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Abstract

We discuss vision as a sensory modality for systems that interact
flexibly with uncontrolled environments. Instead of trying to build a
generic vision system that produces task-independent representations,
we argue in favor of task-specific, learnable representations. This con-
cept is illustrated by two examples of our own work. First, our RLVC
algorithm performs reinforcement learning directly on the visual input
space. To make this very large space manageable, RLVC interleaves
the reinforcement learner with a supervised classification algorithm
that seeks to split perceptual states so as to reduce perceptual alias-
ing. This results in an adaptive discretization of the perceptual space
based on the presence or absence of visual features. Its extension
RLJC also handles continuous action spaces. In contrast to the min-
imalistic visual representations produced by RLVC and RLJC, our
second method learns structural object models for robust object de-
tection and pose estimation by probabilistic inference. To these mod-
els, the method associates grasp experiences autonomously learned by
trial and error. These experiences form a nonparametric representa-
tion of grasp success likelihoods over gripper poses, which we call a
grasp density. Thus, object detection in a novel scene simultaneously
produces suitable grasping options.

1 Introduction

This is the author’s final draft of a paper that appeared in the International Journal of

Robotics Research 30 (3), pp. 294–307, 2011.

Vision is a popular and extremely useful sensory modality for au-
tonomous robots. Optical sensors are comparatively cheap and deliver
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more information at higher rates than other sensors. Moreover, vision
seems intuitive as humans heavily rely on it. Humans appear to think
and act on the basis of an internal model of our environment that is
constantly updated via sensory – and mostly visual – perception. It is
therefore a natural idea to attempt to build autonomous robots that
derive actions by reasoning about an internal representation of the
world, created by computer vision.

However, experience shows that it is very difficult to build generic
world models. We therefore argue that representations should be task-
specific, integral parts of perception-action cycles such that they can
be adapted with experience.

1.1 Robot Vision Systems

How can task-appropriate behavior in an uncontrolled environment be
achieved? There are two complementary paradigms in artificial intel-
ligence and robotics. The first, historically older and intuitively ap-
pealing viewpoint, commonly identified as the deliberative paradigm,
postulates that sensory systems create rich internal representations of
the external world, on the basis of which the agent can reason about
how to act. However, despite decades of research, current deliber-
ative artificial agents are still severely limited in the environmental
complexity they can handle. Since it is difficult to anticipate which
world features turn out to be important to the agent, creating internal
representations is a daunting task, and any system will be limited by
such pre-specified knowledge. Reasoning under uncertainty and with
dynamic rule sets remains a hard problem. It is difficult to devise
learning algorithms that allow the agent to adapt its perceptual and
behavioral strategies. The reactive paradigm, forcefully promoted by
Brooks (1991), takes the opposite stance: If it is unclear what world
features should be represented, and if reasoning on such representa-
tions is hard, then do not bother representing anything. Rather, use
the world directly as its own representation. Sense when information
is needed for action, and link action closely to perception, avoiding
elaborate reasoning processes.

In practice, most representations for robotics are conceived as
building blocks for dedicated purposes. In navigation for example, one
might caricature current thinking by citing SLAM (Durrant-Whyte
and Bailey, 2006; Thrun et al., 2005) as a deliberative approach, and
placing reactive navigation at the opposite, reactive end of the spec-
trum (Braitenberg, 1984). In grasping, a deliberative approach might
be based on geometric object models, which would need to be provided
externally, created by visual structure-from-motion, stereo, range sen-
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sors or otherwise. Then, grasp contact points can be computed using
established theory (Shimoga, 1996). On the other hand, reactive ap-
proaches attempt to learn the empirical manipulative possibilities an
object offers with respect to a manipulator (i.e., affordances, Gib-
son 1979; Montesano et al. 2008), or learn visual aspects that predict
graspability (Saxena et al., 2008). Due to the difficulties of obtaining
object models and the computational demands of computing optimal
grasps, much current research investigates hybrid methods based on
approximate decomposition of objects into shape primitives, for which
grasps can be computed more easily (Miller et al., 2003) or can be
heuristically predefined (Hübner and Kragić, 2008).

1.2 Task-Specific Visual Representations

While deliberative concepts may presume the availability of generic
world representations, reactive mechanisms benefit from specialized
representations that provide direct access to the relevant information
(Ullman, 1984). In this light, we argue that representations should be
motivated and driven by their purposes for activity. The advantages
of including adaptive, learnable representations in perception-action
loops outweighs the potential drawback of creating redundancies1. Im-
portantly, we do not argue that representations should be limited to a
minimum; rather, we advance the viewpoint that task/action-specific
representations, as rich as they may need to be, should be created by
the agent itself in incremental and adaptive ways, allowing it to act
robustly, improve its capabilities and adjust to a changing world.

Of course, learning cannot start from a blank slate; prior struc-
ture and learning biases are required. Geman et al. (1992) com-
pellingly demonstrated the inescapable trade-off between flexibility of
the learning methods and quantities of training data required for sta-
ble generalization, the bias/variance dilemma faced by any inductive
learning method. Notably, humans are born with strong limitations,
biases, innate behavioral patterns and other prior structure, including
a highly-developed visual system, that presumably serve to maximize
the exploitation of their slowly-accumulating experience (Kellman and
Arterberry, 1998). Our visual feature extractors (see Sect. 2.4) and,
even more so, the early-cognitive-vision system (see Sect. 3.2) can
be understood as providing such innate prior structure that enables
learning at high levels of abstraction.

In the following, we give an overview of two examples of our own

1Incidentally, the human brain does appear to employ multiple representations for
dedicated purposes, as e.g. lesion studies indicate (Milner and Goodale, 1995; Bear et al.,
2006).
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research on learning visual representations for robotic action within
specific task scenarios, without building generic world models. The
first problem we consider is the direct linking of visual perception to
action within a reinforcement-learning (RL) framework (Sect. 2). The
principal difficulty is the extreme size of the visual perceptual space,
which we address by learning a percept classifier interleaved with the
reinforcement learner to adaptively discretize the perceptual space into
a manageable number of discrete states. However, many visuomotor
tasks cannot be reduced to simple, reactive decisions based on discrete
perceptual states. For example, to grasp objects, the object pose is
of fundamental importance, and the grasp parameters depend on it in
a continuous fashion. We address such tasks by learning intermedi-
ate object representations that form a direct link between perceptual
and action parameters (Sect. 3). Again, these representations can be
learned autonomously, permitting the robot to improve its grasping
skills with experience. The resulting probabilistic models allow the
inference of possible grasps and their relative success likelihoods from
visual scenes.

2 Reinforcement Learning of Visual Classes

Reinforcement learning (Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998) is a popular method for learning perception-action map-
pings, so-called policies, within the framework of Markov Decision
Processes (MDP). Learning takes place by evaluating actions taken
in specific states in terms of the reward received. This is straightfor-
ward for problems with discrete state and action spaces. Continuous
and very large, discrete state spaces are typically addressed by using
function approximators that permit local generalization across similar
states. However, for reasons already noted above, function approxima-
tion alone is not sufficient for the very high-dimensional state spaces
spanned by images: Visually similar images may represent states that
require distinct actions, and very dissimilar images may actually repre-
sent the exact same scene (i.e., the same state) under different imaging
conditions. Needless to say, performing RL directly on the combina-
torial state space defined by the image pixel values is infeasible.

The challenge therefore lies in mapping the visual space to a state
representation that is suitable for reinforcement learning. To enable
learning with manageably low numbers of exploratory actions, this
means that the state space should either consist of a relatively small
number of discrete states, or should be relatively low-dimensional and
structured in such a way that nearby points in state space mostly
admit identical actions that yield similar rewards.
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The latter approach would be very interesting to explore, but it
appears to require strong, high-level knowledge about the content of
the scene such as object localization and recognition, which defeats
our purpose of learning perception-action mappings without solving
this harder problem first. We therefore followed the first approach and
introduced a method called Reinforcement Learning of Visual Classes
(RLVC) that adaptively and incrementally discretizes a continuous or
very large discrete perceptual space into discrete states (Jodogne and
Piater, 2005a, 2007).

2.1 RLVC: a Bird’s-Eye View

RLVC decomposes the end-to-end problem of learning perception-to-
action mappings into two simpler learning processes (Fig. 1). One of
these, the RL agent, learns discrete state-action mappings in a clas-
sical RL manner. The state representation and the determination of
the current state are provided by an image classifier that carves up
the perceptual (image) space into discrete states called visual classes.
These two processes are interleaved: Initially, the entire perceptual
space is mapped to a single visual class. From the point of view of the
RL agent, this means that a variety of distinct world states requiring
different actions are lumped together – aliased – into a single per-
ceptual state (visual class). Based on experience accumulated by the
RL agent, the image classifier then identifies a visual feature whose
presence or absence defines two distinct visual subclasses, splitting
the original visual class into two. This procedure is iterated: At each
iteration, one or more perceptually-aliased visual classes are identi-
fied, and for each, a feature is determined that splits it in a way that
maximally reduces the perceptual aliasing in both of the resulting new
visual classes (Fig. 2). Thus, in a sequence of attempts to reduce per-
ceptual aliasing, RLVC builds a sequence C0, C1, C2, . . . of increasingly
refined, binary decision trees Ck with visual feature detectors at de-
cision nodes. At any stage k, Ck partitions the visual space S into a
finite number mk of visual classes {Vk,1, . . . , Vk,mk

}.

2.2 Reinforcement Learning and TD Errors

An MDP is a quadruple 〈S,A, T ,R〉, where S is a finite set of states,
A is a finite set of actions, T is a probabilistic transition function
from S ×A to S, and R is a scalar reward function defined on S ×A.
From state st at time t, the agent takes an action at, receives a scalar
reinforcement rt+1 = R(st, at), and transitions to state st+1 with prob-
ability T (st, at, st+1). The corresponding quadruple 〈st, at, rt+1, st+1〉
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Figure 1: RLVC: Learning a perception-action mapping decomposed into two
interacting subproblems.

Figure 2: Outline of the RLVC algorithm.

is called an interaction. For infinite-horizon MDPs, the objective is to
find an optimal policy π∗ : S → A that chooses actions that maximize
the expected discounted return

Rt =
∞∑
i=0

γirt+i+1 (1)

for any starting state s0, where 0 ≤ γ < 1 is a discount factor that
specifies the immediate value of future reinforcements.

If T and R are known, the MDP can be solved by dynamic pro-
gramming (Bellman, 1957). More generally, reinforcement learning
can approximately solve unknown MDPs. One popular such method
is Q-learning (Watkins, 1989), named after its state-action value func-
tion

Qπ(s, a) = Eπ [Rt | st = s, at = a] (2)

that returns the expected discounted return by starting from state s,
taking action a, and following the policy π thereafter. An optimal
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solution to the MDP is then given by

π∗(s) = argmax
a∈A

Q∗(s, a). (3)

In principle, a Q function can be learned by any sequence of α-
weighted updates

Q(st, at)← Q(st, at) + α (E[Rt | s = st, a = at]−Q(st, at)) (4)

that visits all state-action pairs infinitely often. Of course, this is not a
viable algorithm because the first term of the update step is unknown;
it is precisely the return function (2) we want to learn. Now, rewards
are accumulated (1) by executing actions, hopping from state to state.
Thus, for an interaction 〈st, at, rt+1, st+1〉, an estimate of the current
return Q(st, at) is available as the discounted sum of the immediate
reward rt+1 and the estimate of the remaining return Q(st+1, at+1),
where st+1 = T (st, at) and at+1 = π(st). If the goal is to learn a value
function Q∗ for an optimal policy (3), then this leads to the algorithm

Q(st, at) ← Q(st, at) + α∆t (5)

∆t = rt+1 + γmax
a′∈A

Q(st+1, a
′)−Q(st, at) (6)

that, under suitable conditions, converges to Q∗, irrespective of the
policy being followed, as long as all state-action pairs are visited in-
finitely often. ∆t is called the temporal-difference error or TD error
for short.

2.3 Removing Perceptual Aliasing

RLVC is based on the insight that if the world behaves predictably,
rt+1 + γmaxa′∈AQ(st+1, a

′) approaches Q(st, at), leading to vanish-
ing TD errors (6). If however the magnitudes of the TD errors of a
given state-action pair (s, a) remain large, this state-action pair yields
unpredictable returns. RLVC assumes that this is due to perceptual
aliasing, that is, the visual class s represents distinct world states that
require different actions. Thus, it seeks to split this state in a way that
minimizes the sum of the variances of the TD errors in each of the two
new states. This is an adaptation of the splitting rule used by CART
for building regression trees (Breiman et al., 1984). RLVC thus shares
issues inherent in decision-tree learning, including the need to coun-
teract overfitting (see below) and the order of tests (see Sect. 2.5.2).

Seeking to split the aforementioned state s, RLVC selects from
all interactions collected from experience those whose visual class and
action match s and a, respectively, along with the resulting TD error
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∆, as well as the set of features present in the raw image from which
the visual class was computed. It then selects the feature

f∗ = argmin
f

{
pfσ

2{∆f}+ p¬fσ
2{∆¬f}

}
(7)

that results in the purest split in terms of the TD errors. Here, pf
is the proportion of the selected interactions whose images exhibit
feature f , and {∆f} is the associated set of TD errors; ¬f indicates
the corresponding entities that do not exhibit feature f .

Splitting a visual class s according to the presence of a feature f∗

results in two new visual classes, at least one of which will generally
exhibit lower TD errors than the original s. However, there is the pos-
sibility that such a split turns out to be useless because the observed
lack of convergence was due to the stochastic nature of the environ-
ment rather than perceptual aliasing. RLVC partially addresses this
by splitting a state only if the resulting distributions of TD errors are
significantly different according to a Student’s t test.

Thus, the problem solved by RLVC is the perceptual disambigua-
tion of states that require distinct actions. There are related prob-
lems that are not addressed by RLVC. For example, RLVC assumes
full observability and does not attempt to compensate for partial ob-
servability (Kaelbling et al., 1998). In general, RLVC can do nothing
to reduce – and is not adversely affected by – prediction errors that
remain high under any action, or that cannot be perceptually disam-
biguated. The ability of RLVC to perceptually disambiguate aliased
states hinges on the feature detectors available to it (7). Thus, at
design time, care should be taken to provide feature extractors for
all relevant visual distinctions, and possibly to provide means for the
learner to construct relevant feature detectors by itself (Sect. 2.5.1).

2.4 Experiments

We evaluated our system on an abstract task that closely parallels a
real-world, reactive navigation scenario (Fig. 3). The goal of the agent
is to reach one of the two exits of the maze as fast as possible. The
set of possible locations is continuous. At each location, the agent
has four possible actions: Go up, right, down, or left. Every move
is altered by Gaussian noise, the standard deviation of which is 2%
of the size of the maze. Invisible obstacles are present in the maze.
Whenever a move would take the agent into an obstacle or outside the
maze, its location is not changed.

The agent earns a reward of 100 when an exit is reached. Any
other move generates zero reinforcement. When the agent succeeds at
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Figure 3: A continuous, noisy navigation task. The exits of the maze are
marked by crossed boxes. Transparent obstacles are identified by solid rect-
angles. The agent is depicted near the center of the left-hand figure. Each
of the four possible moves is represented by an arrow, the length of which
corresponds to the resulting move. The sensor returns a picture that corre-
sponds to the dashed portion of the image. The right-hand figure shows an
optimal policy learned by RLVC, sampled at regularly-spaced points.
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Figure 4: Left: The optimal value function, when the agent has direct access
to its (x, y) position in the maze and when the set of possible locations is
discretized into a 50 × 50 grid. The brighter the location, the greater its
value. Right: The final, approximate value function obtained by RLVC.

escaping the maze, it arrives in a terminal state in which every move
gives rise to a zero reinforcement. The discount factor γ was set to
0.9. Note that the agent is faced with the delayed-reward problem,
and that it must take the distance to the two exits into consideration
when choosing the most attractive exit.

The raw perceptual input of the agent is a square window centered
at its current location, showing a subset of a tiled montage of the
COIL-100 images (Nene et al., 1996). There is no way for the agent
to directly locate the obstacles; it is obliged to identify them implicitly
as regions of the maze where certain actions do not change its location.

In this experiment, we used color differential invariants as visual
features (Gouet and Boujemaa, 2001). The entire tapestry includes
2298 different visual features, of which RLVC selected 200 (9%). The
computation stopped after the generation of k = 84 image classifiers,
which took 35 minutes on a 2.4 GHz Pentium IV using databases of
10,000 interactions. 205 visual classes were identified. This is a small
number compared to the number of perceptual classes that would be
generated by a discretization of the maze when the agent knows its
(x, y) position. For example, a reasonably-sized 20× 20 grid leads to
400 perceptual classes. A direct, tabular representation of the Q func-
tion in terms of all Boolean feature combinations would have 22298×4
cells. Figure 4 compares the optimal value function of a regularly-
discretized problem with the one obtained through RLVC.

In a second experiment we investigated RLVC on real-word images
under identical navigation rules (Fig. 5). RLVC took 101 iterations in
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Figure 5: Top: a navigation task with a real-world image, using the same
conventions as Figure 3. Bottom: the deterministic image-to-action mapping
computed by RLVC.

159 minutes to converge using databases of 10,000 interactions. 144
distinct visual features were selected among a set of 3739 possibilities,
generating a set of 149 visual classes. Here again, the resulting classi-
fier is fine enough to obtain a nearly optimal image-to-action mapping
for the task.

2.5 Further Developments

The basic method described in the preceding sections admits various
powerful extensions, some of which are described in the following.

2.5.1 On-the-fly Creation of Visual Features

As described above, the power of RLVC to resolve action-relevant
perceptual ambiguities is limited by the availability of precomputed
visual features and their discriminative power. This can be overcome
by creating new features on the fly as needed (Jodogne et al., 2005).
When the state-refinement procedure fails to identify a feature that
results in a significant reduction of the TD errors, new features are
created by forming spatial compounds of existing features. In this
way, a compositional hierarchy of features is created in a task-driven
way. Compounds are always at least as selective as their individ-
ual constituents. To favor features that generalize well, features are
combined that are frequently observed to co-occur in stable spatial
configurations.

We demonstrated the power of this idea on a variant of the popular
mountain-car control problem, a physical simulation where an under-
powered car needs to accumulate energy to climb out of a parabolic
valley by alternatingly accelerating forwards and backwards. Con-
trary to its classical versions (Moore and Atkeson, 1995; Ernst et al.,
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Figure 6: Top: Road painting. The region framed with a white rectangle cor-
responds to an instantaneous percept; it slides back and forth as the agent
moves. Bottom: Velocity gauge as seen by the agent, and visual compound
feature learned by RLVC that triggers at near-zero velocities. The compound
feature is located at the dot, in the middle between its two component fea-
tures located at the −2 and the red indicator, as illustrated by the oblique
line.
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Figure 7: Left: The optimal value function, when the agent has direct access
to its current (p, s) state discretized into a 13 × 13 grid. The brighter the
location, the greater its value. Right: The value function obtained by RLVC.

2003), our agent has no direct access to its position and velocity. In-
stead, the road is carpeted with a montage of images, and the ve-
locity is communicated via a picture of an analog gauge (Fig. 6). In
particular, the velocity is impossible to measure using local features
only. However, RLVC succeeded at learning compound features useful
for solving the task. An example is shown at the bottom of Fig. 6.
The performance of the policy learned by RLVC was about equiva-
lent to classical Q-learning on a directly-observable position-velocity
state space discretized into an equivalent number of states. Evidently,
the disadvantage of having to learn relevant state parameters indi-
rectly through visual observations was compensated by the adaptive,
task-driven discretization of the state space (Fig. 7).
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2.5.2 Merging Visual Classes

In its original form, RLVC is susceptible to overfitting because states
are only ever split and never merged. It is therefore desirable to iden-
tify and merge equivalent states. Various ways of defining this equiv-
alence are possible. Here, we say that two states are equivalent if (a)
their optimal values maxaQ(s, a) are similar, and (b) their optimal
policies are equivalent, that is, the value of one state’s optimal action
π∗(s) is similar if taken in the other state.

A second drawback of basic RLVC is that decision trees do not
make optimal use of the available features, since they can only repre-
sent conjunctions of features.

We modified RLVC to use a Binary Decision Diagram (BDD)
(Bryant, 1992) instead of a decision tree to represent the state space
(Jodogne and Piater, 2005b). To split a state, a new feature is con-
junctively added to the BDD as before to the decision tree. Peri-
odically, after running for some number of stages, compaction takes
place: equivalent states are merged and a new BDD is formed that
can represent both conjunctions and disjunctions of features. In the
process, feature tests are reordered as appropriate, which may lead to
the elimination of some features.

The benefits are demonstrated by a reactive outdoor navigation
task. The objective is to navigate to the EECS building on the ULg
engineering campus represented as a graph of discrete locations, using
a discrete action space consisting of quarter turns and a forward move
(Fig. 8). Perception takes place via photographs taken at the current
state, that is, discrete robot location and heading. Compared to the
original RLVC, the numbers of visual classes and features were greatly
reduced (Fig. 9). Moreover, test-set error rates dropped from 8% to
4.5%, suggesting that the original RLVC has a slight tendency to
overfit which is reduced by BDD compaction, leading to improved
generalization to unseen percepts.

2.5.3 Continuous Actions: Reinforcement Learning of
Joint Classes

RLVC addresses high-dimensional and continuous perceptual spaces,
but the action space is practically limited to a small number of discrete
choices. Reinforcement Learning of Joint Classes (RLJC) applies the
principles of RLVC to an adaptive discretization of the joint space of
perceptions and actions (Fig. 10) (Jodogne and Piater, 2006). The Q
function now operates on the joint-class domain encompassing both
perceptual and action dimensions. Under a given percept s, a greedy
policy chooses, among all joint perception-action classes compatible
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figs/b52.jpg

Figure 8: Navigation around the School of Engineering of the University of
Liège; three example percepts taken from nearby viewpoints all correspond-
ing to the same world state.
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Figure 9: Comparison of the number of generated classes and selected visual
features between the basic and BDD versions of RLVC. The number of visual
classes (resp. selected features) as a function of the stage counter k is shown
on the left (resp. right). The sawtooth patterns are due to the periodicity of
the compaction phases.
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Figure 10: Intuition of the adaptive discretization performed by RLVC (left)
and RLJC (right).

with s, the action from the class of maximum Q value. RLJC splits
aliased joint classes based on joint features that test the presence of
either a visual feature or an action feature. An action feature (t, i)
tests whether the ith component of an action a ∈ Rm falls below a
threshold t. This relatively straightforward generalization of RLVC
results in an innovative addition to the rather sparse toolbox of RL
methods for continuous action spaces.

We evaluated RLJC on the same task as shown in Fig. 3 but al-
lowing the agent to choose a real-valued direction to go. In this case,
the number of resulting joint classes roughly corresponds to the num-
ber of perceptual classes generated by RLVC on the discrete version,
multiplied by the number of discrete actions. Training RLJC on this
task takes longer than training RLVC on the version with four dis-
crete actions (Fig. 3), but the learned policy of RLJC is more effective
because it makes use of the ability to move diagonally.
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2.6 Discussion

The principal contribution we described in this section is a way of
performing trial-and-error learning on massive perceptual spaces, the
key idea being the adaptive decomposition of perceptual space by
interleaving state/action-value learning with training perceptual clas-
sifiers. The experimental illustrations we gave were set in relatively
simple scenarios involving quite small action spaces.

In its current form, this framework is unlikely to scale up to inter-
esting robotic tasks without support from simulation. For example,
the outdoor navigation task (Fig. 8) is realistic in that the system per-
ceives the real world via a camera. Learning requires about one or two
hundred iterations to converge, which is not much by RL standards
but difficult to do without simulated runs – a common pratice in RL
(Peng and Williams, 1993). For scaling RLVC to more complex action
spaces, we think that BDD compaction and RLJC-style discretization
of joint perception/action spaces, ideally complemented with smooth
interpolation, will turn out to be crucial.

Crucially, the decisive limitation of RLVC, as presented here, is due
to the fact that it learns state/action value functions, which has scaled
up to complex robotic tasks only in specific cases (Schaal, 1997; Ried-
miller et al., 2009). Instead, one promising avenue for further research
is to use RLVC with policy search, a technique which has already
proved its usefulness in practical applications of robotics (Bagnell and
Schneider, 2001; Peters and Schaal, 2008; Kolter and Ng, 2010).

3 Grasp Densities

RLVC, described in the preceding section, follows a minimalist ap-
proach to learning task-specific representations in that it seeks to
identify small sets of low-level visual cues and to associate reactive
actions to them directly. There is no elaborate image analysis be-
yond feature extraction, no intermediate representation, no reasoning
or planning, and the complexity of the action space that can be han-
dled by RL is limited. In this section we describe a different approach
that is in many ways complementary to RLVC. Here, the idea is to
learn object-specific action descriptors by exploration, and integrate
these with perceptual object models within a coherent, probabilistic
framework. Thus, a known object encountered later will inherently
evoke the potential actions associated with it.

We describe this method in the context of grasping objects (Detry
et al., 2009), a fundamental skill of autonomous agents. The conven-
tional robotic approach to grasping involves computing grasp param-
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eters based on detailed geometric and physical models of the object
and the manipulator. However, humans skillfully manipulate every-
day objects even though they do not have access to such detailed
information. It is thus clear that there must exist alternative meth-
ods. We postulate that manipulation skills emerge with experience by
associating action parameters to perceptual cues. Then, perceptual
cues can directly trigger appropriate actions, without explicit object
shape analysis or grasp planning. For example, to drink, we do not
have to reason about the shape and size of the handle of a hot teacup
to determine where to place the fingers to pick it up. Rather, hav-
ing successfully picked up and drunk from teacups before, seeing the
characteristic handle immediately triggers the associated, canonical
grasp.

Our method achieves such behavior by first learning visual object
models that allow the agent to detect object instances in scenes and
to determine their pose. Then, the agent explores various grasps,
and associates the successful parameters that emerge from this grasp-
ing experience with the model. When the object is later detected
in a scene, the detection and pose estimation procedure immediately
produces the associated grasp parameters as well. This system can
be bootstrapped in the sense that very little grasping experience is
already useful, and the representation can be refined by further ex-
perience at any time. It thus constitutes a mechanism for learning
grasping skills from experience with familiar objects.

3.1 Learning to Grasp: a Bird’s-Eye View

Figure 11 presents an overview of our grasp learning system. Visual
input is provided by a computer vision front-end that produces 3D
oriented patches with appearance information. On such sparse 3D
reconstructions, the object-learning component analyzes spatial fea-
ture relations. Pairs of features are combined by new parent features,
producing a hierarchically-structured Markov network that represents
the object via sparse appearance and structure. In this network, a
link from a parent node to a child node represents the distribution of
spatial relations (relative pose) between the parent node and instances
of the child node. Leaf nodes encode appearance information.

Given a reconstruction of a new scene provided by computer vision,
instances of such an object model can be detected via probabilistic
inference, estimating their pose in the process.

Having detected a known object for which it has no grasping ex-
perience yet, the robot attempts to grasp the object in various ways
(Kraft et al., 2009). For each grasp attempt, it stores the object-
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Figure 11: Overview of learning to grasp. Learning produces graph-
structured object representations that combine experienced grasps with vi-
sual features provided by computer vision. Subsequently, instances can be
detected in new scenes provided by vision. Detection directly produces pose
estimates and suitable grasp parameters.

relative pose of the gripper and a measure of success. Object-relative
gripper poses are represented in exactly the same way as parent-
relative child poses of visual features. In this manner, grasping ex-
perience is added to the object representation as a new child node of
a high-level object node. From then on, inference of object pose at
the same time produces a distribution of gripper poses suitable for
grasping the object.

3.2 Visual Front-End

Visual primitives and their location and orientation in space are pro-
vided by the Early-Cognitive-Vision (ECV) system by Krüger et al.
(Krüger et al., 2004; Pugeault et al., 2010). It extracts patches – so-
called ECV descriptors – along image contours and determines their
3D position and a 2D orientation by stereo techniques (the orientation
around the 3D contour axis is difficult to define and is left undeter-
mined). From a calibrated stereo pair, it generates a set of ECV
descriptors that represent the scene, as sketched at the bottom of
Fig. 11.

Objects can be isolated from such scene representations by motion
segmentation. To this end, the robot uses bottom-up heuristics to
attempt to grasp various surfaces suggested by combinations of ECV
descriptors. Once a grasp succeeds and the robot gains physical con-
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Figure 12: ECV descriptors. Left: ECV descriptors are oriented appearance
patches extracted along contours. Right: object-segmented and refined ECV
descriptors via structure from motion.

trol over the grasped structure, the robot can pick it up and turn it in
front of the stereo camera. This allows it to segment object descriptors
from the rest of the scene via coherent motion, and to complete and
refine the object descriptors by structure-from-motion techniques, as
illustrated in Fig. 12 (Pugeault et al., 2008; Kraft et al., 2008).

3.3 Markov Networks For Object Representa-
tion

Our object model consists of a set of generic features organized in a hi-
erarchy. Features that form the bottom level of the hierarchy, referred
to as primitive features, are bound to visual observations. The rest of
the features are meta-features that embody relative spatial configura-
tions of more elementary features, either meta or primitive. At the
bottom of the hierarchy, primitive features correspond to local parts
that each may have many instances in the object. Climbing up the
hierarchy, meta-features correspond to increasingly complex parts de-
fined in terms of constellations of lower-level parts. Eventually, parts
become complex enough to satisfactorily represent the whole object.
Here, a primitive feature represents a class of ECV observations of sim-
ilar appearance, e.g. an ECV observation with colors close to red and
white. Any primitive feature will usually have hundreds of instances
in a scene.

Figure 13 shows an example of a hierarchy for a traffic sign. Ig-
noring the nodes labeled Yi for now, the figure shows the traffic sign
as the combination of two features, a bridge pattern (feature 4) and
a triangular frame (feature 5). The fact that the bridge pattern has
to be in the center of the triangle to form the traffic sign is encoded
in the links between features 4-6-5. The triangular frame is encoded
in terms of a single (generic) feature, a short red-white edge segment
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Figure 13: An example of a hierarchy for a traffic sign. X1 through X3 are
primitive features; each of these is linked to an observed variable Yi. X4

through X6 are meta-features.
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(feature 3). The link between feature 3 and feature 5 encodes the fact
that many short red-white edge segments are necessary to form the
triangular frame, and the fact that these edges have to be arranged
along a triangle-shaped structure.

Here, a “feature” is an abstract concept that may have any number
of instances. The lower-level the feature, the larger generally the num-
ber of instances. Conversely, the higher-level the feature, the richer
its relational and appearance description.

The feature hierarchy is implemented as a Markov tree (Fig. 13).
Features correspond to hidden nodes of the network. When a model
is associated to a scene (during learning or instantiation), the pose of
feature i in that scene will be represented by the probability density
function of a random variable Xi, effectively linking feature i to its in-
stances. Random variables are thus defined over the pose space, which
corresponds to the Special Euclidean group SE(3) = R3 × SO(3).

The relationship between a meta-feature i and one of its children
j is parametrized by a (symmetric) compatibility potential ψij(Xi, Xj)
that reflects, for any given relative configuration of feature i and fea-
ture j, the likelihood of finding these two features in that relative
configuration. A compatibility potential is equivalent to the spatial
distribution of the child feature in a reference frame that matches
the pose of the parent feature; a potential can be represented by a
probability density over SE(3).

Each primitive feature is linked to an observed variable Yi. Ob-
served variables are tagged with an appearance descriptor that defines
a class of observation appearance. The statistical dependency between
a hidden variable Xi and its observed variable Yi is parametrized by an
observation potential φi(Xi, Yi). We generally cannot observe meta-
features; their observation potentials are thus uniform.

Instantiation of such a model in a scene amounts to the compu-
tation of the marginal posterior pose densities p(Xi|Y1, . . . , Yn) for all
features Xi, given all available evidence Y . This can be done us-
ing any applicable inference mechanism. We use nonparametric belief
propagation (Sudderth et al., 2003) optimized to exploit the specific
structure of this inference problem (Detry et al., 2009). The particles
used to represent the densities are directly derived from individual fea-
ture observations. Thus, object detection (including pose inference)
amounts to image observations probabilistically voting for object poses
compatible with their own pose. The system never commits to specific
feature correspondences, and is thus robust to substantial clutter and
occlusions. During inference, a consensus emerges among the avail-
able evidence, leading to one or more consistent scene interpretations.
After inference, the pose likelihood of the whole object can be read
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Figure 14: Cluttered scenes with pose estimates. Local features of object
models are back-projected into the image at the estimated pose; false colors
identify different objects.

out of the top-level feature. If the scene contains multiple instances
of the object, this feature density will present multiple major modes.
Figure 14 shows examples of pose estimation results.

3.4 Grasp Densities

Having described the visual object representation and pose inference
mechanism, we now turn to our objective of learning grasp parame-
ters and associating them to the visual object models. We consider
parallel-gripper grasps parametrized by a 6D gripper pose composed of
a 3D position and a 3D orientation. The set of object-relative gripper
poses that yield stable grasps is the grasp affordance of the object.

A grasp affordance is represented as a probability density function
defined on SE(3) in an object-relative reference frame. We store an
expression of the joint distribution p(Xo, Xg), where Xo is the pose
distribution of the object, and Xg is the grasp affordance. This is done
by adding a new “grasp” feature to the Markov network, and linking
it to the top feature (see Fig. 15). The statistical dependency of Xo

and Xg is held in a compatibility potential ψog(Xo, Xg).
When an object model has been aligned to an object instance (i.e.

when the marginal posterior of the top feature has been computed
from visually-grounded bottom-up inference), the grasp affordance
p(Xg | Y ) of the object instance, given all observed evidence Y , is
computed through top-down belief propagation, by sending a message
from Xo to Xg through ψog(Xo, Xg):

p(Xg | Y ) =

∫
ψog(Xo, Xg)p(Xo | Y ) dXo (8)

This continuous, probabilistic representation of a grasp affordance in
the world frame we call a grasp density. In the absence of any other
information such as priors over poses or kinematic limitations, it rep-
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Figure 15: Visual/affordance model of a table-tennis bat as a 2-level hier-
archy. The bat is represented by feature o (top). Feature 1 represents a
generic green ECV descriptor. The rectangular configuration of green edges
around the handle of the paddle is encoded in ψo1. Y1 and Y2 are observed
variables that link features 1 and 2 to the visual evidence produced by ECV.
Xg represents a grasp feature, linked to the object feature through the pinch
grasp affordance ψog.

resents the relative likelihood that a given gripper pose will result in
a successful grasp.

3.5 Exploring Grasp Densities

Like the pose densities discussed in Sect. 3.3, grasp densities are repre-
sented nonparametrically in terms of individual observations (Fig. 16).
In this case, each successful grasp experience contributes one particle
to the nonparametric representation. An unbiased characterization of
an object’s grasp affordance conceptually involves drawing grasp pa-
rameters from a uniform density, executing the associated grasps, and
recording the successful grasp parameters.

In reality, executing grasps drawn from a 6D uniform density is not
practical, as the chances of stumbling upon successful grasps would
be unacceptably low. Instead, we draw grasps from a highly biased
grasp hypothesis density and use importance sampling techniques to
properly weight the grasp outcomes. The result we call a grasp empir-
ical density, a term that also communicates the fact that the density
is generally only an approximation to the true grasp affordance: The
number of particles derived from actual grasp experiences is severely
limited – to a few hundred at best – by the fact that each particle
is derived from a grasp executed by a real robot. This is not gener-
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(a) (b) (c)

Figure 16: Grasp density representation. The top image of Fig. (a) illus-
trates a particle from a nonparametric grasp density and its associated kernel
widths: the translucent sphere shows one position standard deviation, the
cone shows the variance in orientation. The bottom image illustrates how
the schematic rendering used in the top image relates to a physical gripper.
Figure (b) shows a 3D rendering of the kernels supporting a grasp density for
a table-tennis paddle (for clarity, only 30 kernels are rendered). Figure (c)
indicates with a green mask of varying opacity the values of the location
component of the same grasp density along the plane of the paddle.

ally sufficient for importance sampling to undo the substantial bias
exerted by the available hypothesis densities, which may even be zero
in regions that afford actual grasps.

Grasp hypothesis densities can be derived from various sources.
We have experimented with feature-induced grasp hypotheses derived
from ECV observations. For example, a pair of similarly-colored,
coplanar patches suggests the presence of a planar surface between
them. In turn, this plane suggests various possible grasps (Kraft
et al., 2008). Depending on the level of sophistication of such heuris-
tics, feature-induced grasp hypotheses can yield success rates of up to
30% (Popović et al., 2010). This is more than sufficient for effective
learning of grasp hypothesis densities.

Another source of grasp hypothesis densities is human demonstra-
tion. In a pilot study, we tracked human grasps with a ViconTM

motion capture system (Detry et al., 2009). This can be understood
as a way of teaching by demonstration: The robot is shown how to
grasp an object, and this information is used as a starting point for
autonomous exploration.

Illustrations of some experimental results are shown in Figs. 17
and 18. A large-scale series of experiments for quantitative evaluation
has recently been published (Detry et al., 2010).
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Figure 17: Particles supporting grasp hypothesis (top) and empirical (bot-
tom) densities. Hypothesis densities were derived from constellations of ECV
observations (left) or from human demonstrations (right).

Figure 18: Barrett hand grasping the toy jug.
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4 Discussion

We described two complementary methods for learning task-specific
representations via autonomous, exploratory learning. RLVC is a
reinforcement-learning method that operates on a perceptual space
defined by low-level visual features. Remarkably, its adaptive, task-
driven discretization of the perceptual space allows it to learn policies
with a number of interactions similar to problems with much smaller
perceptual spaces. This number is nevertheless still greater than what
a physical robot can realistically perform. In many practical applica-
tions, interactions will have to be generated in simulation.

RLVC does not learn anything about the world besides task-relevant
state distinctions and the values of actions taken in these states. In
contrast, the grasp-densities framework requires object models capa-
ble of pose estimation. Grasp densities can in principle be attached
to any such type of models. However, they particularly lend them-
selves to our Markov-network representations, since here they require
no special treatment – a grasp density is treated just like any of the
visual object features, within a single, coherent, probabilistic model.

Notably, both learning systems can operate without supervision.
RL methods require no external feedback besides a scalar reward func-
tion. Learning proceeds by trial and error, which can be guided by
suitably biasing the exploration strategy. Learning grasp-densities
involves learning object models and trying out grasps. Again, the au-
tonomous exploration can be – and normally will need to be – biased
via the specification of a suitable grasp hypothesis density, by human
demonstration or by fully-automatic means. The Cognitive Vision
Group at the University of Southern Denmark, headed by N. Krüger,
has put in place a robotic environment that is capable of learning grasp
densities with a very high degree of autonomy, requiring human inter-
vention only in exceptional situations. Like a human infant, the robot
reaches for scene features and “plays” with objects by attempting to
grasp them in various ways and moving them around.

We presented two feasibility studies that indicate important direc-
tions that research towards task-specific, online learnable representa-
tions might take. We believe that such representations will prove to
be a crucial ingredient of autonomous robots for building up a vast
repertoire of robust behavioral capabilities, enabling them to interact
with an uncontrolled, real-world environment.
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