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Abstract. This paper presents a novel 3D object decomposition method
based on supervoxels and low-curvature regions. We consider represent-
ing an object with a combination of primitive shapes in the recognized
regions. We propose a scale-invariant, non-parametric shape estimation
method. The experiments show promising results on unseen objects.

1 Introduction

Objects can be represented by a combination of parts. Certain parts in an object
can be used for object classification or recognition. For instance, in Figure 1, in
order to classify objects with handle, only handles must be detected. This should
lead to more efficient and generalizable recognition procedures than global repre-
sentations of all the objects with a handle. Decomposing objects into meaningful
parts relevant to a specific task has been studied in computer vision [2, 3, 1]. In
these approaches, learning starts either from labeled patches or from patches of
specific sizes. In this work, we propose an unsupervised method for decompos-
ing 3D point clouds of objects into parts. We are motivated by the application
of grasping. Assuming we know the grasp types for a set of primitive shapes,
we aim to transfer these to previously-unseen objects. The primitive shapes are
cone, cylinder, cube, sphere. We aim to have a general method for representing
shapes rather than parametric methods. Therefore, we represent them by their
surface-normal distributions. We made the assumption that the primitive shapes
are smooth. Therefore, we enforce the smoothness property by decomposing the
object into low-curvature regions and then estimate shapes in those regions.

Fig. 1. Recognizing objects with a handle.
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2 Model-based Object Decomposition Into Parts

The main goal is to recognize multiple instances of given primitive shapes in
an object. As mentioned in Section 1, we estimate shapes in the low-curvature
regions in the object. Hence, our algorithm has two steps. In the first step we find
these regions in an object. Then, we estimate primitive shapes in each region.

2.1 Low-Curvature Regions

A low-curvature region is defined as a locally planar surface in the object. To
this end, we identify convexity or concavity in the object and cut the object in
those parts. We consider the high-curvature regions as breaking local connectivity
between adjacent patches. We then propagate the connectivity information to
the neighboring patches to obtain the low-curvature regions. Consequently, our
method for finding low-curvature regions is twofold. First, we decompose the
object into locally smooth patches based on their surface-normal distributions;
secondly, we estimate convexity, concavity or flatness based on the obtained
patches.

Locally Smooth Patches In this step, we want to get the patches that are locally
planar, i.e. the normal vectors inside each patch are parallel. We estimate surface
normals on the input point cloud, and we segment it to supervoxels based on
the normal vectors. We used supervoxels [4] (available from PCL1). This method
uses K-Means, starting with evenly-distributed cluster seeds over an object. The
algorithm considers a fixed size for all the clusters. Due to this fact, we also merge
the adjacent supervoxels if their mean surface normals are close to parallel.

Estimating Local Surface Curvatures Shape From supervoxels obtained as men-
tioned above, we compute the local surface curvature shape in an object by
considering the curvature changes between adjacent supervoxels. We use the
HK algorithm [6] for this aim. The HK algorithm uses the mean and the Gaus-
sian curvatures to classify surface shape curvatures. The algorithm is originally
based on range images, but we adapted it (as mentioned in [5]) for point clouds.
The HK algorithm, categorizes the surface shape into five categories; flat, convex
elliptic, concave elliptic, convex cylindrical, concave cylindrical.

We apply the HK algorithm on the estimated curvature of border voxels
between two adjacent supervoxels. For noise robustness purposes, we use all the
border voxels between each two adjacent supervoxels to vote for the shape of
a surface. In the case that the estimated surface shape based on two adjacent
supervoxels is non-flat, we consider them as disconnected. Figure 2 shows the
results for object supervoxel segmentation and connectivity for an object.

1 http://pointclouds.org/
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Fig. 2. Results for decomposed patches and connectivity for an object

Forming Low-Curvature Regions Having supervoxels and their connectivity in-
formation, we further merge them to a low-curvature region with connected
supervoxels. We define a region starting with a random supervoxel and we grow
it incrementally as long as we do not reach to a discontinuity which is caused by
high-curvature. We continue this process until all supervoxels have been visited.

2.2 Probabilistic Shape Assignment

From the low-curvature regions obtained as above, we estimate the likelihood of a
specific region given each particular primitive shape. As a region consists of a set
of supervoxels this likelihood is further computed based on the likelihood of each
supervoxel given a specific primitive shape. The primitive shape corresponding
to a region is determined using Maximum-Likelihood principle:

mV = argmax
m∈M

p(V |m), (1)

,where m is a specific primitive shape, M is the set of all primitive shapes, V is
the set of supervoxels composing a specific region, and p(V |m) is the likelihood
function of supervoxels V given a primitive shape:

p(V |m) =

Nm∏
t=1

p(vt|m) (2)

The likelihood of individual supervoxels vt given a primitive shape m is defined
as a probability density estimation

p(vt|m) =
1

Nm

Nm∑
i=1

k(vt.normal|mi.normal), (3)

,where Nm is the number of voxels sampled in shape m, and k is a Gaussian
kernel.

To match primitive shapes irrespective of their pose, we consider multiple
orientations for the primitive shapes and vote for the most likely shape and
orientation for a specific region.
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Fig. 3. Object-shape decomposition results on two example objects. Left: hand-labeled object parts. Center:
Detected object connected regions. Right: primitive shapes superimposed onto the objects.

2.3 Experiments

We evaluated our approach on a dataset of IKEA kitchen objects. The dataset
consists of 36 objects from 13 different categories (mugs, plates, bowls, etc).
The input data is a point cloud obtained from the mesh file of the objects.
Figure 3 shows the result of applying our method to two example objects 2. The
connected regions with the shape estimated are shown as well. We evaluated the
overlap between the regions found by our method and hand-labeled parts in the
objects. Quantitative results over the whole dataset provided a promising 78.3%
overlap. An overlap error is asserted if an estimated part does not fully cover
the corresponding hand-labeled part, or if an estimated part partially belongs
to more than one hand-labeled part.

There were two main sources of these errors. First source comes from our
initially estimated supervoxels. If these supervoxels already contain non-flat re-
gions, this affects downstream steps of our method. Secondly, our surface cur-
vature estimation depends on robust surface normal estimation. Poor estimates
may result in a wrong surface shape estimation. For instance, a flat surface might
be estimated as a non-flat surface. This will indicate disconnectivity between ad-
jacent patches and hence the object will be decomposed into more regions.

3 Conclusion

We presented an unsupervised approach for 3D object decomposition into parts
based on the existence of certain primitive shapes in an object. Our shape estima-
tion is non-parametric and scale-invariant. These properties provide robustness
in terms of approach-generality for multiple prototypes and also efficiency. Our
results show that this is a promising method applicable to previously-unseen ob-
jects. This can be used in grasping applications to transfer grasps from primitive
shapes to unseen objects.

2 Due to the space limitation only two examples are shown
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