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Abstract We describe two quite different methods for associating action parame-
ters to visual percepts. Our RLVC algorithm performs reinforcement learning di-
rectly on the visual input space. To make this very large space manageable, RLVC
interleaves the reinforcement learner with a supervised classification algorithm that
seeks to split perceptual states so as to reduce perceptual aliasing. This results in an
adaptive discretization of the perceptual space based on the presence or absence of
visual features. Its extension RLJC also handles continuous action spaces. In con-
trast to the minimalistic visual representations produced by RLVC and RLJC, our
second method learns structural object models for robust object detection and pose
estimation by probabilistic inference. To these models, the method associates grasp
experiences autonomously learned by trial and error. These experiences form a non-
parametric representation of grasp success likelihoods over gripper poses, which we
call a grasp density. Thus, object detection in a novel scene simultaneously produces
suitable grasping options.

1 Introduction

Vision is a popular sensory modality for autonomous robots. Optical sensors are
comparatively cheap and deliver more information at higher rates than other sen-
sors. Moreover, vision appears intuitive as humans heavily rely on it. We appear to
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think and act on the basis of an internal model of our environment that is constantly
updated via sensory – and mostly visual – perception. It is therefore a natural idea
to attempt to build autonomous robots that derive actions by reasoning about an
internal representation of the world, created by computer vision.

However, experience shows that it is very difficult to build generic world models
by sensory perception. For example, detailed shape recovery from passive optical
sensors is hard, and the appearance of a scene – that is, its raw image representation
– varies about as greatly with imaging conditions as it does with semantic content.

Paraphrasing Vapnik’s Main Principle of inference from a small sample size [22],
it may thus not be a good idea to try to solve the hard intermediate problem of build-
ing a reliable world model in order to solve the easier problem of extracting just the
information the robot needs to act appropriately. This leads to the idea of linking
perception more-or-less directly to action, without the intermediate step of reason-
ing on a world model, whose roots go back at least to the learned value functions of
Samuel’s famous checker player [19].

In this chapter, we give an overview of two examples of our own research on
learning visual representations for robotic action within specific task scenarios,
without building generic world models. The first problem we consider is the direct
linking of visual perception to action within a reinforcement-learning (RL) frame-
work (Sect. 2). The principal difficulty is the extreme size of the visual perceptual
space, which we address by learning a percept classifier interleaved with the rein-
forcement learner to adaptively discretize the perceptual space into a manageable
number of discrete states. However, not all visuomotor tasks can be reduced to sim-
ple, reactive decisions based on discrete perceptual states. For example, to grasp
objects, the object pose is of fundamental importance, and the grasp parameters de-
pend on it in a continuous fashion. We address such tasks by learning intermediate
object representations that form a direct link between perceptual and action parame-
ters (Sect. 3). Again, these representations can be learned autonomously, permitting
the robot to improve its grasping skills with experience. The resulting probabilistic
models allow the inference of possible grasps and their relative success likelihoods
from visual scenes.

2 Reinforcement Learning of Visual Classes

Reinforcement learning [2, 21] is a popular method for learning perception-action
mappings, so-called policies, within the framework of Markov Decision Processes
(MDP). Learning takes place by evaluating actions taken in specific states in terms
of the reward received. This is conceptually easy for problems with discrete state
and action spaces. Continuous and very large, discrete state spaces are typically
addressed by using function approximators that permit local generalization across
similar states. However, for reasons already noted above, function approximators
alone are not adequate for the very high-dimensional state spaces spanned by im-
ages: Visually similar images may represent states that require distinct actions, and
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very dissimilar images may actually represent the exact same scene (and thus state)
under different imaging conditions. Needless to say, performing RL directly on the
combinatorial state space defined by the image pixel values is infeasible.

The challenge therefore lies in mapping the visual space to a state representa-
tion that is suitable for reinforcement learning. To enable learning with manageably
low numbers of exploratory actions, this means that the state space should either
consist of a relatively small number of discrete states, or should be relatively low-
dimensional and structured in such a way that nearby points in state space mostly
admit identical actions that yield similar rewards.

The latter approach would be very interesting to explore, but it appears that it
would require strong, high-level knowledge about the content of the scene such as
object localization and recognition, which defeats our purpose of learning perception-
action mappings without solving this harder problem first. We therefore followed
the first approach and introduced a method called Reinforcement Learning of Vi-
sual Classes (RLVC) that adaptively and incrementally discretizes a continuous or
very large discrete perceptual space into discrete states [8, 11].

2.1 RLVC: a Birdseye View

RLVC decomposes the end-to-end problem of learning perception-to-action map-
pings into two simpler learning processes (Fig. 1). One of these, the RL agent, learns
discrete state-action mappings in a classical RL manner. The state representation and
the determination of the current state are provided by an image classifier that carves
up the perceptual (image) space into discrete states called visual classes. These two
processes are interleaved: Initially, the entire perceptual space is mapped to a sin-
gle visual class. From the point of view of the RL agent, this means that a variety
of distinct world states requiring different actions are lumped together – aliased –
into a single perceptual state (visual class). Based on experience accumulated by
the RL agent, the image classifier then identifies a visual feature whose presence or
absence defines two distinct visual subclasses, splitting the original visual class into
two. This procedure is iterated: At each iteration, one or more perceptually-aliased
visual classes are identified, and for each, a feature is determined that splits it in
a way that maximally reduces the perceptual aliasing in both of the resulting new
visual classes (Fig. 2). Thus, in a sequence of attempts to reduce perceptual aliasing,
RLVC builds a sequence C0,C1,C2, . . . of increasingly refined, binary decision trees
Ck with visual feature detectors at decision nodes. At any stage k, Ck partitions the
visual space S into a finite number mk of visual classes {Vk,1, . . . ,Vk,mk}.
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Fig. 1 RLVC: Learning a perception-action mapping decomposed into two interacting subprob-
lems.

Fig. 2 Outline of the RLVC algorithm.

2.2 Reinforcement Learning and TD Errors

An MDP is a quadruple 〈S,A,T ,R〉, where S is a finite set of states, A is a finite set
of actions, T is a probabilistic transition function from S×A to S, and R is a scalar
reward function defined on S×A. From state st at time t, the agent takes an action
at , receives a scalar reinforcement rt+1 = R(st ,at), and transitions to state st+1 with
probability T (st ,at ,st+1). The corresponding quadruple 〈st ,at ,rt+1,st+1〉 is called
an interaction. For infinite-horizon MDPs, the objective is to find an optimal policy
π∗ : S→ A that chooses actions that maximize the expected discounted return

Rt =
∞

∑
i=0

γ
irt+i+1 (1)

for any starting state s0, where 0 ≤ γ < 1 is a discount factor that specifies the
immediate value of future reinforcements.

If T and R are known, the MDP can be solved by dynamic programming [1].
Reinforcement learning can be seen as a class of methods for solving unknown
MDPs. One popular such method is Q-learning [23], named after its state-action
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value function
Qπ(s,a) = Eπ [Rt | st = s,at = a] (2)

that returns the expected discounted return by starting from state s, taking action a,
and following the policy π thereafter. An optimal solution to the MDP is then given
by

π
∗(s) = argmax

a∈A
Q∗(s,a). (3)

In principle, a Q function can be learned by a sequence of α-weighted updates

Q(st ,at)← Q(st ,at)+α (E[Rt | s = st ,a = at ]−Q(st ,at)) (4)

that visits all state-action pairs infinitely often. Of course, this is not a viable al-
gorithm because the first term of the update step is unknown; it is precisely the
return function (2) we want to learn. Now, rewards are accumulated (1) by execut-
ing actions, hopping from state to state. Thus, for an interaction 〈st ,at ,rt+1,st+1〉,
an estimate of the current return Q(st ,at) is available as the discounted sum of the
immediate reward rt+1 and the estimate of the remaining return Q(st+1,at+1), where
st+1 = T (st ,at) and at+1 = π(st). If the goal is to learn a value function Q∗ for an
optimal policy (3), then this leads to the algorithm

Q(st ,at)← Q(st ,at)+α∆t (5)
∆t = rt+1 + γ max

a′∈A
Q(st+1,a′)−Q(st ,at) (6)

that, under suitable conditions, converges to Q∗. ∆t is called the temporal-difference
error or TD error for short.

2.3 Removing Perceptual Aliasing

RLVC is based on the insight that if the world behaves predictably, rt+1 +
γ maxa′∈A Q(st+1,a′) approaches Q(st ,at), leading to vanishing TD errors (6). If
however the magnitudes of the TD errors of a given state-action pair (s,a) remain
large, this state-action pair yields unpredictable returns. RLVC assumes that this is
due to perceptual aliasing, that is, the visual class s represents distinct world states
that require different actions. Thus, it seeks to split this state in a way that minimizes
the sum of the variances of the TD errors in each of the two new states. This is an
adaptation of the splitting rule used by CART for building regression trees [3].

To this end, RLVC selects from all interactions collected from experience those
whose visual class and action match s and a, respectively, along with the resulting
TD error ∆ , as well as the set F⊕ ∈ F of features present in the raw image from
which the visual class was computed. It then selects the feature

f ∗ = argmin
f∈F

{
p f σ

2{∆ f }+ p¬ f σ
2{∆¬ f }

}
(7)
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Fig. 3 A continuous, noisy navigation task. The exits of the maze are marked by crossed boxes.
Transparent obstacles are identified by solid rectangles. The agent is depicted near the center of the
left-hand figure. Each of the four possible moves is represented by an arrow, the length of which
corresponds to the resulting move. The sensor returns a picture that corresponds to the dashed
portion of the image. The right-hand figure shows an optimal policy learned by RLVC, sampled at
regularly-spaced points.

that results in the purest split in terms of the TD errors. Here, p f is the proportion of
the selected interactions whose images exhibit feature f , and {∆ f } is the associated
set of TD errors; ¬ f indicates the corresponding entities that do not exhibit feature
f .

Splitting a visual class s according to the presence of a feature f ∗ results in two
new visual classes, at least one of which will generally exhibit lower TD errors
than the original s. However, there is the possibility that such a split turns out to be
useless because the observed lack of convergence was due to the stochastic nature
of the environment rather than perceptual aliasing. RLVC partially addresses this
by splitting a state only if the resulting distributions of TD errors are significantly
different according to a Student’s t test.

2.4 Experiments

We evaluated our system on an abstract task that closely parallels a real-world, re-
active navigation scenario (Fig. 3). The goal of the agent is to reach one of the two
exits of the maze as fast as possible. The set of possible locations is continuous. At
each location, the agent has four possible actions: Go up, right, down, or left. Every
move is altered by Gaussian noise, the standard deviation of which is 2% of the size
of the maze. Invisible obstacles are present in the maze. Whenever a move would
take the agent into an obstacle or outside the maze, its location is not changed.
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Fig. 4 Left: The optimal
value function, when the
agent has direct access to its
(x,y) position in the maze
and when the set of possible
locations is discretized into
a 50× 50 grid. The brighter
the location, the greater its
value. Right: The final value
function obtained by RLVC.

The agent earns a reward of 100 when an exit is reached. Any other move gen-
erates zero reinforcement. When the agent succeeds at escaping the maze, it arrives
in a terminal state in which every move gives rise to a zero reinforcement. The dis-
count factor γ was set to 0.9. Note that the agent is faced with the delayed-reward
problem, and that it must take the distance to the two exits into consideration when
choosing the most attractive exit.

The raw perceptual input of the agent is a square window centered at its current
location, showing a subset of a tiled montage of the COIL-100 images [15]. There
is no way for the agent to directly locate the obstacles; it is obliged to identify them
implicitly as regions of the maze where certain actions do not change its location.

In this experiment, we used color differential invariants as visual features [7].
The entire tapestry includes 2298 different visual features, of which RLVC selected
200 (9%). The computation stopped after the generation of k = 84 image classi-
fiers, which took 35 minutes on a 2.4 GHz Pentium IV using databases of 10,000
interactions. 205 visual classes were identified. This is a small number compared
to the number of perceptual classes that would be generated by a discretization of
the maze when the agent knows its (x,y) position. For example, a reasonably-sized
20×20 grid leads to 400 perceptual classes. A direct, tabular representation of the
Q function in terms of all Boolean feature combinations would have 22298×4 cells.
Figure 4 compares the optimal value function of a regularly-discretized problem
with the one obtained through RLVC.

In a second experiment we investigated RLVC on real-word images under iden-
tical navigation rules (Fig. 5). RLVC took 101 iterations in 159 minutes to converge
using databases of 10,000 interactions. 144 distinct visual features were selected
among a set of 3739 possibilities, generating a set of 149 visual classes. Here again,
the resulting classifier is fine enough to obtain a nearly optimal image-to-action
mapping for the task.

2.5 Further Developments

The basic method described in the preceding sections admits various powerful ex-
tensions. First, as described above, the power of RLVC to resolve action-relevant
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Fig. 5 Top: a navigation task with a real-world image, using the same conventions as Figure 3.
Bottom: the deterministic image-to-action mapping computed by RLVC.

perceptual ambiguities is limited by the availability of precomputed visual features
and their discriminative power. This can be overcome by creating new features on
the fly as needed [12]. When the state-refinement procedure fails to identify a fea-
ture that results in a significant reduction of the TD errors, new features are created
by forming spatial compounds of existing features. In this way, a compositional hi-
erarchy of features is created in a task-driven way. Compounds are always at least
as selective as their individual constituents.

A second major improvement results from the observation that RLVC, as de-
scribed above, is susceptible to overfitting because states are only ever split and
never merged. It is therefore desirable to identify and merge equivalent states. Here,
we say that two states are equivalent if (a) their optimal values maxa Q(s,a) are
similar, and (b) their optimal policies are equivalent, that is, the value of one state’s
optimal action π∗(s) is similar if taken in the other state. A second drawback of
basic RLVC is that decision trees do not make optimal use of the available features,
since they can only represent conjunctions of features. To address both issues, we
modified RLVC to use a Binary Decision Diagram (BDD) [4] instead of a decision
tree to represent the state space [9]. To split a state, a new feature is conjunctively
added to the BDD as before to the decision tree. Periodically, after running for some
number of stages, compaction takes place: equivalent states are merged and a new
BDD is formed that can represent both conjunctions and disjunctions of features. In
the process, feature tests are reordered as appropriate, which may lead to the elimi-
nation of some features. We demonstrated that this can result in a drastic reduction
in the number of visual features and classes learned, while improving generalization
at the same time.

Thirdly, we generalized the concept of visual classes to joint perception-action
classes. Our algorithm Reinforcement Learning of Joint Classes (RLJC) applies the
principles of RLVC to an adaptive discretization of the joint space of perceptions and
actions [10]. The Q function now operates on the joint-class domain encompassing
both perceptual and action dimensions. Joint classes are split based on joint features
that test the presence of either a visual feature or an action feature. An action feature
(t, i) tests whether the ith component of an action a ∈ IRm falls below a threshold
t. This relatively straightforward generalization of RLVC results in an innovative
addition to the rather sparse toolbox of RL methods for continuous action spaces.
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3 Grasp Densities

RLVC, described in the preceding section, follows a minimalist approach to percep-
tion-action learning in that it seeks to identify small sets of low-level visual cues
and to associate reactive actions to them directly. There is no elaborate image analy-
sis beyond feature extraction, no intermediate representation, no reasoning or plan-
ning, and the complexity of the action space that can be handled by RL is limited.
In this section we describe a different approach to perception-action learning that is
in many ways complementary to RLVC. Its visual front-end builds elaborate repre-
sentations from which powerful, structured object representations are learned, and
multidimensional action vectors are derived via probabilistic inference.

We describe this method in the context of grasping objects [5], a fundamental
skill of autonomous agents. The conventional robotic approach to grasping involves
computing grasp parameters based on detailed geometric and physical models of
the object and the manipulator. However, humans skillfully manipulate everyday
objects even though they do not have access to such detailed information. It is
thus clear that there must exist alternative methods. We postulate that manipula-
tion skills emerge with experience by associating action parameters to perceptual
cues. Then, perceptual cues can directly trigger appropriate actions, without explicit
object shape analysis or grasp planning. For example, to drink, we do not have to
reason about the shape and size of the handle of a hot teacup to determine where to
place the fingers to pick it up. Rather, having successfully picked up and drunk from
teacups before, seeing the characteristic handle immediately triggers the associated,
canonical grasp.

Our method achieves such behavior by first learning visual object models that
allow the agent to detect object instances in scenes and to determine their pose.
Then, the agent explores various grasps, and associates the successful parameters
that emerge from this grasping experience with the model. When the object is later
detected in a scene, the detection and pose estimation procedure immediately pro-
duces the associated grasp parameters as well. This system can be bootstrapped in
the sense that very little grasping experience is already useful, and the representation
can be refined by further experience at any time. It thus constitutes a mechanism for
learning grasping skills from experience with familiar objects.

3.1 Learning to Grasp: a Birdseye View

Figure 6 presents an overview of our grasp learning system. Visual input is provided
by a computer vision front-end that produces 3D oriented patches with appearance
information. On such sparse 3D reconstructions, the object-learning component ana-
lyzes spatial feature relations. Pairs of features are combined by new parent features,
producing a hierarchically-structured Markov network that represents the object via
sparse appearance and structure. In this network, a link from a parent node to a
child node represents the distribution of spatial relations (relative pose) between the
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Fig. 6 Overview of learning
to grasp. Learning produces
graph-structured object rep-
resentations that combine ex-
perienced grasps with visual
features provided by com-
puter vision. Subsequently,
instances can be detected
in new scenes provided by
vision. Detection directly
produces pose estimates and
suitable grasp parameters.

Vision

Vision

Learning

To action/problem solving

3D object
pose

(incl. detection)
Representation

Grasps

likelihood
Grasp

parent node and instances of the child node. Leaf nodes encode appearance infor-
mation.

Given a reconstruction of a new scene provided by computer vision, instances
of such an object model can be detected via probabilistic inference, estimating their
pose in the process.

Having detected a known object for which it has no grasping experience yet, the
robot attempts to grasp the object in various ways. For each grasp attempt, it stores
the object-relative pose of the gripper and a measure of success. Object-relative
gripper poses are represented in exactly the same way as parent-relative child poses
of visual features. In this manner, grasping experience is added to the object repre-
sentation as a new child node of a high-level object node. From then on, inference
of object pose at the same time produces a distribution of gripper poses suitable for
grasping the object.

3.2 Visual Front-End

Visual primitives and their location and orientation in space are provided by the
Early-Cognitive-Vision (ECV) system by Krüger et al. [14, 17]. It extracts patches –
so-called ECV descriptors – along image contours and determines their 3D position
and a 2D orientation by stereo techniques (the orientation around the 3D contour
axis is difficult to define and is left undetermined). From a calibrated stereo pair,
it generates a set of ECV descriptors that represent the scene, as sketched at the
bottom of Fig. 6.

Objects can be isolated from such scene representations by motion segmentation.
To this end, the robot uses bottom-up heuristics to attempt to grasp various surfaces
suggested by combinations of ECV descriptors. Once a grasp succeeds and the robot
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Fig. 7 ECV descriptors. Left:
ECV descriptors are oriented
appearance patches extracted
along contours. Right: object-
segmented and refined ECV
descriptors via structure from
motion.

gains physical control over the grasped structure, the robot can pick it up and turn
it in front of the stereo camera. This allows it to segment object descriptors from
the rest of the scene via coherent motion, and to complete and refine the object
descriptors by structure-from-motion techniques, as illustrated in Fig. 7 [18, 13].

3.3 Markov Networks For Object Representation

Our object model consists of a set of generic features organized in a hierarchy. Fea-
tures that form the bottom level of the hierarchy, referred to as primitive features, are
bound to visual observations. The rest of the features are meta-features that embody
relative spatial configurations of more elementary features, either meta or primitive.
At the bottom of the hierarchy, primitive features correspond to local parts that each
may have many instances in the object. Climbing up the hierarchy, meta-features
correspond to increasingly complex parts defined in terms of constellations of lower-
level parts. Eventually, parts become complex enough to satisfactorily represent the
whole object. Here, a primitive feature represents a class of ECV observations of
similar appearance, e.g. an ECV observation with colors close to red and white.
Any primitive feature will usually have hundreds of instances in a scene.

Figure 8 shows an example of a hierarchy for a traffic sign. Ignoring the nodes
labeled Yi for now, the figure shows the traffic sign as the combination of two fea-
tures, a bridge pattern (feature 4) and a triangular frame (feature 5). The fact that
the bridge pattern has to be in the center of the triangle to form the traffic sign is en-
coded in the links between features 4-6-5. The triangular frame is encoded in terms
of a single (generic) feature, a short red-white edge segment (feature 3). The link
between feature 3 and feature 5 encodes the fact that many short red-white edge
segments are necessary to form the triangular frame, and the fact that these edges
have to be arranged along a triangle-shaped structure.

Here, a “feature” is an abstract concept that may have any number of instances.
The lower-level the feature, the larger generally the number of instances. Con-
versely, the higher-level the feature, the richer its relational and appearance descrip-
tion.

The feature hierarchy is implemented as a Markov tree (Fig. 8). Features corre-
spond to hidden nodes of the network. When a model is associated to a scene (during
learning or instantiation), the pose of feature i in that scene will be represented by
the probability density function of a random variable Xi, effectively linking feature
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Fig. 8 An example of a
hierarchy for a traffic sign.
X1 through X3 are primitive
features; each of these is
linked to an observed variable
Yi. X4 through X6 are meta-
features.

bridge
pattern

trianglular
frame

traffic sign

φ1 φ2 φ3

X4 X5

X6

X3X2X1

Y1 Y2 Y3

ψ3,5

ψ4,6 ψ5,6

ψ2,4ψ1,4

PDF for red/white edges of the scene
PDF for red/white edges that belong to the traffic sign

i to its instances. Random variables are thus defined over the pose space, which
corresponds to the Special Euclidean group SE(3) = IR3×SO(3).

The relationship between a meta-feature i and one of its children j is parametrized
by a compatibility potential ψi j(Xi,X j) that reflects, for any given relative config-
uration of feature i and feature j, the likelihood of finding these two features in
that relative configuration. The (symmetric) potential between i and j is denoted
by ψi j(Xi,X j). A compatibility potential is equivalent to the spatial distribution of
the child feature in a reference frame that matches the pose of the parent feature; a
potential can be represented by a probability density over SE(3).

Each primitive feature is linked to an observed variable Yi. Observed variables are
tagged with an appearance descriptor that defines a class of observation appearance.
The statistical dependency between a hidden variable Xi and its observed variable Yi
is parametrized by an observation potential ψi(Xi,Yi). We generally cannot observe
meta-features; their observation potentials are thus uniform.

Instantiation of such a model in a scene amounts to the computation of the
marginal posterior pose densities p(Xi|Y1, . . . ,Yn) for all features Xi, given all avail-
able evidence Y . This can be done using any applicable inference mechanism. We
use nonparametric belief propagation [20] optimized to exploit the specific struc-
ture of this inference problem [6]. The particles used to represent the densities are
directly derived from individual feature observations. Thus, object detection (in-
cluding pose inference) amounts to image observations probabilistically voting for
object poses compatible with their own pose. The system never commits to specific
feature correspondences, and is thus robust to substantial clutter and occlusions.
During inference, a consensus emerges among the available evidence, leading to
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Fig. 9 Cluttered scenes with
pose estimates. Local features
of object models are back-
projected into the image at the
estimated pose; false colors
identify different objects.

Fig. 10 Visual/affordance
model of a table-tennis bat as
a 2-level hierarchy. The bat is
represented by feature o (top).
Feature 1 represents a generic
green ECV descriptor. The
rectangular configuration of
green edges around the handle
of the paddle is encoded in
ψo1. Y1 and Y2 are observed
variables that link features 1
and 2 to the visual evidence
produced by ECV. Xg repre-
sents a grasp feature, linked to
the object feature through the
pinch grasp affordance ψog.

Xo

X2

Y2Y1

X1 Xg

ψog
ψo2ψo1

Red ECV
descriptor

Green ECV
descriptor

Pinch
grasp

one or more consistent scene interpretations. After inference, the pose likelihood of
the whole object can be read out of the top-level feature. If the scene contains mul-
tiple instances of the object, this feature density will present multiple major modes.
Figure 9 shows examples of pose estimation results.

3.4 Grasp Densities

Having described the visual object representation and pose inference mechanism,
we now turn to our objective of learning grasp parameters and associating them to
the visual object models. We consider parallel-gripper grasps parametrized by a 6D
gripper pose composed of a 3D position and a 3D orientation. The set of object-
relative gripper poses that yield stable grasps is the grasp affordance of the object.

A grasp affordance is represented as a probability density function defined on
SE(3) in an object-relative reference frame. We store an expression of the joint
distribution p(Xo,Xg), where Xo is the pose distribution of the object, and Xg is
the grasp affordance. This is done by adding a new “grasp” feature to the Markov
network, and linking it to the top feature (see Fig. 10). The statistical dependency of
Xo and Xg is held in a compatibility potential ψog(Xo,Xg).

When an object model has been aligned to an object instance (i.e. when the
marginal posterior of the top feature has been computed from visually-grounded
bottom-up inference), the grasp affordance p(Xg | Y ) of the object instance, given
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(a) (b) (c)

Fig. 11 Grasp density representation. The top image of Fig. (a) illustrates a particle from a non-
parametric grasp density and its associated kernel widths: the translucent sphere shows one position
standard deviation, the cone shows the variance in orientation. The bottom image illustrates how
the schematic rendering used in the top image relates to a physical gripper. Figure (b) shows a 3D
rendering of the kernels supporting a grasp density for a table-tennis paddle (for clarity, only 30
kernels are rendered). Figure (c) indicates with a green mask of varying opacity the values of the
location component of the same grasp density along the plane of the paddle.

all observed evidence Y , is computed through top-down belief propagation, by send-
ing a message from Xo to Xg through ψog(Xo,Xg):

p(Xg | Y ) =
∫

ψog(Xo,Xg)p(Xo | Y ) dXo (8)

This continuous, probabilistic representation of a grasp affordance in the world
frame we call a grasp density. In the absence of any other information such as priors
over poses or kinematic limitations, it represents the relative likelihood that a given
gripper pose will result in a successful grasp.

3.5 Learning Grasp Densities

Like the pose densities discussed in Sect. 3.3, grasp densities are represented non-
parametrically in terms of individual observations (Fig. 11). In this case, each suc-
cessful grasp experience contributes one particle to the nonparametric representa-
tion. An unbiased characterization of an object’s grasp affordance conceptually in-
volves drawing grasp parameters from a uniform density, executing the associated
grasps, and recording the successful grasp parameters.

In reality, executing grasps drawn from a 6D uniform density is not practical,
as the chances of stumbling upon successful grasps would be unacceptably low.
Instead, we draw grasps from a highly biased grasp hypothesis density and use im-
portance sampling techniques to properly weight the grasp outcomes. The result we
call a grasp empirical density, a term that also communicates the fact that the den-
sity is generally only an approximation to the true grasp affordance: The number of
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Fig. 12 Particles supporting
grasp hypothesis (top) and
empirical (bottom) densities.
Hypothesis densities were
derived from constellations
of ECV observations (left) or
from human demonstrations
(right).

Fig. 13 Barrett hand grasping
the toy jug.

particles derived from actual grasp experiences is severely limited – to a few hun-
dred at best – by the fact that each particle is derived from a grasp executed by a
real robot. This is not generally sufficient for importance sampling to undo the sub-
stantial bias exerted by the available hypothesis densities, which may even be zero
in regions that afford actual grasps.

Grasp hypothesis densities can be derived from various sources. We have experi-
mented with feature-induced grasp hypotheses derived from ECV observations. For
example, a pair of similarly-colored, coplanar patches suggests the presence of a
planar surface between them. In turn, this plane suggests various possible grasps
[13]. Depending on the level of sophistication of such heuristics, feature-induced
grasp hypotheses can yield success rates of up to 30% [16]. This is more than suffi-
cient for effective learning of grasp hypothesis densities.

Another source of grasp hypothesis densities is human demonstration. In a pilot
study, we tracked human grasps with a ViconTM motion capture system [5]. This
can be understood as a way of teaching by demonstration: The robot is shown how
to grasp an object, and this information is used as a starting point for autonomous
exploration.

Illustrations of some experimental results are shown in Figs. 12 and 13. A large-
scale series of experiments for quantitative evaluation is currently underway.
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4 Discussion

We described two complementary methods for associating actions to perceptions
via autonomous, exploratory learning. RLVC is a reinforcement-learning method
that operates on a perceptual space defined by low-level visual features. Remark-
ably, its adaptive, task-driven discretization of the perceptual space allows it to learn
policies with a number of interactions similar to problems with much smaller per-
ceptual spaces. This number is nevertheless still greater than what a physical robot
can realistically perform. In many practical applications, interactions will have to
be generated in simulation. Among the extensions to RLVC, one particularly inter-
esting avenue for further research is RLJC with its uniform treatment of continuous
perceptual and action spaces.

RLVC does not learn anything about the world besides task-relevant state distinc-
tions and the values of actions taken in these states. In contrast, the grasp-densities
framework involves learning object models that allow the explicit computation of
object pose. Object pose is precisely the determining factor for grasping; it is there-
fore natural to associate grasp parameters to these models. Beyond this association,
however, no attempt is made to learn any specifics about the objects or about the
world. For example, to grasp an object using grasp densities, the visibility of the
contact surfaces in the scene is irrelevant, as the grasp parameters are associated to
the object as a whole.

Notably, both learning systems operate without supervision. RL methods require
no external feedback besides a scalar reward function. Learning proceeds by trial
and error, which can be guided by suitably biasing the exploration strategy. Learn-
ing grasp-densities involves learning object models and trying out grasps. Again,
the autonomous exploration can be – and normally will need to be – biased via
the specification of a suitable grasp hypothesis density, by human demonstration
or other means. The Cognitive Vision Group at the University of Southern Den-
mark, headed by N. Krüger, has put in place a robotic environment that is capable
of learning grasp densities with a very high degree of autonomy, requiring human
intervention only in exceptional situations. Like a human infant, the robot reaches
for scene features and “plays” with objects by attempting to grasp them in various
ways and moving them around.

Learning object-relative gripper poses is only the opening chapter of the grasp-
density story. The principle can be extended to learning multiple grasp types such
as palmar grasps and various multi-fingered pinches, associating hand pre-shapes
and approach directions by learning parameters for motor programs, etc. These and
other avenues will be pursued in future work.
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