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Abstract
The recognition of continuous, natural signing is very challenging due to the multimodal nature of the visual cues (fingers, lips, facial
expressions, body pose, etc.), as well as technical limitations such as spatial and temporal resolution and unreliable depth cues. On
the other hand, signing gestures are designed to be robustly discernible. We therefore argue in favor of an integrative approach to
sign language recognition that aims to extract sufficient aggregate information for robust sign language recognition, even if many of
the individual cues are unreliable. Our strategy to implement such an integrated system currently rests on two modules, for which
we will show initial results. The first module uses active appearance models for detailed face tracking, allowing the quantification of
facial expressions such as mouth and eye aperture and eyebrow raise. The second module is dedicated to hand tracking using color and
appearance. A third module will be concerned with tracking upper-body articulated pose, linking the face to the hands for increased

overall robustness.

1. Introduction

Automated sign language recognition from video has been
studied for at least about twenty years (Dorner, 1993). Most
of this work has focused on the recognition of individual
signs (Buehler et al., 2009; |Cooper and Bowden, 2009j
Yang et al., 2009)), or placed heavy restrictions on gram-
mar and vocabulary (Starner et al., 1998). The recogni-
tion of continuous, natural signing is very challenging, in
terms of both video analysis and linguistics, due to the mul-
timodal nature of the cues (fingers, lips, facial expressions,
body pose), extralinguistic elements such as spatial refer-
ences and pantomime, etc. These fundamental difficulties
are joined by technical limitations such as spatial and tem-
poral resolution and unreliable depth cues. On the other
hand, serving communication, signing gestures are clearly
designed to be robustly discernible. For example, while it is
very difficult to estimate an articulated hand pose by match-
ing a model to an image, relevant hand poses can be distin-
guished by appearance using supervised learning methods.
Ambiguities in manual signs can often be resolved by in-
tegrating facial cues, etc. We therefore argue that an in-
tegrated approach to sign language recognition is required
that combines the various visual and linguistic cues avail-
able using specialized, complementary techniques, aiming
to extract sufficient aggregate information for robust sign
language recognition, even if many of the individual cues
may be unreliable at any given point in time (Dreuw et al.,
2007).

Our own strategy to implement such an integrated system
rests on two modules, for which we will show initial re-
sults. The first module uses active appearance models for
detailed face tracking, allowing the quantification of facial
expressions such as mouth and eye aperture and eyebrow
raise. The second module is dedicated to hand tracking us-
ing appearance. It combines a discriminative method for
selecting skin-colored regions with a generative method for
characterizing hand configurations and locating images of
hands in various articulated poses. This already permits a
fairly robust estimation of hand trajectories.

2. Face Analysis

Facial expressions and head tilts play a very important role
in sign language. Many manual signs are ambiguous in iso-
lation, and need to be accompanied by appropriate facial
expressions in order to convey a specific message. More-
over, facial expressions represent a continuous stream of
supplementary information in any sign language commu-
nication, offering clarity and sensitivity to the viewer who
actually looks more at the face than at the hands.

For computational purposes, facial parameters such as eye
and mouth apertures can be inferred from the configuration
of a set of relevant facial features such as the positions of
fiducial points on eyelids and lips. Our face tracking system
tracks such facial features using Active Appearance Mod-
els (Cootes et al., 2001}

Active Appearance Models (AAMs) are statistical gener-
ative models. Shape and texture variations of the human
face as well as the correlations between them are learned
from a set of example face images, on which correspond-
ing “landmark” points have to be marked priori (including
our facial feature points of interest). Fitting the AAM to a
target image is done by finding the values of the parame-
ters that minimize the difference between the synthesized
model image and the target image using gradient descent.
AAMs are very useful for our purposes because they offer a
way to to directly recover the structural parameters of a face
and extract semantic content meaningful to the application.
The complete framework of our face tracker is composed
of (1) an offline part where we build the face model that
contains all the facial appearance variation information as
well as precomputed data for the step of fitting, and (2) an
online part where we actually track facial features in real
time using that model. Because the fitting method is a lo-
cal search, we initialize the AAM using the face detector
by [Viola and Jones (2001). When the residual fitting error
becomes high, we stop the tracking and come back to the
detection step to reinitialize the model.

Fig. [T] shows feature extraction and expression quantifica-
tion for four frames from a video sequence of the Corpus



(c) eyes open, mouth open
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Figure 1: AAM fits — top-down: full model instance,
meshed shape (green), plotted shape (red). Apertures
(white lines) — left-right: left eye, mouth, right eye. Head
pose: horizontal axis (red), vertical axis (green), depth axis
(blue), the origin is the nose tip.

NGT, which is a collection of data from deaf signers using
Sign Language of the Netherlands (Crasborn et al., 2008}
Crasborn and Zwitserlood, 2008). Eye and mouth aper-
tures shown here are quantified by the normalized area of
the contours delimited by eye and mouth point features re-
spectively. Head orientation is estimated using the POSIT
algorithm, which gives the 3D pose of an object from a
monocular view and the 3D structure of the object (DeMen-
thon and Davis, 1995)).

Although AAMs constitute a powerful basis for building a
face tracker, we need to apply refinements to the original
formulation of this method to be able to robustly and ac-
curately track facial features under the very uncontrolled
conditions of the tracking scene in this project.

Often a signer’s face is partially occluded by the hands, and
also self-occluded because of extreme off-plane head rota-
tions. Local occlusions can lead the global model to degen-
erate and lose track of even non-occluded features, so we
need to use particle filtering in combination with the AAM
(Hamlaoui and Davoine, 2005).

It should also be pointed that large head rotations induce
non-linearities in the 2D shape variation, which may not
be robustly captured by the linear AAM model; a solution
to this consists in using 2D+3D Active Appearance Mod-
els (Xiao et al., 2004)) where the 3D structure of the face is
learned and used to constrain the 2D AAM.

Finally, in this project we seek the most reliable (robust
and accurate) AAM face model while preserving generic-
ity, i.e. independence of the tracked person. In actual fact,
we may accurately talk about independence of the video,
since a person’s face can change over time, and since dif-
ferent imaging conditions can incur significantly different
appearances of one person’s face. Since AAMs are statisti-
cal models of appearance, built with a learning procedure,

the genericity question is closely related to the choice of the
training samples.

In AAM training, as in all learning tasks, one must care-
fully select the training examples, in quality as well as in
quantity. An AAM is person specific if it is trained on ex-
amples of the face of one person only. If the examples are
well chosen, the ability of the model to describe the face of
this person in unseen situations is great. However, it will
fail to accurately describe any other person. An AAM is
generic if it is trained on examples of the face of several
persons. In this case we can use the model to describe with
good accuracy unseen faces of several persons, but with in-
ferior accuracy compared to a person-specific model of the
tracked person (Gross et al., 2005). Our research effort thus
aims at finding ways to adapt a generic model to a specific
face on the fly, combining the advantages of both methods
while avoiding their drawbacks.

To illustrate the consequences of using specific or generic
models, we built three AAMs on persons from the RWTH-
Boston-104 database (Dreuw et al., 2007). We selected
three videos: the first two videos show the same signer
(a woman) but with significantly different appearances; the
third video show a different signer (a man). The first model
we built is specific to the first video of the female signer,
and the second model is specific to the video of the male
signer. The third model is built from images of the first and
third videos; it is thus generic for two persons, or more pre-
cisely for two videos. Using each model in turn to track the
face in each video, we compute the mean residual fitting
error (i.e. the image difference between the best model in-
stance and the target image, in the model reference frame)
for each combination of a model and video. Tab. [I] shows
the results thus obtained, and Fig. |2| shows some related
sample images with the corresponding AAM fits, one for
each model/video combination. Here, the specific models
perform better than the generic model on the corresponding
videos. Also, the model specific to video 1 poorly tracks
video 2, even though it shows the same person.

AAM videol video2 video3
specific to video 1 0.23 0.70 0.85
specific to video 3 1.60 1.10 0.12
generic (videos 1 and 3) 0.25 1.20 0.15

Table 1: Global performances of different models (spe-
cific and generic) presented with different data. The per-
formance measure is the mean residual fitting error.

3. Hand Analysis

In sign language, hands convey a lot of information in dif-
ferent ways, including at least configurations, positions,
tractories, and instantaneous velocities of the two hands.
These parameters are fairly difficult to extract robustly. In
principle, hands are difficult to track, and their configura-
tions (articulated pose) are difficult to estimate, because of
their high number of degrees of freedom and their high level
of self-occlusion, which give rise to an enormous variation
of appearance and a high level of ambiguity. Thus, even if
perfect image information were available, fitting an articu-
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Figure 2: Sample images with AAM fits. Poor fits corre-
spond to the inability of a model to interpret the data with
which it is presented.

lated model of a human hand to image data is computation-
ally hard.

These fundamental problems are exacerbated by technical
issues. Most importantly, hands tend to move fast with re-
spect to the frame rates and shutter times of typical video
recording equipment, which results in substantial motion
blur. Moreover, in typical recording settings, the structural
determinants of the hands are small with respect to the pixel
size, and imaging conditions are not optimized to enhance
finger contrast. Consequently, the recovery of precise hand
positions, let alone their articulated configurations, is very
difficult in practice.

One promising path toward a solution rests on two method-
ological pillars, (1) discriminative machine learning meth-
ods that identify systematic predictors of specific hand-
related parameters, and (2) the exploitation of redundancy.
Our hand tracking system contains two steps that exploit
these, skin-color region segmentation followed by PCA-
based template matching.

For the segmentation of the skin regions, the popular graph-
cut algorithm is adopted (Boykov et al., 2001). Graph cuts
seek to minimize an energy function of the form

E:ZDp(xp Z Vo.a(p, 2q),

peP {pr.q}eN

where D, is called the data or unary term that measures
how well label x,, fits pixel p given the observed data, and
Vp,q 1s called the smoothness or pairwise term that enforces
smooth labeling among neighboring pixels.

For our skin segmentation problem, we incorporate two
types of information in D,,. The first is a color likelihood
based on histogram matching, and the second is a motion
likelihood based on image differencing. The intuition be-
hind is that hands of signers have distinct skin colors that
are different from the background, and that the hands pro-
duce the most dramatic movement in sign language videos

Color likelihood Motion likelihood  Segmentation

Figure 3: Color- and motion-based face and hand segmen-
tation.

Figure 4: (Top) PCA bases of the left hand. (Bottom) PCA
bases of the right hand.

(Fig. E[) For the smoothness term, we adopt the constrast-
sensitive Potts model (Boykov and Jolly, 2001),

if x, = x4

0
Vo (@p, Tg) = { a—i—Bexp(—HI”;I"IP)

otherwise
where I, and I, are the colour vectors of pixel p and ¢ re-
spectively. «, 3, and 6§ are model parameters whose values
are learned using training data. One example of skin seg-
mentation is illustrated in Fig. [3]

After segmentation, we search hands in only the segmented
skin regions using PCA based template matching
lal., 2006)). To this end, we collect training data from a few
sign language videos and train PCA models for both the left
and the right hands, shown in Fig.[d] Then, we randomly
sample a number of hand candidates from skin regions,
and match them with the PCA bases of the left and right
hands. Thus, two matching scores are computed for each
hand candidate reflecting the probability that the candidate
is the left and the right hand. The hand model with the high-
est match score is most likely to be the hand being tracked
in the current frame. However, we smooth hand trajecto-
ries over time by penalizing large motions between frames.
This is currently done offline using dynamic-programing
techniques (Godsill et al., 2001). Tracked hand regions and
the corresponding PCA reconstructions are shown in Fig.[3]
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Figure 5: The tracked hand regions, top row, and the PCA
reconstructions, bottom row.




4. Conclusions

Automatic recognition of sign language requires the com-
bined analysis of complementary modalities, including
hand gestures, facial expressions, and body pose. We de-
scribed our initial work on face and hand tracking. A third
module for tracking upper-body articulated pose will be
added at a later stage.

Both face and hand modules are as yet incomplete. Among
the most important remaining problems of face analysis are
the adaptation of generic face models to the face currently
tracked to achieve genericity without sacrificing precision,
and the estimation of gaze direction, which plays an imor-
tant role in sign language interpretation.

Hand tracking is inherently difficult. Two fundamental
problems are the difficulty of detecting hands in arbitrar-
ily cluttered images, and the reliable distinction of left and
right hands. To obtain reliable results, hand tracking should
be informed by the configuration of the torso. To this end,
hands are typically tracked in conjunction with the arms,
which are further constrained by the positions of the shoul-
ders with respect to the head (Buehler et al., 2008)). Again,
by themselves, arms are difficult to track because their ap-
pearance is usually very similar to the upper body of the
tracked person; all there is to exploit are weak and am-
biguous edge cues. However, combined with an articulated
body model as well as face and hand tracking, reliable over-
all results can feasibly be obtained.

The principal remaining difficulty for upper-body tracking
is the extreme variation of upper-body appearance between
signers. This can be overcome e.g. by requiring an initial,
instantaneous initialization from a canonical pose, which is
used to bootstrap online learning of a discriminative appear-
ance model for hands and arms. In addition, we are work-
ing on exploiting non-local motion cues to inform the hand
tracker, increasing robustness in ambiguous situations such
as low contrast and occlusions between hands and arms.
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