotonic performance improvement during
expert learning. Nevertheless, a slight drop in accuracy isnoticeable, as the number of classes
increases.

How difficult are individual classes to learn? There is no way to answer this question for
the non-incremental version of expert training. However, incremental training lends insight into
a related question: How much effort does it take to learn a new class, after having learned
some other classes? Figure 5.13 reveals that some classes are learned after sampling only a
small number of features, while others require a lot of sampling effort. Both folds learned the
first four objects quite effortlessly, whileobj7 andobj8 were more difficult. Interestingly, both
folds spent most effort disambiguatingobj7 from obj2 – these are the two wooden blocks in the
data set. In addition, Fold 1 often confusedobj7 with obj6, possibly due to the striped texture
shared by both objects. In the case ofobj8, there was no such singular source of confusion.
Nevertheless, the two classes that accounted by far for mostconfusions wereobj1 and obj6.
Almost all confusions on the training set that occurred at any time during learning involved the

84



obj1 obj2 obj3 obj4 obj5

obj6 obj7 obj8 obj9 obj10

Figure 5.10.Objects used in the 10-object COIL task.

most recently introduced class, especially during the early stages of expert learning. Beyond
these qualitative remarks, it is difficult to draw strong conclusions from only two folds of cross
validation, and from a single presentation order of new classes.

The number of expert learning stages taken until a class was learned is clearly correlated
with the number of features sampled. However, it is not as reliable an indicator of class difficulty,
because – in contrast to the number of features sampled – it islargely unrelated to the proportion
of difficult training images of a class. A single difficult image can stretch expert learning over
many stages, but far fewer features are sampled than in the case of many difficult images. For
example, in Fold 1, forobj6 11,470 features were sampled during 4 stages, whereas forobj10
only 5,760 features were sampled during 9 stages.

The results for the incremental Plym task (Figures 5.14, 5.15 and 5.16) show the same
characteristics as the COIL-inc task. Here, both folds agree thattub6, the eighth class, is the
most difficult class (Figure 5.16). Not surprisingly, confusions with cyl6 accounted for the
overwhelming majority of the feature learning efforts. Notably, Fold 1 had trouble with a few
individual images while learning the sixth and seventh classes (cyl3 andcyl6). At almost all of
these stages, Algorithm 5.3 at Step 2 cycled through the training set the maximum of 20 times,
while sampling very few features.

The Mel-inc results again show similar behavior, but to a lesser extent (Figures 5.17 and
5.18). These graphs reflect the same variability as discussed for the other Mel experiments
above. In contrast to the COIL and Plym tasks, it appears thatthe number of features sampled
grows purely as a function of the number of classes. This is another indicator of the intrinsic
difficulty of the Mel data set, which makes it hard for the learningprocedure to find powerful
and well-generalizing features. Interestingly, while learning the fourth class (necktie) in Fold 2,
only 69 features were sampled, all of them during Stage 0. Thefollowing four stages of expert
learning only re-estimated the conditional probabilitiesin the Bayesian networks, but never
required a new feature.

In both folds, the system failed to recover after the introduction of the sixth class (sock).
This is somewhat surprising, given that this class performed better than any other class after non-
incremental training (Table 5.7), and is yet another indicator that expert learning was severely
hampered on the Mel task. Expert learning essentially failed here because a large number of
overly specialized features caused most recognitions to result in zero entropy in all class nodes.
Such an effect is only likely to occur on static, small, and heterogeneous training sets such as
that used in the Mel task.
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Figure 5.11. Incremental Expert Learning results on the COIL-inc task, Fold 1. The vertical dotted lines indicate the addition of a new class to the training
set. Below the graphs, these are annotated with the total number of classes represented in the training set. Data points between these lines correspond to expert
learning stages (cf. Figure 5.1, page 68), which are not numbered here. The numbers inside the top graph indicate the values oftKSD as in Figure 5.1.
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Figure 5.12. Incremental Expert Learning results on the COIL-inc task, Fold 2. The vertical dotted lines indicate the addition of a new class to the training
set. Below the graphs, these are annotated with the total number of classes represented in the training set. Data points between these lines correspond to expert
learning stages that are not numbered here. The numbers inside the top graph indicate the values oftKSD.
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Figure 5.13.Numbers of features sampled during the COIL-inc task.
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Figure 5.14. Incremental Expert Learning results on the Plym-inc task, Fold 1. The vertical dotted lines indicate the addition of a new class to the training
set. Below the graphs, these are annotated with the total number of classes represented in the training set. Data points between these lines correspond to expert
learning stages that are not numbered here. The numbers inside the top graph indicate the values oftKSD.
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Figure 5.15. Incremental Expert Learning results on the Plym-inc task, Fold 2. The vertical dotted lines indicate the addition of a new class to the training
set. Below the graphs, these are annotated with the total number of classes represented in the training set. Data points between these lines correspond to expert
learning stages that are not numbered here. The numbers inside the top graph indicate the values oftKSD.
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Figure 5.16.Numbers of features sampled during the Plym-inc task.
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Figure 5.17. Incremental Expert Learning results on the Mel-inc task, Fold 1. The vertical
dotted lines indicate the addition of a new class to the training set. Below the graphs, these are
annotated with the total number of classes represented in the training set. Data points between
these lines correspond to expert learning stages that are not numbered here. The numbers inside
the top graph indicate the values oftKSD.
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Figure 5.18. Incremental Expert Learning results on the Mel-inc task, Fold 2. The vertical
dotted lines indicate the addition of a new class to the training set. Below the graphs, these are
annotated with the total number of classes represented in the training set. Data points between
these lines correspond to expert learning stages that are not numbered here. The numbers inside
the top graph indicate the values oftKSD.
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5.4.5 Computational Demands

The current method attempts to find features by random sampling in image space, which is
guided by a set of simple-to-complex heuristics defined by the feature generation algorithm 4.10
(page 43). Highly distinctive features are rare and difficult to find, as illustrated by the graphs in
this chapter. This opens up the question of computational demands. The current MATLABTM

implementation of the learning system takes many days of computation on a 700 MHz Pen-
tium III processor to learn a typical task. The bulk of this time is spent measuring the value of
features in images (Equation 3.14 on page 25). This is the primary reason why the extraction
of salient points is so important (Section 3.4.3, page 21). For every featuref sampled, its value
ff (I ) must be computed on 2nex example images (Algorithm 4.8, Feature Learning, page 41,
Steps 2 and 5).

Given the number of pixels in an image (16,384 for the COIL images, 76,800 for the Mel
images) and the infinite combinatorics opened up by the feature space, sampling 10,000 or
100,000 features to solve a task involving 100 training images does not seem outrageous. What
would it take to run the feature learning algorithms on massively parallel neural hardware?
Computing feature values is a pixel-level parallel operation that can plausibly be performed by
the human visual cortex. Such a parallel implementation could measure a feature value in an
image in constant time, independent of the number of salientpoints in an image. Assuming an
average of 1,000 salient points in an image, and assuming that 99% of the compute time is spent
computing feature values, this would reduce the time to solve a reasonably large problem from,
say, 10 days to less than 2 hours 40 minutes – about two orders of magnitude.

The above argument assumes that the time spent to compute a feature value is approximately
constant. This is not strictly true, as it depends on the length of a response vector, which is 15
filter responses for texels and 2 for edgels. It also depends on the local scale of a feature and its
subfeatures, which determines the size of the filter kernelsused in Algorithm 3.6 (Extraction of
a Geometric-Compound Feature Response Vector, page 26) at Steps 1 and 4. This size varies
from about 25 coefficients up to about 1/16 the size of the image. The early visual cortex extracts
such response vectors in parallel, for all image locations,over a range of scales, reducing this
computation to constant time. If these factors are taken into account, the computation time can
be reduced by at least two more orders of magnitude.

In summary, the computational demands of the expert learning procedure limit the size of
the problems that can be addressed using today’s conventional computing hardware. However,
a biologically plausible implementation that exploits thehigh degree of inherent parallelism
should reduce the computational demands by about four orders of magnitude. In principle, this
would permit much larger-scale applications.

With respect to scalability, an important consideration isthe number of distinctions that has
to be learned by the system. In general, this number is quadratic in the number of classes: Each
class is to be discriminated from each of the other classes. Figure 5.19 plots the cumulative
number of features sampled in the incremental tasks versus the number of classes. Clearly, the
growth is superlinear. However, there are not sufficient data to allow a conclusive statement
regarding the complexity of the learning algorithm with respect to the number of classes. More
experiments using more classes are required. In any case, this superlinear growth is likely to
limit the maximal problem size that can be addressed by this system. However, this need not
constitute a practical limitation. Humans clearly do not learn expert-level distinctions between
all categories that have any meaning to them in any context. Rather, at any given time, the
behavioral context constrains the relevant categories to arelatively small set. Expert learning is
only required where distinctions need to be refined that are relevant within a given context.
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Figure 5.19.Number of features sampled for various tasks, plotted versus the number of classes.

5.5 Discussion

Motivated by the human phenomenon of visual expertise, thischapter introduced a simple algo-
rithm for learning improved features. The idea is to seek features with increased discriminative
power between pairs of classes. Thus, expert learning has exactly the opposite effect of over-
training. Because explicit requirements of discriminative power are enforced, learning can –
in principle – continue forever, without any danger of overfitting. Resembling human expert
behavior, this has the desired effects of increased recognition accuracy and efficiency. I am not
aware of any existing related work in machine learning on incremental feature improvement.
The vast majority of comparable machine learning methods either use a fixed feature set, per-
form feature selection, or compute new features on the basisof a fixed feature set (e.g. PCA).
The expert learning idea presented here critically dependson the ability of the algorithm to
search a virtually unlimited feature space.

The most severe limitation of the expert learning algorithm, as presented here, is that it de-
pends on class nodes with nonzero entropy at the end of a recognition procedure. Consequently,
features that have the ability to infer classification results with absolute certainty (cf. Section
4.4.4) can effectively disable expert learning. This is especially a problem if these features are
poor, i.e. they have little discriminative power, because they prevent their own replacement by
better features. This was the case in the Mel data set. However, such features are only likely to
occur in small, static, and heterogeneous data sets such as the Mel data. They emerge because
the exact same images are presented to the learner over and over, until they are recognized cor-
rectly. On an interactive task in a physical environment, notraining image is ever going to be
seen again, and training images from the a class are drawn from a continuum of appearances.
This prevents the memorization of individual training images.

Other ways to trigger expert learning could possibly avoid this problem even for static fea-
ture sets. A brute-force method would attempt to learn highly distinctive features between all
pairs of classes, regardless of any empirical uncertainties. However, this requires a number of
discriminations that is quadratic in the number of classes.Moreover, many of these will usually
be unnecessary because many pairs of classes are never confused anyway. Expert learning – like
the basic learning studied in Chapter 4 – ought to be driven bythe task: Where uncertainties
are likely to occur, improved features should be learned. This principle is implemented by the
expert learning algorithm 5.1.
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CHAPTER 6

LEARNING FEATURES FOR GRASP PRE-SHAPING

The preceding chapters applied feature learning in a supervised object recognition scenario.
Many of the visual skills that humans acquire from experience affect their behavior at a very
fine granularity. For example, between about five to nine months of age, infants learn to pre-
orient their hands to match the orientation of a target object during reaching [70]. In this chapter,
visual features are learned that enable similar prospective behavior in a haptically-guided robotic
grasping system.

6.1 Related Work

There is extensive literature on visual servoing; a thorough review is beyond the scope of this
dissertation. Most of this work falls into one of two main categories according to the coordinate
frame in which error signals are computed, namely, three-dimensional workspace coordinates or
two-dimensional image coordinates. Three-dimensional methods typically rely on a reasonably
complete and accurate visual reconstruction of the workspace. More related to this chapter
are two-dimensional approaches where manipulator controlsignals are directly derived from
image-space errors [105, 49]. Here, local features of the manipulator and of workpieces are
identified, and their actual positions are compared to reference positions. Image-space errors
are then transformed into errors in the degrees of freedom ofthe manipulator. Instead of local
appearance, another line of research builds on global appearance and computes error signals in
eigen-subspaces [74].

6.2 Objective

To date, most work in sensor-guided robotic manipulation has concentrated on exclusively
vision-based systems. There has been much less work on haptically-guided grasping [21, 23],
or on combining haptic and visual feedback [3, 42]. This seems somewhat surprising, as these
two sensory modalities ideally complement each other, especially when a dextrous manipulator
is used. The visual system is most beneficial during the reachphase when no haptic feedback is
available. Relatively coarse differential error signals in image space, using appearance features
of the wrist or the arm, are sufficient to achieve a highly efficient vision-guided reach. When
the end effector draws close to the target object, visual information can further contribute to
the extent that fingertips and object details are accuratelyidentified. However, this is difficult
to achieve because these features will often be occluded by the hand itself. Moreover, even if
detailed information about finger configurations can be obtained by the vision system, it will be
difficult to exploit in the context of a dextrous manipulator due to the many degrees of freedom
involved, many of which are redundant. This stage of the grasp is ideally suited for haptic feed-
back. Tactile fingertip sensors are highly sensitive to relevant surface characteristics such as the
orientation of the local surface tangent. Coelho [21, 23] has demonstrated that this information
can be exploited by local grasp controllers that converge toward stable grasp configurations,
thereby obviating the need to solve a high-dimensional (andoften intractable) planning problem
in global joint space.
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McCarty et al. [70] demonstrated that infants learn to pre-orient their hand during a reach
to match the orientation of the target object. Notably, thisprospective behavior does not depend
on the visibility of the hand or of the object during the reach. Evidently, humans use an initial
visual cue to initiate a reach, that is then guided by proprioception. Once the target object is
contacted, the grasp is completed using tactile feedback.

Coelho’s closed-loop grasping system is “blind” in the sense that no visual information is
exploited during the grasp process. The objective in this chapter is to add a visual component
to this system that extracts minimal visual information to pre-orient the hand appropriately in
relation to the target object. Specifically, it recommends two critical parameters to the haptic
system:

• the orientation (azimuthal angle) of the hand, and

• the number of fingers to use (two or three).

These recommendations are purely based on features of appearance that correlate robustly with
these two parameters, using a feature learning system similar to that discussed in the preceding
chapters. The learning procedure is driven entirely by the haptic grasping system, without an
external supervisor.

6.3 Background

The grasping task discussed in this chapter is based on a haptically-guided grasping system
developed by my colleague Jefferson Coelho, which is introduced in the next section. Then,
Section 6.3.2 briefly introduces and illustrates probability distributions on angular domains.
These play an important role in the algorithms presented in this chapter.

6.3.1 Haptically-Guided Grasping

Coelho [21] describes a framework for closed-loop graspingusing a dextrous robotic hand (Fig-
ure 6.1) equipped with force/torque touch sensors at the fingertips. Reference and feedback
error signals are expressed in terms of the object-framewrench residualρ, a six-element vector
summarizing the residual forces and torques acting on the object. The current object wrench
is computed using the instantaneous grip JacobianG, which in turn is locally estimated using
sensor feedback in the form of contact positions and normals. The grasp controllerπ receives an
error signalǫ, which for a zero reference wrench is simply the squared wrench residualǫ = ρTρ,
and computes incremental displacements for a subset of the fingertip contacts so as to reduce the
error signal. As a result, the fingers probe the surface of theobject until their positions converge
to a local minimum in the squared-wrench-residual surface.

G

Control
actions

Grasp
Controller

Contact normals
and positions

Σ

Plant

Object
wrench

Reference
wrench

Figure 6.1. Grasp synthesis as closed-loop control. (Reproduced with permission from Coelho
and Grupen [21].)
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The three-fingered Stanford/JPL robotic hand (Figure 6.2) employed in this work can per-
form grasps using any two- or three-fingered grasp configuration. Each of these finger combina-
tionsc gives rise to an individual grasp controllerπc, yielding a total of four controllers. For the
purpose of this chapter, it is sufficient to distinguish between two classes of grasp controllers,
namely, two- and three-fingered grasps.

Figure 6.2. The Stanford/JPL dextrous hand performing haptically-guided closed-loop grasp
synthesis.

As a grasp controllerπc executes, the control errorǫ and its time derivative ˙ǫ trace out phase
portraits that are characteristic of object shapes (Figure6.3). In this way, the grasping system
forms haptic categories. Qualitatively different regions in a phase portrait constitute haptic
contextsand can be represented as states of a finite state machine (Figure 6.4). Coelho [22, 23]
describes a reinforcement learning framework for learninggrasp control policies that select a
controllerπc based on the context currently observed. The learned policies achieve grasps of
consistently higher quality than any fixednativecontrollerπc by escaping local minima in the
wrench residual surface.
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Figure 6.3. Object wrench phase portraits traced during grasp syntheses. The left panel depicts
the evolution of a two fingered grasp trial from configuration(a) to (b) and to (c), the convergent
configuration. The complete, two-fingered phase portrait for the irregular triangle is shown on
the right. (Reproduced with permission from Coelho et al. [24])
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Figure 6.4. A hypothetical phase portrait of a native controllerπc (left) and all possible context
transitions (right). (Reproduced with permission from Coelho et al. [24])

The quality of a grasp is characterized by the minimum friction coefficientµ0 required for a
null space to exist in the grip JacobianG, with rank≥ 1. For an ideal grasp,µ0 = 0, meaning
that the grasp configuration is suitable for fixing the objectin place using frictionless point
contacts. Depending on the object shape and the number of fingers available, this ideal may not
be achievable. The right panel in Figure 6.3 is annotated with the values ofµ0 associated with
the three converged configurations.

6.3.2 The von Mises Distribution

Predicting hand orientations in relation to objects involves the estimation of relative angular
information. Most conventional continuous probability distributions have a linear domain, for
example, the normal distribution. In the case where a randomvariable represents an angle, one
probability distribution that is often used in lieu of a normal distribution on a circular domain is
thevon Misesdistribution [30]. It has the probability density function

pvM(θ | µ, κ) = 1
2πI0(κ)

eκ cos(θ−µ) (6.1)

where 0≤ µ < 2π, 0 ≤ κ < ∞, and I0(κ) is the modified Bessel function of order zero. The
mean direction of the distribution is given byµ, andκ is a concentration parameter withκ = 0
corresponding to a circular uniform distribution, andκ → ∞ to a point distribution. Figure 6.5
illustrates four von Mises distributions with different parameters. The probability density at an
angle corresponds to the radial distance from the unit circle to the density curve.

The parameterµ of the von Mises distribution is not to be confused with the friction coef-
ficient µ0 introduced in the previous section. I use this notation in agreement with established
conventions. In this chapter, the use ofµ is consistent:µ0 (occasionally followed by one more
index) always refers to the friction coefficient, andµ (often with an index other than zero) always
denotes the mean direction of a von Mises distribution.

6.4 Feature Learning

In Coelho’s haptically-guided grasping system, no visual cues guide the placement of the fingers
on the object. Here, the goal is to learn visual features thatpredict successful hand orientations,
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Figure 6.5. Illustration of four von Mises probability densities on a circular domain.

given prior haptic experience. These can be used to choose a two- or a three-fingered grasp
controller, and to pre-shape the hand in order to place contacts reliably near high-quality grasp
configurations for a task. In terms of Figure 6.4, this corresponds to initializing the haptic
system in a context near the minimum achievable wrench residual. From here, a single native
grasp controller can lead reliably to the preferred solution. In effect, pre-grasp visual cues are
learned to subsume haptically-guided grasp policies.

The general scenario for the grasping problem is shown in Figure 6.6. The visual system
attempts to identify features of the object that correlate with successful grasp parameters, includ-
ing the relative hand orientation and the number of fingers used. An overhead view of the target
object is obtained before the onset of the reach, and a prediction of useful grasp parameters is
derived. Subsequently, the grasp is executed using the predicted grasp parameters. Upon con-
vergence of the haptic controller to a final grasp configuration, grasp parameters are recorded
and used for learning. The orientation of the hand during a given grasp configuration,θH, is
defined as illustrated in Figure 6.7.

The robot may encounter a variety of objects that differ in their shapes. Each type of object
may require a dedicated feature to recommend a hand orientation. Object identities are not
known to the system; the need for dedicated features must be discovered by grasping experience.
Visual features that respond selectively to haptic categories permit a recommendation to be made
regarding the number of fingers to use for a grasp (Figure 6.8).

Features of the type defined in Chapter 3 are sampled from images taken by an overhead
camera. Assuming that these features respond to the object itself, their image-plane orientation
θf (Equation 3.5, page 15) should be related to the azimuthal orientationθH of the robotic hand
by a constant additive offsetθ. A given feature, measured during many grasping experiences,
generates data points that lie on straight lines on the toroidal surface spanned by the hand and
feature orientations (Figure 6.9). Here,θ = θH − θf . There may be more than one straight line
because a given visual feature may respond to more than one specific object location (e.g., due
to object symmetries), or to several distinct objects that differ in shape. Givenθ, one can then
infer appropriate hand orientations as a function of observed feature orientations:

θh = θf + θ (6.2)

The remaining problem is to find the offsetsθ. Assuming these can be modeled as random
variables with unimodal and symmetric probability distributionspk(θ), with thek corresponding
to the clusters of points in Figure 6.9, then this is an instance of aK-Means problem in one-
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Figure 6.6. Scenario for learning features to recommend grasp parameters (cf. Figure 2.1,
page 8). The step indices correspond to Algorithm 6.2, to be discussed later in this chapter.
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θH
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Figure 6.7. Definition of the hand orientation (azimuthal angle) for two- and three-fingered
grasps.

(a) (b) (c) (d)

Figure 6.8.By Coelho’s formulation, some objects are better grasped with two fingers (a), some
with three (b), and for some this choice is unimportant (c, d).
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dimensional circular (angular) space, withK unknown, and can be represented as a mixture
distribution

pmix(θ) =
K

∑

k=1

pk(θ) P(k) (6.3)

with mixture proportions 0< P(k) < 1,
∑

k P(k) = 1. The following section shows how to find
the parameters of this mixture distribution, which collectively constitute thefeature modelof
f for a particular grasp controller. Subsequent sections describe how to select data points for
fitting object-specific feature models, and how to use features to predict the quality of a grasp.
Section 6.4.4 puts these pieces together and presents the full Algorithm 6.2 (cf. Figure 6.6) for
learning multiple features with multiple grasp controllers, and addresses the interaction with the
haptic grasping system.
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Figure 6.9. Left: Data points induced by a given feature on various images of an object form
straight lines on a torus (two in this case); right: A mixtureof two von Mises distributions was
fitted to these data.

6.4.1 Fitting a Parametric Orientation Model

While the system learns and performs, all features are evaluated on all images. The response
magnitudesff of all featuresf , their orientationsθf , the actual hand orientationsθH (the training
signal), and the prediction errors∆θf = |θH − θh| produced by each feature are stored in an
instance list. To compute the mixture model for a feature, this feature’s data points (such as
those shown in Figure 6.9) are taken from this instance list.

Assume theθ are drawn independently from a mixture of von Mises distributions. The
mixture distribution 6.3 (see Figure 6.9) then becomes

pmix(θ | a) =
K

∑

k=1

pvM(θ | µk, κk) P(k) (6.4)

wherea is shorthand for the collection of parametersµk, κk andP(k), 1 ≤ k ≤ K.
For all plausible numbers of clustersK, a (3K − 1)-dimensional non-linear optimization

problem is to be solved to find theµk, κk andP(k). The appropriate numberK of mixture com-
ponents is then chosen as the one that maximizes the Integrated Completed Likelihood criterion
[13], an adaptation to clustering problems of the more well-known Bayesian Information Crite-
rion [106]. In practice, the method of choosing the right number of components is not critical,
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because as better features are learned, the clusters of datapoints will become increasingly well
separated.

For a particular value ofK, a maximum-a-posteriori (MAP) estimate of a mixture model is
a parameterizationa that maximizes the posterior probability given by Bayes’ rule:

p(a | Θ) =
L(Θ | a) p(a)

∑

m L(Θ | am) p(am)

whereL(Θ | a) is the likelihood of the observed dataΘ = {θ1, . . . , θN}. We now assume a
uniform prior probability density over all possible model parameterizationsam. In this case,
the MAP estimate is identical to the maximum-likelihood estimate that maximizes the log-
likelihood of the data:

logL(Θ | a) =
N

∑

i=1

log pmix(θi | a) (6.5)

An elegant way to fit mixture models such as this is via the Expectation-Maximization (EM)
algorithm. The EM algorithm is most practical if the model parametersµk, κk and P(k) can
be computed in closed form at the Expectation step. Unfortunately, this is not possible here
because the Bessel functions cannot be inverted algebraically (see the Appendix). Facing this
added difficulty, the mixture model (6.4) is more easily fitted directly, subject to the applicable
constraints on theκk andP(k), via gradient descent using the partial derivatives of theobjective
function (6.5):

∂

∂µk
logL(Θ | a) =

N
∑

i=1

P(k)
pmix(θi | a)

∂

∂µk
pvM(θi | µk, κk)

∂

∂κk
logL(Θ | a) =

N
∑

i=1

P(k)
pmix(θi | a)

∂

∂κk
pvM(θi | µk, κk)

where

∂

∂µ
pvM(θ | µ, κ) = κ sin(θ − µ) pvM(θ | µ, κ), (6.6)

∂

∂κ
pvM(θ | µ, κ) = − I−1(κ) + I1(κ) − 2I0(κ) cos(θ − µ)

2I0(κ)
pvM(θ | µ, κ). (6.7)

TheK−1 partial derivatives with respect toP(k) must take into account the constraint
∑K

k=1 P(k) =
1:

∂

∂P(k)
log L(Θ | a)

=
∂

∂P(k)

N
∑

i=1

log
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1
pmix(θi | a)

(

pvM(θi | µk, κk) − pvM(θi | µK, κK)
)

, k = 1, . . . ,K − 1.

Each feature is annotated with its model parameters, which include theµk, κk, P(k), and the
total numberNf of valid data points modeled by this mixture.

6.4.2 Selecting Object-Specific Data Points

If different types of objects are encountered, dedicated featuresmay have to be learned. Without
a supervisor providing object identities, the data collections (Figure 6.9) will be an indiscernible
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mix of feature responses corresponding to various objects,and any reliable patterns will be
obscured. The key to learning dedicated features is to ignore data points corresponding to weak
feature responses. This permits features to emerge that respond strongly only to specific, highly
characteristic object parts, but that respond weakly in anyimage that does not contain such an
object. These weak responses will be ignored, and reliable models ofθ can be fitted to the strong
responses.

Deciding whether a given point is “strong” in this sense involves a threshold. Such thresh-
olds αf , specific to each feature, can be determined optimally in theBayesian sense that the
number of poor recommendations made by the resulting model is minimized.1 To do this for a
given featuref , the history of feature responsesff and the associated prediction errors∆θf are
analyzed in order to find a thresholdαf such that most predictions for cases withff > αf are
correct. To formalize this intuitive notion, a global threshold t∆θ is introduced, meaning that
a prediction with∆θf < t∆θ is correct, and false otherwise. The optimal thresholdαf is then
defined as a value that maximizes the Kolmogorov-Smirnoff distance KSDf between the two
conditional distributions offf under the two conditions that the associated predictions are cor-
rect and false, respectively (Figure 6.10). The feature model of f is then fitted to all data points
θ with ff > αf . The thresholdt∆θ is a global run-time parameter that can gradually be reduced
over time to encourage the learning of improved features.
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Figure 6.10. Kolmogorov-Smirnoff distance KSDf between the conditional distributions of
feature response magnitudes given correct and false predictions.

6.4.3 Predicting the Quality of a Grasp

The quality of a grasp is defined by the minimum friction coefficientµ0 required to execute the
grasp using a given finger configuration (cf. Section 6.3.1).In this model, the lower (closer to
zero) a value ofµ0, the better the grasp. It is not possible to separate good from poor grasps
based on a generic threshold onµ0 alone because, for any given object, the best achievable
grasp depends on the object properties, the number of fingers, and – in general – on the end-
to-end task. For example, the best achievable grasp of a triangular prism using two fingers
is far worse than if three fingers are used. Under Coelho’s formulation, cubes are best grasped
with two fingers to take advantage of symmetric contact forces across parallel opposing surfaces
(Figure 6.8).

It is possible to estimate the expected value ofµ0 associated with a given featuref . For
this purpose, the actually experienced value ofµ0 is stored in the instance list along with each

1Bayesian optimality holds only under the assumption that the prior probabilities of the two conditions are equal.
See Sections 4.3.2 and 4.4.1 for a discussion.
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executed grasp. Theseµ0 values are regarded as samples of a continuous random variable M0

with probability density functionp(µ0) and expected value

E[M0] =
∫ ∞

0
µ0 p(µ0) dµ0.

Observe that each measured value ofµ0 is associated with the measured prediction error∆θf =

|θH − θh|, generated by the same grasp. Iff is indeed highly predictive of the grasp outcome,
then there should be an approximate proportional relationship between theµ0 and the∆θf : Good
grasps with smallµ0 should tend to exhibit a small angular error∆θf . Thus, the probability
density functionp(µ0) should be well approximated by the distributionpvM(∆θf ) of the angular
offsets observed between the feature and hand orientations. Therefore, a sample estimate of
E[M0(f )] for featuref can be approximated as

Ê[M0(f )] =
∑

i µ0,i pvM(∆θf ,i)
∑

i pvM(∆θf ,i)
(6.8)

where the corresponding pairs ofµ0,i and∆θf ,i are taken from the instance list, using only in-
stances corresponding to occurrences off with ff ,i > αf .

6.4.4 Feature Learning Algorithm

Using the concepts introduced in the preceding sections, the procedure for fitting a feature model
is summarized in the following algorithm.

Algorithm 6.1 (Fitting a Feature Model) For a given featuref , the following steps are taken
to compute the associated orientation model, consisting oftheµk, κk, KSDf , andÊ[M0(f )]:

1. Using the current value oft∆θ, identify those occurrences off in the instance list that
correspond to correct and false predictions. Using the response magnitudesf of these
occurrences, compute KSDf and the associated thresholdαf (Section 6.4.2).

2. Using theNf of these instances withf > αf , fit a parametric orientation model (Equation
6.4), obtainingKf , and values forµk, κk, andP(k), k = 1, . . . ,Kf (Section 6.4.1).

3. Using this orientation model and the values ofµ0 and∆θf corresponding to the measure-
ments off in the instance list, computêE[M0(f )] (Equation 6.8, Section 6.4.3).

The system operates by recommending hand orientations and observing the outcomes of
grasping procedures. New features are added to the repertoire in parallel to the execution of
grasping tasks, and are evaluated over the course of many future grasps. This is in contrast to
the distinction-learning application (Chapter 4), where the discriminative power of new features
was immediately estimated using example images. Here, no example images are necessary. The
visual system does not have any influence on the types or identities of the grasped objects. Two
separate feature setsF2 andF3 and two separate instance lists are maintained for two- and three-
fingered grasps. Out of these two sets, the feature with the lowest expected friction coefficient
µ0 provides a recommendation of grasp parameters to the hapticsystem. The operation of the
learning system is detailed in the following algorithm.

Algorithm 6.2 (Feature Learning and Application of Feature Models) Initially, the setsF2

andF3 of features known to the system are empty.

1. A new grasp task is presented to the grasping system, and anoverhead image of the grasped
object is acquired.

2. The following steps are performed for each feature setFc:
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(a) The responsesff of all featuresf ∈ Fc are measured in the current image.

(b) Identify the above-threshold feature with the highest predictive power:

f ∗c = argmax
f∈{f∈Fc| ff>αf }

KSDf

Now, choose the numberc of grasp contacts that will result in the better grasp:

c = argmin
c∈{2,3}

Ê[M0(f ∗c)]

3. From theK components in the angular mixture model associated withf ∗c, identify the most
concentrated component distribution of angular errors:

k∗ = argmax
k∈

{

1≤k≤Kf∗c

∣

∣

∣

∣

Nf∗c P(k)≥3
}

κk

To avoid singular modes, the maximum is only taken over thosecomponent distributions
that model at least three data points.

4. Using the orientation off ∗c measured in the image and the angular offset associated with
k∗, form a recommended hand orientation (cf. Equation 6.2):

θh = θf ∗c + µk∗

5. The robot performs ac-contact grasp with initial azimuthal angle ofθh. Upon convergence
of the haptic system, a new instance vector is added to the instance list, containing the
response magnitudes, orientations, and prediction errors∆θf = |θH − θh| of all features
f ∈ Fc, as well as the actual final hand orientationθH, and the achieved friction coefficient
µ0.

6. If ∆θf ∗c < t∆θ, i.e. the recommended grasp parameters were accurate and required little
adjustment by the haptic system, then continue at Step 1.

7. Using Algorithm 6.1, the KSDf are recomputed for allf ∈ Fc, and all associated mix-
ture models are re-estimated based on the cases recorded in the instance list of previous
experiences.

8. A new predictionθh is formed based on the new models, following the same procedure as
above, but leavingc fixed (Steps 2a, 2b, 3, 4).

9. If now |θH − θh| < t∆θ, continue at Step 1.

10. Add two new features toFc: One is created by sampling a random texel or a random pair
of edgels from salient points in the current image (cf. Algorithm 4.10 (Feature Generation,
page 43), Step 2). The other feature is generated by randomlyexpanding an existing
feature geometrically by adding a new point (cf. Algorithm 4.10, Step 3). Then, continue
at Step 1.

Many of the features randomly sampled at Step 10 will performpoorly, e.g. because they
respond to parts of the scene unrelated to the object to be grasped. Such features will develop
a poor KSD, as there is no systematic association between their response strengths and their
prediction accuracies. Due to their low KSD, such features will cease to be used at all (Step 2b).
On the other hand, if a feature performs well, its KSD will be increased, and it will more likely
be employed. Moreover, since only features are consulted that are asserted to be present in the
image (i.e.,ff > αf ), features can be learned that selectively respond to different object shapes
requiring different offsetsθ. Unused features should be discarded periodically. The details
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of when this is done are unimportant, but if all features are kept around, then those steps in
Algorithm 6.2 that involve iterating over all features willincur unnecessary computational cost.

This algorithm uses only a single feature to derive a hand orientation. Similarly to the pre-
ceding two chapters, the reason for this choice is to reinforce the point that a highly uncommitted
adaptive visual system can learn powerful features. The robustness of the recommended angles
can probably be increased by pooling the recommendations ofseveral features. At Step 2, the
feature of choice is determined according to its KSDf . Then, at Step 3, one of the modesk of this
feature’s model is chosen to form the actual prediction. At first glance, it seems that this choice
of a model is unstable because the actual reliability of the individual modes of a given feature
model may differ widely. However, this variation does not cause instability because the KSD is
derived according to the actual behavior of the feature in practice, as recorded in the instance
list. Thus, a high KSD can only result if the practically usedmodesk perform consistently well.

In contrast to the feature learning algorithm for distinctive features (Algorithm 4.8 on page 41),
Algorithm 6.2 does not evaluate features immediately, as this would require repeated grasps of
the same object in lieu of the example images used by Algorithm 4.8. This algorithm instead
chooses to spread the evaluation of newly sampled features across multiple future grasps. This
prevents the use of an explicit simple-to-complex search procedure such as Algorithm 4.10.
However, the expansion of features at Step 10 above has the same effect, spread over multi-
ple grasps. Boolean compound features are not used here because their orientations are less
meaningful than those of geometric compounds.

Incidentally, this search for good predictive models constitutes an Expectation-Maximiza-
tion (EM) algorithm. An EM algorithm alternates between estimating a set of unknown data
values based on a current estimate of a model (Expectation step), and estimating the model
based on the full data (Maximization step). Here, the parametric model to be optimized is the
collection of all feature-specific models that are used by the angular recommendation process.
The unknown data values specify which recorded data points should participate in the feature-
specific models. At the Expectation step, these hidden parameters are estimated by computing
the KSDf such that the probability of making the right choice for eachdata point is maximized,
given the current model. At the Maximization step, the likelihood of the model given the par-
ticipating data points is maximized by optimizing the modelparameters according to Equation
6.5. As the system operates, these two steps alternate.

This instance of the EM algorithm is unusual in that the Expectation step does not utilize
all available current data. Instead, the instance list of past experiences is consulted for previ-
ous prediction results, which were generated by models derived from all data availableat that
time. Taking the correct expectation using the most recent modelwould involve revisiting all
previously-seen images at each Expectation step, which is clearly impractical. Nevertheless, the
convergence properties of the EM algorithm are unaffected. As data accumulate, the accuracy of
recent expectations can only increase, and the influence of possibly inaccurate data from early
history diminishes.

6.5 Experiments

The learning algorithm just presented is designed to operate on-line. However, a single grasp
performed by the real robot using Coelho’s system (Section 6.3.1) takes on the order of ten
minutes, while the learning algorithm requires hundreds ofgrasps to converge. Therefore, a
thorough on-line evaluation was impractical. Instead, experiments were conducted in simula-
tion in a way that closely resembles the actual integrated grasping system. These experiments
utilized a detailed kinematic and dynamic simulator of the robotic hand/arm system, developed
by Jefferson Coelho, that cycles through the following steps:
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1. Generate a random polyhedral object geometry by drawing object parameters from para-
metric probability distributions derived from actual experiments using the real robot. Ran-
dom parameters include the dimensions and angles defining the object.

2. Perform a simulated grasp of this object. The haptic control system is the same as that
used for the real robot. The simulator interprets the motor commands and generates sen-
sory feedback in the form of joint angles and (relatively noisy) force/torque readings of
the fingertip sensors.

The three types of object geometries used included quadrangular (roughly square) and triangu-
lar (roughly equilateral) prisms, and cylinders. Typical object geometries and converged grasp
configurations are illustrated in Figure 6.11. The ray originating from the object center indi-
cates the wrist orientation in accordance with Figure 6.7. The categorization into “good” and
“poor” grasps is for illustration only. As mentioned earlier, there is no way to grasp a triangle
well using two fingers, and all grasps of the cylinder were of consistently high quality. Visual
input for the visual learning system was generated by producing photo-realistically rendered
and noise-degraded views on the basis of the object specifications generated at Step 1 above
(Figure 6.12). All results reported below were computed in two-fold cross-validation. For sim-
plicity and speed, no texels were used. However, other unpublished experiments indicate that
the presence or absence of texels does not have a noticeable impact on this task.

Good Grasps Poor Grasps

Figure 6.11. Representative examples of synthesized objects and converged simulated grasp
configurations using Coelho’s haptically-guided graspingsystem.

Figure 6.12.Example views of objects used in the grasping simulations.

6.5.1 Training Visual Models

To generate training data, Coelho’s grasp simulator performed several hundred simulated grasps
on instances of the three object types, using two- and three-fingered grasp controllers, and
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recorded the final grasp configurations on convergence, along with the grasp quality indexµ0.
These data were used by Algorithm 6.2 to train visual featuremodels. Lacking the ability to
perform an actual grasp at Step 5, the recommended grasps were simulated by comparing the
recommended hand orientationθh with the previously executed hand orientationθH associated
with the training image, modulo the known rotational symmetry properties of the object. Since
cylinders have infinite-fold rotational symmetry, any handorientation works equally well. Con-
sequently, no features were ever learned for cylinders.
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Figure 6.13. Quantitative results of hand orientation prediction. The rightmost bin of the right
histogram includes all cases where the prediction error exceeded 60 degrees.

Figure 6.13 demonstrates that the system succeeds in learning features that are indicative of
hand orientations. The data in Figure 6.13a were produced byfeature models that were trained
using 2-fold cross validation on the 20 best two-fingered grasps of cubes, and the 20 best three-
fingered grasps of triangular prisms available in the simulated training set. As always in this
chapter, the quality of a grasp was assessed in terms of the friction coefficient µ0. These data
can be expected to contain only little noise in the training signal, i.e., the actual hand orientation
θH on grasp convergence. Performance on an independent test set is almost always excellent,
with prediction error magnitudes on the order of the variation in the training signal.

The data in Figure 6.13b were produced by feature models thatwere trained on a represen-
tative sample of 80 grasps, including 20 grasps each of cubesand triangular prisms using two-
and three-fingered grasp controllers. On such noisy training data that contains hand orientations
that produced a poor grasp, the system expends a lot of effort trying to learn these outliers. How-
ever, performance degrades gracefully because features are selected by Kolmogorov-Smirnoff
distance, which prefers generic features that work well forthe majority of useful training exam-
ples. On a noisy test set, most poor recommendations occur onoutliers. Notably, two-fingered
grasps of the triangular object are inherently unstable andunpredictable. Here, prediction errors
produced by the trained system depend on the error thresholdthat divides “good” from “poor”
predictions during training. Choosing a low threshold generally produces more accurate predic-
tions on a test set, as long as this threshold is larger than the variation contained in the majority
of the training data.

6.5.2 Using Visual Models to Cue Haptic Grasping

Several experiments were performed to evaluate the effect of visual priming on the haptic grasp-
ing procedure. The two primary evaluation criteria were thenumber of haptic probes executed
before the grasp controller converged, and the quality of the achieved grasp on convergence in
terms of the friction coefficient µ0. All experiments employ the native grasp controllers de-
scribed in Section 6.3.1.

In the first experiment, a two-fingered native grasp controller was cued using features trained
on the best 20 two-fingered grasps of cubes available in the training set. An analogous experi-

110



0 5 10 15 20
0

100

200

300

400
Native Haptic (Cubes/2)

Number of Probes

C
ou

nt

0 5 10 15 20
0

50

100

150
Visual+Haptic (Cubes/2)

Number of Probes

C
ou

nt

0 0.5 1
0

500

1000
Native Haptic (Cubes/2)

µ
0

C
ou

nt

0 0.5 1
0

100

200

300
Visual+Haptic (Cubes/2)

µ
0

C
ou

nt

0 5 10 15 20
0

100

200

300
Native Haptic (Triangles/3)

Number of Probes

C
ou

nt

0 5 10 15 20
0

50

100
Visual+Haptic (Triangles/3)

Number of Probes

C
ou

nt

0 0.5 1
0

100

200

300
Native Haptic (Triangles/3)

µ
0

C
ou

nt

0 0.5 1
0

50

100
Visual+Haptic (Triangles/3)

µ
0

C
ou

nt

Figure 6.14. Results on two-fingered grasps of cubes (top half), and three-fingered grasps of
triangular prisms (bottom half). The left column shows purely haptic grasps; in the right column,
grasps were cued using learned visual feature models. The rightmost bin in each histogram
includes all instances with a number of probes≥ 20, orµ0 ≥ 1, respectively.
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ment was performed using three-fingered grasps of triangular prisms. The feature models were
the same as those that generated the results shown in Figure 6.13a. The results are shown in
Figure 6.14. For cubes, the number of lengthy grasps that required more than about 13 haptic
probes was drastically reduced. Such grasps typically do not converge to a stable configura-
tion. Likewise, the number of extremely fast grasps that required only a single probe increased
substantially. For both cubes and triangular prisms, the expected number of probes was not
significantly affected. However, in both cases the number of poor grasps (in terms ofµ0) was
dramatically reduced. Figure 6.15 shows examples of the features learned during the training
procedure. Interestingly, one feature captures both the cube and the boundary of its shadow.
Apparently there were enough fitting examples in the data that such a feature was advantageous.

Figure 6.15. Examples of features obtained by training two-fingered models on cubes and
three-fingered models on triangular prisms, using clean data separated by object type (cf. Figure
6.14).

In a second experiment, a set of visual feature models was trained using a training set of 80
grasps, including 20 grasps each of cubes and triangular prisms using two- and three-fingered
grasp controllers. This training set differed from the one used in Figure 6.13b: There, the
training set was representative of the population of grasp experiences, including outliers. Here,
the best 20 grasps in each of the four categories was used for training. Both the two- and
three-fingered visual feature models were exposed both to cubes and to triangular prisms, and
the learning procedure learned features that were specific to cubes or triangular prisms exclu-
sively. Thus, these features gathered meaningful statistics of the experienced friction coeffi-
cients, which could then be used to recommend a two- or a three-fingered grasp (see Section
6.4.3, and Algorithm 6.2, Step 2). This experiment was run inaccordance with Algorithm 6.2,
Steps 1–5. Figure 6.16 shows examples of the features learned. Note that in the case of the
triangular prism, a feature spuriously responded to the shadow, which is not correlated with the
orientation of the object.

The results are shown in Figure 6.17. The two columns on the left display the results
achieved by the purely haptic system, for two- and three-contact native controllers. In both
cases, grasped objects included both cubes and triangular prisms. This explains the bimodal
distributions ofµ0 shown in the bottom row: The modes centered nearµ0 = 0.2 mostly cor-
respond to two-fingered grasps of cubes and three-fingered grasps of triangular prisms, while
the modes centered nearµ0 = 0.6 tend to correspond to three-fingered grasps of cubes and
two-fingered grasps of triangular prisms. This illustratesthat neither two- nor three-fingered
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Figure 6.16.Examples of features obtained by training two- and three-fingered models on cubes
and triangular prisms, using a single dataset containing relatively noise-free grasps of cubes and
triangular prisms (cf. Figure 6.17).

Figure 6.17. Grasp results on cubes and triangular prisms. The number of grasp contacts was
chosen using the learned visual feature models.
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native controllers alone are sufficient to execute high-quality grasps reliably for both cubes and
triangular prisms.

The rightmost column shows the results achieved if the learned visual models determine
which native policy to use, and how to orient the hand at the outset of a grasp. Almost all grasps
result in a very goodµ0; the second mode has almost completely disappeared. Moreover, very
long trials (more than about 20 probes) are practically eliminated (cf. the two-fingered native
controller on the left). However, the expected number of probes increases slightly. The reasons
for this undesired effect are unclear. One possible explanation is that the angular recommen-
dations made by the learned feature models were relatively poor, and possibly skewed by a
systematic bias, due to the presence of many unreliable grasps in the training set, predominantly
two-fingered grasps of triangular prisms. Even if this is true, this slight drawback is more than
outweighed by the enormous gain in the quality of the resulting grasps, as evidenced by the low
values ofµ0.

6.6 Discussion

This chapter described a system for learning to recommend hand orientations and finger con-
figurations to a haptically-guided grasping system. Localized appearance-based features of the
visual scene are learned that correlate reliably with observed hand orientations. If the training
data are not overly noisy, specialized features emerge thatrespond to distinct object classes.
These can then be used to recommend the number of grasp contacts to be used, based on the
expected quality of the grasp. In this way, visual guidance takes place without prior knowl-
edge, explicit segmentation or geometric reconstruction of the scene. The interaction between
haptic and visual system is a plausible model of human grasping behavior. Learning is on-line
and incremental; there is no distinction between learning and execution phases. The results
demonstrate the feasibility of the concept.

The main limitation of the system, as used in the experimentsabove, is that its performance
was adversely affected by noise in the training data. It was unable to identifyand ignore noisy
training examples. However, it is important to note that this effect is inherent in the off-line na-
ture of the training process. While the algorithm is designed to operate on-line, the experiments
above were generated off-line using a fixed set of training data. In effect, the visual system
learned solely by observing the haptic system in action. Without additional information, there
was no way for it to distinguish good from poor grasp outcomes. Off-line training severs an
important feedback loop between the visual and the haptic system. During on-line training, as
described in Algorithm 6.2, the haptic system always uses the cues given by the visual system.
If these cues are accurate, then the quality of the resultinggrasps is of consistently high quality
(Figures 6.14 and 6.17). In effect,once highly predictive features emerge, the resulting training
data will contain little noise!Due to the KSD feature selection metric, good features will be
used more often than poor features. Thus, their increased use will change the distribution of the
training data, with the effect that the noise is increasingly reduced. This is a strong reason to
expect that an on-line training procedure will bootstrap itself to yield reliable features by pro-
ducing pure training data, which are in turn produced by reliable features. A merely observant
learner is permanently confronted with the same stationarydistribution of noisy training data,
and wastes a lot of effort trying to learn the noise, contaminating its feature setwith spurious
features. In contrast, an interactive learner can activelyeliminate the noise from the training
data! The experimental verification of this argument must beleft to future work.

The sensorimotor grasping system described in this chapterlearns about objects, and how
they are best grasped. This way of learning about activity afforded by the environment is remi-
niscent of the Gibsonian ecological approach to perception[41, 39]. The notion ofaffordances
is a central concept in this theory. An affordance refers to the fit between an agent’s capa-
bilities and the environmental properties that make possible given actions. According to the
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Gibsons, an agent learns about affordances by interacting with the environment. It discovers
effects of actions and perceptual characteristics indicativeof affordances. The ecological ap-
proach emphasizes that perception isdirect; behaviorally useful information is extracted more
or less directly from the egocentric sensory stream, without intermediate comprehensive rep-
resentations such as geometric models. The Gibsonian theory is appealing to many roboticists
because of its direct link between perception and action. Unfortunately, the underlying com-
putational mechanisms are largely unclear. This is addressed by the methods described in this
chapter. The haptic sensorimotor system learns about the types of grasps afforded by different
objects, that is, the fit between hand and object. At the same time, the visual system learns to as-
sociate these affordances with visual appearance. Features of appearance are extracted directly
from the sensory stream, which is compatible with the Gibsonian notion of direct perception. It
will be interesting to explore such activity-driven learning mechanisms in more elaborate task
scenarios.

115



116



CHAPTER 7

CONCLUSIONS

The first two chapters of this dissertation outlined a scenario in which autonomous robots re-
fine their perceptual skills with growing experience, as demanded by their interaction with the
environment. The following four technical chapters introduced a general framework for learn-
ing useful visual features, and applied it to two very different task domains. This final chapter
collects the insights gained in the technical chapters, andreassembles them into parts of the big
picture drawn at the outset. It discusses the contributionsof this dissertation, and highlights
some important directions for future research.

7.1 Summary of Contributions

The desire to construct autonomous robots that perform nontrivial tasks in the real world is
one of the driving forces of research in artificial intelligence. It has long been argued that
the world is too complex to allow the design of canned, robustaction policies. Therefore,
learning capabilities are generally agreed to be a crucial ingredient of sophisticated autonomous
robots. However, the computer vision research community has not as widely embraced this
viewpoint. In Section 1.2 I argued that visual learning is indispensable for agents that need to
extract task-relevant information from uncontrolled environments. This dynamic and purposive
paradigm of vision is commonly calledactive vision[4, 15]. The crucial role of visual learning
in active vision has been pointed out in its early days [10, 9]. Since then however, relatively little
emphasis has been placed on the learning aspects of task-driven vision, although some progress
is being made [76]. A central aim of this dissertation is the advancement of visual learning as
an essential ingredient of task-driven vision systems. Thefollowing items summarize the key
contributions of this dissertation:

• The field of computer vision has a strong tradition of viewingvision problems in isolation.
Under this paradigm, the goal of vision is to generate scene descriptions for use by higher-
level reasoning processes. I argue that this approach is inappropriate in many visual tasks
that arise in the context of autonomous systems, and insteadadvocate adaptive visual
systems that learn to extract just the information needed for a task.

• I proposed an iterative, on-line paradigm for task-driven perceptual learning that cycles
through sensation, action, and evaluation steps (Figures 2.1 on page 8, 4.2 on page 35,
and 6.6 on page 102). Learning takes place only when needed, and is highly focused on
solving problems encountered on line. This view of incremental visual learning departs
from established traditions in computer vision.

• Extending Amit and Geman’s work on combinatorial features [8, 5] and combining it with
highly expressive and biologically plausible feature primitives, I introduced an infinite
combinatorial and parametric feature space that contains useful features for a variety of
tasks. Powerful features are sought in a simple-to-complexfashion by random sampling
directly in training images.
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• I demonstrated that powerful features can be learned in a task-driven manner by a general
system that starts out with very little prior commitment to any particular task scenario.
To reinforce this message, my algorithms are designed to learn only a small number of
features that are highly distinctive individually.

• In the context of visual recognition, I generalized the conventional true/false dichotomy
of classification by a multi-class framework that allows each class to be treated separately.
This paradigm unifies the traditional paradigms of object recognition and detection. I also
motivated an implementation on the basis of multiple Bayesian networks. This represen-
tation abandons the closed-world assumption made by conventional recognition systems.

• The efficacy of these algorithms and representations was evaluatedon object discrimina-
tion tasks that simulated an on-line learning scenario.

• Motivated by the phenomenon of human expertise in visual recognition, I proposed a
method for learning improved features by introducing explicit requirements of discrim-
inative power. As a result, test-set performance significantly improves according to all
performance metrics.

• On the basis of the feature space, I developed a method for learning features to recommend
configuration parameters for a haptically-guided graspingsystem that resembles the way
humans use visual information to pre-shape their hands while reaching for an object. The
method results in improved grasps, without any explicit extraction or representation of
object geometry.

Two very different applications demonstrated the potential of the general approach. The ob-
ject discrimination task is essentially aclassificationproblem, with the goal of finding features
that are highly predictive of particular classes. A strongly focused feature search procedure ex-
plicitly applies simple-to-complex search heuristics. Candidate features are evaluated immedi-
ately, which requires a cooperative environment that can provide example images. The grasping
task mainly constitutes aregressionproblem. Here, features are sought whose image-plane ori-
entations robustly correlate with hand orientations. Feature evaluation is distributed over many
successive grasping trials, and does not require example images. The simple-to-complex feature
construction strategy is more implicit in this algorithm.

All experiments were performed in simulation. On-line learning tasks in real environments
will benefit from an efficient implementation, especially if it capitalizes on the high degree of
parallelism inherent in the feature search algorithms. Importantly, the algorithms presented here
can in principle be applied in on-line, interactive tasks. This constitutes an advancement in
the technology for building autonomous robots that performon-line perceptual learning. The
methodology begins with an uncommitted learning system that makes far weaker assumptions
about the world and the task than most existing vision systems. In particular, no explicit as-
sumptions are made regarding object segmentation, contourextraction, presence of clutter or
occlusions, the number of target objects or classes presentin a scene, or the number of classes
to be learned. Nevertheless, target concepts are learned with remarkable accuracy, as reported
in Chapters 5 and 6.

In addition to advancing technology, this dissertation also contributes to our understanding
of human perceptual learning in that it provides a computational model of feature development.
Sections 2.1 and 5.1 presented strong evidence that humans learn features not unlike those con-
tained in the feature space introduced in Chapter 3. For the first time, a detailed computational
model of feature learning was presented that explains many of the phenomena observed by psy-
chologists [109, 107, 120, 38, 41, 39]. Key principles of themodel are biologically plausible,
including the primitive features and the principle of composition. It is not unlikely that hu-
mans perform a simple-to-complex feature search, producing empirically useful features that
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are discarded or refined as required by additional experience. Clearly, biological vision systems
employ more sophisticated features not contained in the constrained space used here, as will be
discussed in the following section.

7.2 Future Directions

The algorithms developed in this dissertation are far more general than the restricted scenarios
used in the experiments. Much more systematic experimentation is required to illuminate their
properties. The recognition system needs to be evaluated under the presence of multiple target
objects, occlusions, and non-target clutter objects. Individual target classes should include dif-
ferent objects, including highly heterogeneous sets of objects that differ widely in appearance.
Incremental introduction of target classes (in the sense ofSection 5.4.4) requires further study,
e.g. by examining the effect of presentation order on the learning process. Most importantly,
both the recognition and the grasping system need to be integrated in real-world interactive
tasks, breaking away from closed training sets. It was pointed out that both the expert learning
and the grasping applications are expected to undergo a noticeable performance boost if train-
ing data are generated dynamically. Possible testbeds include humanoid or autonomous mobile
robots, smart rooms, etc.

This dissertation explored two different paradigms of the general feature learning method.
One was concerned with supervised classification, the otherwith regression. A third practical
paradigm that should be explored involves an agent that learns multi-step reactive policies in
a reinforcement learning framework. The agent takes policyactionsbased on the currently
observedstate. The only feedback available to the agent consists of a scalar reward that may be
delayed over several policy actions, or may be given only at sparse intervals. In this framework,
the state can be represented in terms of learned features that capture task-relevant information
about the environment. For example, the agent can begin withan impoverished perceptual
state space such that all world states are aliased. Then, thefeature learning subsystem seeks
perceptual features that resolve hidden state, similar in spirit to McCallum’s U-Tree algorithm
[67].

The following sections discuss important limitations and possible enhancements of the ideas
and methods developed in this dissertation, and outline howthese can be addressed by future
research.

7.2.1 Primitive Features and their Composition

The two specific primitive feature types that form the basis of the feature space introduced in
Chapter 3 were chosen because they constitute a small set andexpress complementary aspects
of appearance. For general tasks, other types of primitive features should be introduced. Two
of the most important features missing in the current systemare color and statistical texture
features. Gaussian-derivative features of color-opponent image signals have been explored for
appearance-based object recognition [43]. Statistical features analyze the local intensity distri-
bution without regard to their spatial organization, and thus complement the highly structured
and oriented texels. For example, such features would probably prove valuable in the (gray-
scale) Mel task.

An important characteristic of the feature space introduced in Chapter 3 is that it can be
augmented almost arbitrarily by adding other types of primitive features and rules of composi-
tion. These additions are not limited to visual operators, but can include information from other
perceptual modalities, or generally, any type of assertionabout the world. Different modalities
can even be combined within the same compound feature through appropriate compositional
rules. For example, combining visual and haptic information using this framework would open
up new perspectives in cross-modally-guided grasping.
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The temporal and three-dimensional nature of the world gives rise to more features, many
of which fit into this framework. For example, primitive or compound features can be computed
on optical flow or disparity fields. These features are easilyaccessible to interactive agents, and
are likely important in many everyday scenarios.

The current parametric representation of compound features is not very plausible biolog-
ically. For representations compatible with current knowledge about the organization of the
visual brain, Riesenhuber and Poggio’s model [96] can serveas a starting point.

7.2.2 Higher-Level Features

In its present form, the feature space contains primitive and compound features. This space
excludes many types of features that are very informative tohumans, but are not easily express-
ible within this framework. Examples include Gestalt features such as parallelism, symmetry
(axial and radial), and continuity of contours. Another example is cardinality. To illustrate, a
bicycle wheel has many spokes, and a triangle has three corners. These abstract concepts are not
directly expressible by the current feature set, but appearto be very powerful cues to humans
for scene interpretation. Some higher-level features may in principle be learnable by composing
them from lower-level features.

7.2.3 Efficient Feature Search

The current feature learning algorithm engages a blind and random generate-and-test search pro-
cedure in static images. The only guidance available is given in the form of salient points, which
constrain the search space to points that are deemed to be most important, independently of the
task. In reality, there are much more powerful ways to draw attention to important features. For
example, I postulate that the ability to track feature points of a moving object can give pow-
erful cues about what appearance-based features are stableacross a wide range of viewpoints.
Also, such tracking allows the construction of (at least partially) view-invariant features of local
three-dimensional object structure.

There may also be other, more direct ways to extract distinctive features, in the spirit of
discriminative eigen-subspaces. I doubt that this is always possible, as even humans do not –
at least not always – extract distinctive features directlyin this way. On sufficiently difficult
discrimination tasks, we struggle to identify distinctivefeatures unless they are pointed out to
us. There is strong psychological evidence suggesting thatthe subjective discriminability and
organization of objects is altered by experience [107].

However, there is certainly much room for improvement on thecurrent, blind generate-
and-test method. One interesting possibility is to design ameta-learning process that notices
patterns in the ways distinctive features are found, and thus learns how to look for good features
efficiently.

7.2.4 Redundancy

Both mammalian and state-of-the-art feature-based computer vision systems owe their perfor-
mance largely to their use of a large number of features [71, 104, 96, 77, 78, 8, 6, 82, 66]. The
resulting redundancy or overcompleteness creates robustness to various kinds of image varia-
tion and degradation. The present work on feature learning purposely did not use this type of
redundancy because without it, the distinctive power of individual features – and thus the suc-
cess in learning – stand out much more. However, for practical applications such redundancy is
required to increase robustness. Future work should investigate ways of learning large numbers
of partially redundant features that are still powerful individually.

Recall from Chapter 5 that the trained recognition system rarely produces wrong results.
Almost all incorrect recognitions are either ignorant or ambiguous, which are caused by a fail-
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ure to find all relevant distinctive features in an image. This is an artifact of the extremely small
number of features learned by the system. The availability of redundant features would greatly
enhance the likelihood of finding distinctive features, which in turn would strongly reduce the
number of ambiguous and ignorant recognitions. This makes me very confident that an exten-
sion of the current learning system with many redundant (butpowerful) features would achieve
results competitive with the best of today’s, much more specialized recognition systems.

7.2.5 Integrating Visual Skills

Along with related work, this dissertation demonstrated some of the great potential of appearance-
based vision. However, there are tasks that are not solved onthe basis of appearance alone.
There is a role for other techniques such as shape-from-X, geometric model matching, or a
functional interpretation of items seen. Currently, such different paradigms are usually applied
in isolation. We do not know how to integrate them into a unified whole, as the human visual
system appears to do. Ideally, an autonomous robot should have at its disposal a repertoire of
essential visual tools, and should learn how to use these jointly or individually.

7.3 Uncommitted Learning in Open Environments

The above discussion pointed out some features and rules forcomposition that should be added
to extend the range of concepts expressible by the learning system. However, there are two
important caveats: First, the combinatorics of the featuresearch grow badly with the number
of primitives and rules (see Algorithm 4.10 on page 43). The second caveat is an instance of
a critical problem shared by all inductive learning systems1: Even if unlimited computational
resources were available to cope with arbitrary numbers of primitives and rules, having too many
of these will necessarily hurt the learning process. The more degrees of freedom are available
to an inductive learning system, the more ways exist to find patterns in the data. If the number
of degrees of freedom is large in relation to the number of variables in the data, many spurious
patterns will be found. There is no way to know which of these are valid in the sense that they
will generalize to unseen test instances. Therefore, all inductive learners are necessarily limited
in their expressive power. The guiding principles implementing this limitation are collectively
called theinductive biasof the learner. In practice, the designer of a learning procedure must
tailor the inductive bias to the presumed structure of the task.

A novelty of this work is the introduction of an infinite feature space based on commonly
used visual feature primitives, expressive enough to learntraining sets of almost any classifi-
cation task – if necessary, by memorizing the training images. Without any guiding principles,
this learning system would be bias free, and therefore unable to generalize. The bias is given by
a simple-to-complex feature sampling procedure that makesthe learner prefersimplefeatures.
The underlying assumption is that simple features generally provide for the best generalization,
or in other words, that the “real” structure underlying a task tends to be expressible by simple
features from the feature space (cf. Section 3.6, page 28).

This assumption is not always true, as exemplified by the Mel task in Chapters 4 and 5. The
features found by the learner worked well on the training set, but generalized poorly neverthe-
less. It appears that the features represented accidental structure in the training set, which does
not generalize to test images. In some cases, spurious structure represented by a feature may
be supported by a large number of training images. In other cases, it may be supported by only
very few images, resulting in overfitted features. Data setsthat violate the structural assump-
tions reflected in the inductive bias are especially prone tothis problem. This is apparently true

1Informally, aninductivelearning system learns a function from training examples, and then generalizes to unseen
test instances on the basis of this function.
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of the Mel task, where simple combinations of edgels and texels did not tend to capture the real
structure in the data.

How do humans solve the bias problem? Adult humans seem to be able to learn from
very few examples, and are often able to pick out distinctivefeatures with apparent ease. I
suspect that the answer is related to our – learned – ability to control our learning bias. Guided
by a wealth of background knowledge and functional understanding of the world, we are able
to constrain our feature space adaptively and efficiently, so that relevant structure in the data
is easily found. In other words, humans are not simple inductive learners, but our learning is
supplemented by insights into functional and causal structure of the world. Likewise for artificial
systems, the bias problem implies that straightforward inductive mechanisms are insufficient to
build effective uncommitted learners; they must be supplemented by other mechanisms [124].

Notably, it seems plausible that this knowledge is itself acquired by inductive mechanisms.
One can envision a hierarchy of inductive learners. Many learners learn specialized tasks on the
basis of low-level features such as sensory signals. Their output signals constitute highly struc-
tured input signals to other learners, enabling these to learn functions that would be impossible
to learn directly using the low-level features, because of their excessive degrees of freedom.
These learning components can be trained in order, individually and largely independently, gen-
erally from the bottom up. This order can be given by a teacherwho knows effective learning
schedules. Where does the teacher come from? Imagine a worldpopulated by a large number of
such multilayer learning agents, all of which apply random learning schedules in an attempt to
discover useful structure in the world. Because of their large number, some of them will even-
tually be successful. These can then become teachers of the others, sharing their empirically
successful learning strategies.

This dissertation made progress toward building uncommitted perceptual systems that can
learn to become expert at specific tasks. The next quantum leap toward understanding human
learning on the one hand, and toward constructing autonomous artificial learning systems for
open environments on the other hand, requires the defeat of the bias problem. This poses a great
challenge to computer vision and machine learning research.
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APPENDIX

EXPECTATION-MAXIMIZATION FOR VON MISES MIXTURES

The Expectation-Maximization (EM) algorithm [28] is an elegant class of methods for estimat-
ing the parametersa of a probabilistic model where only some of the underlying variables are
known. The EM algorithm begins with any suitable initial estimate of the parametersa, and
then alternates the following two steps until convergence:

Expectation: Given the current estimate of the model parametersa and the observed data,
compute the expected values of the unobserved portion of thedata.

Maximization: Given the observed data and the expected values of the unobserved data, com-
pute a new set of model parametersa that maximizes some objective function.

If the objective function is continuous, this procedure will converge to a local maximum.
A typical application of EM is the estimation of the parameters of a mixture model

pmix(θ | a) =
K

∑

k=1

p(θ | ak) P(k) (A.1)

to fit an observed setΘ of data pointsθi , i = 1, . . . ,N. The mixing proportionsP(k) and
the componentski that generated each data pointθi are unknown. The objective is to find the
parameter vectorak describing each component densityp(θ | ak).

The Expectation step computes the probabilitiesP(k | θi) that each data pointθi was gener-
ated by componentk, given the current parameter estimatesak andP(k), using Bayes’ Rule:

P(k | θi) =
p(θi | ak) P(k)

∑K
j=1 p(θi | a j) P( j)

=
p(θi | ak) P(k)

pmix(θ | a)
(A.2)

At the Maximization step, a new set of parametersak, k = 1, . . . ,K, is computed to maximize
the log-likelihood of the observed data:

logL(Θ | a) =
N

∑

i=1

log pmix(θ | a) (A.3)

At the maximum, the partial derivatives with respect to all parameters vanish:

0 =
∂

∂ak
log L(Θ | a) =

N
∑

i=1

P(k)
pmix(θ | a)

∂

∂ak
p(θi | ak)

=

N
∑

i=1

P(k | θi)
p(θi | ak)

∂

∂ak
p(θi | ak) (A.4)

where the second line (A.4) follows from substituting Equation A.2. The Maximization is then
computed by solving this system (A.4) for allak. Moreover, the estimates of the component
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priors are updated by averaging the data-conditional component probabilities computed at the
Expectation step:

P(k) =
1
N

N
∑

i=1

P(k | θi) (A.5)

For the particular case of a mixture of von Mises distributions, Equation A.4 is instantiated
for the parametersµ andκ for each mixture componentk. For µk, Equation A.4 becomes (cf.
Equation 6.6, page 104)

∂

∂µk
logL(Θ | a) = κ

N
∑

i=1

P(k | θi) sin(θi − µk) = 0 (A.6)

µ̂k = ± sin−1

N
∑

i=1

P(k | θi) sinθi

√

√

√ N
∑

i=1

N
∑

j=1

P(k | θi) P(k | θ j) cos(θi − θ j)

(A.7)

Only one of the two solutions given by Equation A.7 is actually a root of Equation A.6. Which
one this is can be determined by backsubstitution into Equation A.6. The root ˆµk thus determined
either minimizes or maximizes the log-likelihood (A.3), ascan be verified by consulting the
second derivative:

∂2

∂2µk
logL(Θ | a) = −κ

N
∑

i=1

P(k | θi) cos(θi − µk) (A.8)

If the second derivative (A.8) at ˆµk is less than zero, thenµk = µ̂k maximizes the log-likelihood
(A.3); otherwise, ˆµk minimizes the log-likelihood, and its mirror image on the circle,µk = µ̂k+π,
is to be used instead.

In the case ofκ, the partial derivatives (cf. Equation 6.7)

∂

∂κk
logL(Θ | a) = −

N
∑

i=1

P(k | θi)
I−1(κk) + I1(κk) − 2I0(κk) cos(θ − µk)

2I0(κk)
= 0

cannot be solved forκk in closed form because the modified Bessel functions are not invertible
algebraically. Theκk have to be approximated via numerical optimization, e.g. gradient de-
scent. In other words, each iteration of the EM algorithm involvesk one-dimensional numerical
optimizations. In the face of this complexity, it seems simpler to perform a single (3K − 1)-
dimensional numerical optimization to find the parametersµk, κk, andP(k) of the mixture model
(A.1) directly, instead of using the iterative EM algorithm.
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