
Event-based Activity Analysis in Live Video Using a Generic Object Tracker

Justus H. Piater, Stéphane Richetto, and James L. Crowley

Projet PRIMA, Laboratoire GAVIR-IMAG
INRIA Rhône-Alpes

655 avenue de l’Europe, Montbonnot
38334 Saint Ismier cedex, France

Abstract
In earlier work we introduced a generic, modular tracker
architecture that combines the advantages of several sim-
ple and rapidly performing tracking algorithms. The adap-
tive choice of critical system parameters such as process-
ing regions and resolution results in robustness to varying
frame rates and computational constraints. In this paper,
we describe the embedding of our tracker into a distributed
infrastructure for visual surveillance applications via an
event-based mechanism. The tracker generates application-
independent events on the basis of generic incidents and
target interactions detected in the video stream. These
events can then be received and interpreted by application-
specific clients. We report experimental results on the shop-
window datasets of PETS 2002.

1. Introduction

PETS 2002 – Third IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (at ECCV 2002).

A central aim of most video surveillance applications is the
automatic detection of particular incidents of interest. In se-
curity applications, for instance, such incidents may include
the appearance of an intruder, the recognition of a particular
face, or a piece of unattended luggage. Other applications
seek to gather statistics of specific aspects of human activ-
ity. In this paper we describe the application of our generic,
video-rate tracking system [8] to a such an application. The
aim is to collect data about commercially relevant human
behavior in relation to a shop window.

We employ our multi-purpose, modular object tracker
that is currently being developed as part of a project aimed
at creating an infrastructure for distributed video surveil-
lance applications. Most of the relevant technical details
about our tracker have already been described at last year’s
PETS workshop [8]. In this paper, we summarize the key
aspects of the underlying multi-purpose tracking system,
and then describe the embedding of our system into the dis-
tributed environment through an interface of light-weight

This work has been sponsored by Project IST-1999-10808 VISOR BASE.

data structures, and how these can be used by specific appli-
cations. We report experimental results on the shop-window
data of this year’s PETS workshop.

Two key characteristics of our system are its generality
and its speed. Since we aim to address a very wide variety of
tracking applications [9], we avoid the use of task-specific
knowledge and models to the largest possible extent. Such
knowledge can substantially bolster performance on spe-
cific applications, but it is costly to implement and often
also computationally expensive [10, 6, 2, 4, 14]. Instead, we
explore the performance achievable within the self-imposed
limitations of a very general and efficient system.

A key to achieving robustness in general scenarios lies in
rapid processing at or close to video frame rates. Therefore,
we employ simple algorithms that perform very rapid tar-
get detection. Several different such algorithms can be used
without loss of processing speed if more than one CPU is
available. This modular architecture permits the selection
of complementary algorithms to balance their respective ad-
vantages and drawbacks, though only one is used for the
purpose of this paper.

The system attempts to track each moving (or temporar-
ily stationary) object as an individual target. Targets that
come very close to each other are merged. If a target sep-
arates into spatially distinct objects, it is split into two tar-
gets. In this way, interacting objects can be tracked [10, 7].
As a result, the system is robust to certain scene and sys-
tem parameters such as the number and proximity of mov-
ing objects and the video processing frame rates. All de-
tection algorithms are based on adaptively parameterized
regions of interest (ROIs). Therefore, the overall compu-
tational demands depend more on the number of simulta-
neously tracked targets than on the size of the processed
frames. This is a great advantage over frame-based meth-
ods when only a minor fraction of the image is covered
by target ROIs. Almost all current work on object track-
ing focuses on such “sparse” scenarios, since any tracking
task becomes considerably more difficult if the majority of
a frame is occupied by moving targets.

1

Shop−Window

People Counter

events

results

other algorithms...

Video Source

Background−Difference
Tracker

Estimator

Recursive Supervisor

Detection Modules Integration and AnalysisInput Video

video frames

from local or

remote source

CORBA Bus

events interaction
userG

e
n

e
ri

c
A

p
p

li
c
a
ti

o
n

Figure 1: Architecture of the robust multi-modal tracker, and its integration into a distributed video surveillance system.
Thick arrows indicate flow of pixel data, and thin arrows parametric data.

2. Architecture
The architecture of the multi-purpose tracking system is
shown in the top half of Figure 1. Arrows indicate data
flow. A video source provides a video stream, originat-
ing from a frame grabber or a file, by writing frames into
buffers where they are accessed by the detection modules,
while avoiding unnecessary copying of pixel arrays. Each
detection module implements a specific tracking algorithm.
Since they are mutually independent, the detection modules
can be executed in parallel, and can in principle operate at
different frame rates. Additional detection modules can be
implemented as desired.

The results of individual detection modules are inte-
grated by a recursive estimator. A supervisor performs
high-level control and analysis at the symbolic level. The
supervisor maintains a list U of currently known targets.
For each frame, the following procedure is performed:

1. The supervisor hands U over to the recursive estimator.

(a) The recursive estimator passes a copy u′ of each
target u ∈ U to each detection module. Each
detection module asynchronously updates its in-
stances u′ according to its algorithm.

(b) The recursive estimator obtains an updated tar-
get u′ from a detection module, and recursively
updates its estimate of the target parameters:

u← update(u, u′) (1)

This step is repeated until all targets have been
processed.

(c) The recursive estimator asks a designated detec-
tion module to generate a list Unew of new targets
(which may be empty).

(d) The recursive estimator returns U ← U∪Unew to
the supervisor.

2. The supervisor examines the list U of targets in order
to remove expired or spurious targets, perform splits
and merges, and to generate any events based on target
interactions or movements if so desired by the applica-
tion context. It may also call upon other modules, e.g.
a face recognizer. Such auxiliary modules may also
access the video source and may trigger events.

Specific applications can tap into the CORBA bus to re-
trieve events generated by the tracker, as indicated in the
bottom half of Figure 1. In Section 6 we describe how this
architecture is used to address the PETS shop-window sce-
nario.

3. Detection Modules
The purpose of a detection module is to measure the cur-
rent location and size u of a target in the current image,
given its estimated location and size û. The observed tar-
get description û consists of an estimate of the location and
spatial extent of a target, and is given by the the pixel coor-
dinates of the target center and the three spatial covariance
parameters:

û = [x̂, ŷ, σ̂xx, σ̂xy, σ̂yy]T (2)

The detection module looks for the target inside a Gaus-
sian region of interest reflecting the uncertainty about the
current estimate of the target:

ROI(u) = G(x; µu, Σ̃u) = e−
1
2 (x−µu)T Σ̃−1

u (x−µu) (3)

where the mean vector µu = [x̂, ŷ]T is simply the predicted
location of target u in the current image, provided by the

recursive estimator. The spatial covariance Σ̃u reflects the
size of the target, as well as the uncertainty about the current
target location and size:

Σ̃ =

[
σ̂xx σ̂xy

σ̂xy σ̂yy

]
+ ∆t
[

qxx + qσxx 0
0 qyy + qσyy

]
(4)

The first term is the current estimate of the spatial extent
of the target, and the second term specifies the growing un-
certainty about the location (qxx and qyy) and spatial extent
(qσxx and qσyy) of the target. All these values are provided by
the recursive estimator. Proportionally to the elapsed video
frame time, the ROI grows into an increasingly axis-parallel
ellipse thanks to the second term in Equation 4 that speci-
fies the estimator’s idea of possible horizontal and vertical
target velocities and growth, without bias toward a diagonal
slant.

For efficiency, the Gaussian ROI is cut off at a reason-
able size, e.g. at a radius of 2σ horizontally and vertically.
Within this area, the detection module produces a detec-
tion image D that encodes, for each pixel, the probability
(or a pseudo-probability) of that pixel being part of the tar-
get. The difference between detection modules lies in the
method of computing D; other than that, all detection mod-
ules within our framework are identical.

The detection image D is multiplied by a mask, that, for
the moment, is simply the Gaussian ROI, and is then thresh-
olded to yield a binary image representing the target:

MASK(u) = ROI(u) (5)
D′ = thresh(D ×MASK(u), t) (6)

The threshold t is easily adjusted for each detection module
by visual inspection of D, and can in principle be computed
probabilistically by collecting statistics of D in non-target
image regions, or, in a Bayes-optimal way, using hand-
selected regions representing target and non-target regions.

The measurement of the target parameters u =

[x̄, ȳ, σxx, σxy, σyy]T is then formed by computing the spa-
tial means and covariances of the pixel coordinates, masked
by the pixel values of the binarized detection image D′.

The thresholding step in Equation 6 is not strictly nec-
essary; in principle, the spatial moments can be computed
by weighting each pixel by its value in D′ = D×MASK(u)
[11]. However, it is not generally clear that a high pixel
value in D should have a high influence on the target pa-
rameters, and vice versa. In general, if a spatially coherent
collection of pixels in D have marginally higher values than
would be expected if no target is present, then the collective
evidence in favor of a target is high despite the relatively
low pixel values. This effect is achieved by thresholding the
detection image. In fact, we have found empirically that a
binarized detection image D′ usually produces more precise
and stable target approximations than the non-thresholded
version.

At this point, the task of the detection module is done,
and the parameter vector u is passed to the recursive estima-
tor. The following section describes the detection module
that we used to generate the results described in Section 7.

3.1 Background-Difference Detection
The background-difference detector maintains an internal
background image B, and produces a monochromatic de-
tection image D using the current frame I according to the
equation

D = min
(
|Ired − Bred| +

∣∣∣Igreen − Bgreen
∣∣∣ + |Iblue − Bblue| , Imax

)
,

(7)
where Imax denotes the upper limit of the intensity range in
one image band.

The performance of background-difference detectors de-
pends crucially on the accuracy of the background repre-
sentation B. Therefore, the background is updated using a
weighted average

Bt = αI + (1 − α)Bt−∆t,

excluding regions that belong to tracked targets.
For reasons of computational efficiency, we chose this

simplistic background model. For increased robustness in
combination with high sensitivity, one can model the back-
ground as pixel-wise Gaussian distributions [13] or mix-
tures of Gaussians [5].

3.2. Other Detection Modules
In the experiments reported in this paper, only the
background-difference detector is used. A variety of other
detection modules are possible. We also have extensive
experience with a motion-history detector [3] and a color-
histogram detector [12, 11] that are described elsewhere
[8, 9]; other modules with complementary properties are
currently under development.

4. Recursive Estimator
The recursive estimator tracks five parameters of each tar-
get u, specifying the position and spatial extent of the target
(Equation 2). It integrates sensor measurements across de-
tection modules and over time. To perform this fusion, we
use a conventional first-order Kalman filter [1]. In addition
to the five target parameters, the Kalman filter estimates the
2-D velocity vector of each target. Compared to a zeroth-
order Kalman filter, this increases the precision and robust-
ness of target localization while allowing smaller ROI sizes,
if the processing frame rates are high in relation to the ve-
locity changes of targets. This condition is easily met for
the types of objects of interest in surveillance applications.

The Kalman filter must be parameterized according to
the accuracy of the measurements of u by each detection
module, and to the expected velocity changes of moving
objects. This can be done by careful calibration using mea-
sured data, or simply by rough estimation as the perfor-
mance is quite robust to imprecise parameterization. The
parameters q that occur in Equation 4 with various sub-
scripts are precisely those coefficients specifying the ex-
pected velocity changes of moving objects.

5. Supervisor
The supervisor maintains the list of currently known targets,
and performs the following principal functions:

• Activation of detection modules for tracking of exist-
ing and detection of new targets in each frame,

• Maintenance of the target list by adding newly detected
targets, deleting lost or exited targets, and performing
target splits and merges,

• Launching of events based on the above, as well as on
other target characteristics,

• User interaction,
• Dynamic re-parameterization of the tracking system

to maintain desired performance characteristics over a
range of conditions (currently under investigation).

5.1. Target List Maintenance
Each target has an associated confidence factor. If a target is
successfully tracked by one or more detection modules, the
confidence factor is incremented (up to a limit). Otherwise,
the confidence factor is decremented. In this case, the target
is considered temporarily out of sight. Note that this target’s
ROI size grows automatically in accordance with the grow-
ing uncertainty of the Kalman estimate of the target location
and size (Eqn. 3). Targets with zero confidence are elimi-
nated. If, however, an undetected target is located inside a
designated exit region, the target is considered to have left
the scene. Accordingly, its confidence is immediately set to
zero, causing it to disappear.

Targets are merged if they draw so close to one another
that they can no longer be reliably kept separate at the para-
metric level. A target is split if it separates into clearly dis-
tinct subregions at the pixel level. The details of this proce-
dure and examples have been given elsewhere [8].

One or more designated detection modules look for new
targets in special trigger regions. This is useful if it is
known by the application context that new targets only ap-
pear in certain regions, because it is much more efficient
than processing the entire image, and also increases robust-
ness to noise. On the other hand, it is perfectly permis-
sible to define a trigger region that covers the entire image.
The detection procedure is generally exactly the same as the

tracking algorithms described above, except that no MASK
is applied. Instead, pixels marked as occupied by a known
target are ignored.

Additionally, dynamic trigger regions may be attached to
target ROIs, covering a certain region around the periphery
of a target. This permits the detection of minuscule sub-
targets that split off existing targets. Dynamic trigger re-
gions are not used in the experiments reported in this paper.

5.2. Event Generation
An ultimate purpose of most tracking systems is the ex-
traction of symbolic descriptions of scene activity. In our
architecture, this task is divided into two parts: Firstly,
application-independent events are generated by the super-
visor. A local module dispatches these events to any regis-
tered local or remote clients. Secondly, the clients analyze
these events to extract information relevant to the applica-
tion. Each event consists of a light-weight data structure
that contains the identifier and parameters of the affected
target(s), as well as further information such as frame num-
bers and time stamps. The following events are currently
defined in our system:

NewTarget A new target was detected in a static trigger
region.

ConfirmTarget A recently detected target (cf. NewTar-
get) has passed a given confidence threshold for the
first time. This event is useful because the Kalman-
filtered parametric approximation of target parameters
requires some number of frames to converge, and also
because NewTarget events are sometimes signalled for
spurious targets that disappear soon after.

MoveTarget A target has moved. Since this event is usu-
ally launched for almost all targets at almost every
frame, incurring a high communication overhead, the
system can be configured to trigger this type of event
at most once in every n frames for each target. For this
paper, however, we always used n = 1.

SplitTarget A target was split into two new targets as
briefly described above.

SplitOffTarget A new target was detected in a dynamic
trigger region as described above. This new target is
considered to have been split off the existing target that
owns that trigger region.

MergeTargets Two targets were merged into a new target.

ExitTarget A target disappeared inside an exit region.

LostTarget A target’s confidence value dropped to zero,
not inside of any exit region.

DeleteTarget A target was deleted by an external event.
Currently, this can be a user who deletes a target by
virtue of a mouse click.

ObservRegion A target entered into or passed out of a
designated observation region.

Observation regions constitute a versatile concept for gath-
ering statistics about target numbers and spatial behaviors.
Our system allows any number of observation regions to
be defined, and allows any kind of spatial relation between
them, including containment and partial overlaps.

5.3. User Interaction
Since our system is part of a distributed infrastructure, it
is designed to be fully remotely interoperable and config-
urable. For this purpose, the supervisor polls for incoming
interaction requests after processing each frame. Any com-
mands contained in these requests are dispatched to the cor-
responding modules within the architecture, and feedback is
returned via the same communication channel. Moreover, a
remote user can request the transmission of live video, and
some event types can carry image data such as face snap-
shots or entire frames as an extended payload.

6. The Shop-Window Scenario
The goal in the PETS Show-Window scenario is to gather
the following information at each frame:

cur in the number of people currently in front of the shop
window,

cumul in the cumulative number of individuals having
passed by the shop window,

cur st the number of people currently stopping and look-
ing into the shop window, and

cumul st the cumulative number of individuals having
looked into the shop window.

This task is difficult to solve for our system because, being
largely model-free, it is not equipped to retrieve any of this
information directly. Based on the events described pre-
viously, we can nevertheless obtain reasonable approxima-
tions to all of these. Figure 3 shows our setup with three
corresponding entry and exit regions, and one large obser-
vation region – consisting of three pieces for experimental
reasons – along the width of the window. In seeking to ob-
tain the desired statistics, our system faces three principal,
interrelated difficulties:

First, since our system has no model of a person, it can-
not determine how many individuals are represented by a
given target. We address this by estimating, for each tar-
get, the number of people based on the width of the target,
along with simple correction mechanisms to ensure consis-
tency across splits and merges.

The second difficulty is that our system cannot identify
individuals. We therefore have no direct way to match iden-
tities of individuals over time, which is required to obtain
accurate values for the cumulative statistics. To address this,
our shop-window client keeps its own list of treated targets.
A given target becomes interesting to the client, and is said
to have been treated, once it enters the observation region
for the first time. Moreover, the targets created by splits
and merges have been treated (by definition) if at least one
of the parents has been treated. Using this list, we remem-
ber, for each target, whether it has passed by or stopped in
front of the window, helping us to accurately estimate the
cumulative statistics.

The third difficulty lies in the fact that, lacking a model
of a person, we cannot determine the direction of gaze of a
person. We therefore make the strong simplifying assump-
tion that all people represented by a stationary target inside
the observation region are looking into the shop window,
and no person represented by a moving target inside the ob-
servation region or by any target outside of it is looking into
the shop window.

An interesting way to address the first and third diffi-
culties would be to use our color histogram detection mod-
ule [9] to detect potential face regions inside the targets.
It could also be used to try to discriminate people on the
basis of the color distributions of their garments, address-
ing the second difficulty. However, pilot experiments soon
indicated that the rather degenerate color information con-
tained in the benchmark sequences is insufficient for these
purposes. In particular, the apparent color of human skin is
very close to the majority of the background.

The key idea then is to keep track of the following pa-
rameters for each treated target, across merges and splits:

tt np the estimated number of people represented by the
target,

tt in whether the target is currently inside the observation
region,

tt stc whether the target is currently stationary,
tt stp whether the target has previously been stationary in-

side the observation region.

Given this information, it is straightforward to determine
the two non-cumulative statistics cur in and cur st. In the
following, we describe how the client exploits events in or-
der to maintain the above four parameters for the treated
targets, and to update the two cumulative statistics cumul in
and cumul st:

MoveTarget To update tt stc and tt stp: A target is con-
sidered stationary if ẋ <

√
σ̂xx/second. This criterion

was chosen empirically.

ObservRegion The target’s parameter tt in is updated ac-
cordingly.

SplitTarget Both children inherit the tt stc and tt stp pa-
rameters from the parent, and their tt in parameters are
determined according to their positions. The values
tt np of the children are determined by splitting the
parent’s value according to the ratio of the widths σ̂xx

of the children, while making sure that each child con-
tains at least one person. If the parent had tt np = 1,
and the parent was inside the observation region (and
stationary), then the population estimate is corrected
by incrementing cumul in (and cumul st).

MergeTargets The child’s tt np number is the sum of the
parents’ values, and tt stc and tt stp are determined by
the boolean disjunctions of the corresponding values
of the parents. If the child is inside the observation re-
gion, then the people represented by those parent(s), if
any, that were outside the observation region are added
to the cumulative count by incrementing cumul in by
the corresponding value(s), if any, of tt np. A cor-
responding update is performed for cumul st. The
child’s value of tt in is determined according to its po-
sition relative to the observation region.

ObservRegion If an entering target has not yet been
treated, it is added to the list of treated targets, setting
tt in to true. Its value of tt np is estimated based on its
width as described above, and cumul in is incremented
by tt np. If the entering target has already been treated,
all that happens is that its tt in parameter is set to true.
If the event signals an exiting target, its tt in parameter
is set to false.

7. Experiments
We tested our system on the three PETS shop-window test
sequences in the original MPEG-1 format. The background
model of the background-difference tracker was initialized
at start-up using an image of the empty scene. We used the
same parameters for all three videos.

Figure 3 shows a typical sequence of events that is cor-
rectly processed. At Frame 360, a target has just entered
the observation region. According to its width, the num-
ber of people contained therein is correctly estimated at two
(cf. Figure 4). Between Frames 400 and 460, one of the
two people has walked away. The target is split, and the
number of people in front of the window has been adjusted.
At Frame 550, the same person has re-entered the obser-
vation region. Since the system knows that he had already
passed by, the cumulative number of passing people is left
unchanged. At the bottom image, the two targets have been
merged again, without affecting the number of people. At
the same time, the person entering from the right has been
correctly counted.

730

740

Figure 2: A missed split that causes a false count (Video 3).

7.1. Typical Errors
There are two types of errors made by our system: those that
stem from limitations of our algorithm with respect to this
particular task, and those caused by failures of our track-
ing system. A typical situation of the first kind is shown in
Figure 5. The target is correctly estimated to contain three
persons (cf. Figure 4). Since all persons within a target are
treated the same, all three are counted as watching the win-
dow, even though one of them is passing behind the others
and barely glances at the window. Video 2 contains a cou-
ple of other minor errors of this type where the algorithm
worked correctly but is not equipped to fully grasp the situ-
ation.

During the second half of Video 3 our underlying tracker
made a few minor errors that subsequently caused wrong
counts. For example, Figure 2 shows a situation where a tar-
get split was missed because a critical part of the scene was
hidden behind the letters in the foreground. Therefore, the
person who left the other was undetected, causing a wrong
people count of two for the remaining target. Currently, our
system will not recover from such elevated counts. Other
errors of similar kind accumulated to leave the system with
an elevated count at the end of the video.

This illustrates the most serious limitation of our current
system: Since people counts are currently only adjusted up-
wards (e.g. by splitting a target that was estimated to rep-
resent a single person) but never downwards, our system
tends to overestimate the numbers of people. This can be
remedied by adding a mechanism to re-estimate the number
of people represented by a target.

7.2. Computation Times
The bottom row in Figure 4 displays the number of targets
currently tracked, and the computation time expended on

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 1

people passing
people stopping

0 500 1000 1500
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 2

people passing
people stopping

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 3

people passing
people stopping

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 1

cumulative # passing
cumulative # stopped

0 500 1000 1500
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 2

cumulative # passing
cumulative # stopped

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Frame number

C
ou

nt

Video 3

cumulative # passing
cumulative # stopped

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8
Video 1

Frame number

C
ou

nt

targets

0 100 200 300 400 500 600
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e

computation time

0 500 1000 1500
0

1

2

3

4

5

6

7

8
Video 2

Frame number

C
ou

nt

targets

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e
computation time

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
Video 3

Frame number

C
ou

nt

targets

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

se
co

nd
s

pe
r

fr
am

e

computation time

Figure 4: Quantitative Results.

each frame using a 1 GHz Pentium III running Linux. This
time does not include the decoding of the MPEG video
or any graphic display. They were measured by counting
CPU clock cycles, and are therefore overestimates because
of other processes running on the machine. Our algorithm
was set to operate only on every other row and column of
pixels, which corresponds to subsampling each image by a
linear factor of two.

The regular spikes are caused by the adaptive back-
ground algorithm that was set to update the background
model every 25 frames. This is the only image-wide opera-
tion in our algorithm. Other than that, the computation time
is roughly proportional to the number of targets currently
tracked. With the exception of two consecutive frames in

Video 2 and eleven frames in Video 3, all computation eas-
ily fit into a single frame time of 0.04 seconds. In all of the
exceptional frames, four or five targets were tracked simul-
taneously. For up to two targets, our system would attain
frame-rate performance on a machine of half that clock fre-
quency.

8. Conclusions
Building on our general, live-video object tracker intro-
duced at last year’s PETS workshop [8], we described its in-
tegration into a distributed infrastructure using event-based
communication. Generic, application-independent events
can be exploited to extract application-specific information.
We described how this methodology permits us to obtain

reasonable approximations of the desired statistics in the
PETS shop-window scenario, even though our tracking sys-
tem contains no functionality dedicated to extracting the re-
quested information.

References
[1] K. Brammer and G. Siffling. Kalman-Bucy Filters. Artech

House Inc., Norwood, MA, 1989.
[2] F. Brémond and M. Thonnat. Tracking multiple non-rigid

objects in video sequences. IEEE Transaction on Circuits
and Systems, special issue on Video Technology, 8(5), Sept.
1998.

[3] J. W. Davis and A. F. Bobick. The representation and recog-
nition of action using temporal templates. In Proc. Com-
puter Vision and Pattern Recognition. IEEE, 1997.

[4] T. Ellis and M. Xu. Object detection and tracking in an
open and dynamic world. In Proc. 2nd IEEE Intl. Workshop
on Performance Evaluation of Tracking and Surveillance,
2001.

[5] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee. Us-
ing adaptive tracking to classify and monitor activities in
a site. In Proc. Computer Vision and Pattern Recognition,
1998.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis. w4 s: A real-time
system for detecting and tracking people in 2 1

2 d. In Europ.
Conf. on Computer Vision, pages 877–892, 1998.

[7] S. J. McKenna, S. Jabri, Z. Duric, and H. Wechsler. Tracking
interacting people. In Proc. 4th Int. Conf. on Automatic Face
and Gesture Recognition, pages 348–353, 2000.

[8] J. H. Piater and J. L. Crowley. Multi-modal tracking of in-
teracting targets using Gaussian approximations. In Second
IEEE International Workshop on Performance Evaluation
of Tracking and Surveillance. IEEE Computer Society, Dec.
2001.

[9] J. H. Piater, S. Richetto, and J. L. Crowley. A flexible archi-
tecture for object tracking in live video. submitted.

[10] R. Polana and R. C. Nelson. Detection and recognition
of periodic, non-rigid motion. Int. J. Computer Vision,
23(3):261–282, June/July 1997.

[11] K. Schwerdt and J. L. Crowley. Robust face tracking using
color. In Proc. 4th Int. Conf. on Automatic Face and Gesture
Recognition, pages 90–95. IEEE Computer Society, 2000.

[12] W. Vieux, K. Schwerdt, and J. L. Crowley. Face-tracking
and coding for video compression. In H. Christensen, edi-
tor, Proceedings of the International Conference on Vision
Systems (ICVS-99), Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[13] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, July 1997.

[14] Q. Zhou and J. K. Aggarwal. Tracking and classifying mov-
ing objects from video. In Proc. 2nd IEEE Intl. Workshop
on Performance Evaluation of Tracking and Surveillance,
2001.

360

400

460

550

600

Figure 3: Correctly counted people (Video 1, with approxi-
mate frame numbers).

1000

Figure 5: A passer-by is included in the count of watching
people (Video 2).

http://pets2001.visualsurveillance.org/pets2001-papers-cdrom.html
http://pets2001.visualsurveillance.org/
http://pets2001.visualsurveillance.org/
http://www.springer.de/
http://www.computer.org/tpami/
http://www.computer.org/tpami/
http://pets2001.visualsurveillance.org/pets2001-papers-cdrom.html
http://pets2001.visualsurveillance.org/
http://pets2001.visualsurveillance.org/

