CPS: 3D Compositional Part Segmentation through Grasping
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Abstract—Most objects are composed of parts which have a
semantic meaning. A handle can have many different shapes
and can be present in quite different objects, but there is
only one semantic meaning to a handle, which is ‘“a part
that is designed especially to be grasped by the hand”. We
introduce here a novel 3D algorithm named CPS for the
decomposition of objects into their semantically meaningful
parts. These meaningful parts are learned from experiments
where a robot grasps different objects. Objects are represented
in a compositional graph hierarchy where their parts are
represented as the relationship between subparts, which are
in turn represented based on the relationships between small
adjacent regions. Unlike other compositional approaches, our
method relies on learning semantically meaningful parts which
are learned from grasping experience. This compositional part
representation provides generalization for part segmentation.
We evaluated our method in this respect, by training it on one
dataset and evaluating it on another. We achieved on average
78% part overlap accuracy for segmentation of novel part
instances.

Keywords-Compositional model, 3D object representation,
object part segmentation, graspability

I. INTRODUCTION

Computer vision deals with the understanding of the
environment that surrounds us, enabling computers or/and
robotic systems to acquire, process and understand the world
based on visual information. In the case of a robot, given
an image or the point cloud of an object, it should be able
to assign a label to it but also to know how to interact with
it. Learning how to interact with an object can be based on
human knowledge, but is also directly linked to the structure
of the object, which can be represented as a configuration of
its parts. Interaction with the objects is influenced by their
functionality, such as the way in which an object is grasped.
Moreover, object representation can be structured according
to their functionality.

For example, the pitcher depicted in Figure 1 will be
grasped in different ways according to the goal of the
required action. If the purpose is to pour something from
it, the handle will be grasped. For holding an empty pitcher,
a grasp on the body is also possible. This small example
highlights the relation between object parts and the intended
functionality. Our objective is to use this relation, in order
to structure semantically meaningful object parts where
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Figure 1. Object parts have semantics or functionality. Object parts can
be formed based on a function such as graspablity.

the semantic aspect comes from the functionality such as
grasping.

Part-based object recognition has been studied in the
computer vision domain for decades, for example in the
work discussed in [1], [2], [3]. Representing an object by
the configuration of its constituent parts is the key concept
in these methods. In addition, representing a part itself is
also critical. Parts should be represented distinctively in an
object, and they should be semantically meaningful. Hence,
decomposing an object into meaningful parts can have an
important impact on object recognition and classification
performance.

We present in this paper an approach towards object
segmentation into semantically meaningful parts, which are
formed from object regions obtained from robotic grasps. To
this end, we developed a compositional, bottom-up approach
starting from object points and culminating at object parts.
Parts are described by the relationship between adjacent



patches. We focus on a scale-invariant and distinctive patch
representation, which is especially useful for forming dis-
tinctive parts. We chose to employ a compositional repre-
sentation instead of a flat model, for efficient capture of the
large variability present in visual data.

The novelty of our approach is two-fold. First, the pro-
posed algorithm forms semantically meaningful object parts
in a hierarchical manner, by exploiting the object graspa-
bility. This approach, to the best of our knowledge, has
not been followed before. Next, it provides a generalization
mechanism for segmenting novel object part instances, by
exploiting the relations between adjacent surface patches.
Furthermore, our approach can facilitate visual reasoning
by enabling the parsing of a scene into a set of semantically
meaningful object parts.

In Section II we provide an overview of related work.
Next we describe our bottom-up compositional method in
Section III. In Section IV we introduce our probabilistic
method for transferring the learned statistics from grasping
to form parts in a novel object. We report the evaluation
results in Section V, and finally we present our conclusions
and future work in Section VI.

II. RELATED WORK

Part-based object recognition based on RGB or RGB-D
data has been thoroughly investigated in the literature. These
approaches are classified into flat models and hierarchical
models, and whether they do or do not use supervision.

In supervised methods based on RGB data, object parts
are manually labeled in training examples [4]. The parts
are then represented by extracting different types of features
mainly in two ways, globally by extracting conventional
feature descriptors from the parts [5], or locally by rep-
resenting a part by its decomposition into small patches
of specific sizes and in different resolutions where the
patches are represented by different types of features [6], [7].
These approaches are then followed by classification, often
using Support Vector Machines (SVM) [4], graphical [8] or
other probabilistic models [9]. The main issue for these ap-
proaches is their generalization to novel objects which comes
from the part representation. The global representations are
not generalizable for novel object instances. However, local
representations are more scalable, but they are not scale in-
variant. More precisely, one needs to perform an exhaustive
search over different scales for low-level patches. Moreover,
these low-level patches are not necessarily discriminative
and can be found in different object parts. These two issues
make these approaches difficult to generalize.

Hierarchical approaches as described in [10], [11], [12]
tried to solve the generalization issue by learning object
representations in a bottom-up, compositional manner. These
approaches rely on the co-occurrence statistics of low-level
features such as edges or contours extracted from training
data. The advantage of this type of representation is the

Figure 2. An object consists of a set of parts. Each part consists of a set
of patches. The patches might not be discriminative on their own, but the
relation between them can be distinctive.

exploitation of the huge variability present in visual data in
an efficient and general manner. However, these approaches
are not guaranteed to produce meaningful object parts, which
is an important aspect in part-based object recognition.
Furthermore, these methods are based on 2D appearance
data and are faced with various challenges posed by changes
in illumination, color or texture of the objects.

One solution to this problem is to combine 3D cues with
the RGB data. This idea is exploited for example in the
work discussed in [13] for human body part segmentation
and estimation. Even though the method is of the great use,
it only addresses one category, the human body, while more
emphasis needs to be given to object part representation
across multiple categories. In the 3D space one important
visual cue for object part segmentation is its geometrical
structure, estimated from depth cues and surface normals,
which is described in [14]. Moreover, the notion of convex-
ity or concavity of object patches for unsupervised object
segmentation into parts is discussed in [15]. In this work
the semantic meaning of a part is assumed to be based on
the local convexity or concavity.

We present here an approach to object part segmentation
in 3D, designed to overcome the limitation of appearance-
based representations as noted earlier in this section. More-
over, we exploit the hierarchical representation approach to
obtain a generalizable part segmentation method.

III. TRAINING A COMPOSITIONAL PART MODEL

The training process for learning our compositional part
model (Figure 2) can be summarized as follows. The input
to our system is an RGB-D point cloud, from which we
use only its depth data. The representation of an object
corresponds to its parts configuration (middle level of Fig 2).
Parts are subsequently composed of regions that correspond
to different local surface areas at the lowest level, which
we call patches. Patches by themselves do not have the



representational power to segment object parts. However,
those object parts can be obtained when we consider the
relationship among their constituent patches. These relations
among patches must be learned. This is one of the main
contributions of this work, contributing to object part gen-
eralization. We explain the process next in more detail.

A. Obtaining patches from depth data

As already mentioned, patches form the lowest level of
our compositional model. They are defined as locally flat
surfaces, and their surface boundaries are defined based
on relevant changes of the normal vectors. Thus, a patch
by itself contains no discriminative information, while the
relationship among neighboring patches contains sufficient
discriminative information and can be used to represent
object parts.

The starting point for creating a patch is given by su-
pervoxels, since 3D point depth data is intrinsically very
noisy. Thus, considering depth values directly would lead
to unreliable patch approximations (local flat surfaces). We
solve this problem by obtaining a more robust estimation of
surface normals through the supervoxel algorithm presented
in [16] (and available from the Point Cloud Libraryl).
This method starts with evenly-distributed seeds, leading
to a supervoxel representation by making use of k-means
clustering. We then add an extra step, and merge the adjacent
supervoxels whose mean normal vectors are close to parallel
based on a pre-defined threshold. This merging step provides
us with a set of locally flat patches as shown in Figure 3.

W

Figure 3. Patch representation of the pitcher object. (a) Orlgmal RGB-
D point cloud; (b) Supervoxels; (c) Flat patches, which are the result of
incremental supervoxel merging while their mean normal vector are close
to parallel under a pre-defined threshold.

(a) (

We would like to characterize a patch by the surface
shape in its immediate surroundings, which is much more
distinctive than the mostly-flat patch by itself. To this end,
we represent a patch, henceforth called the reference patch,
by a descriptor encoding the curvatures it forms in relation to
each of its neighbors (Figure 4). For each patch adjacent to
our reference patch, we compute the curvature formed by the
pair of patches, as well as its angular location with respect to
the reference patch. This angle is expressed with respect to
the main axis of symmetry of the reference patch, which we
obtain by computing its Extended Gaussian Image [17]. The

Uhttp://pointclouds.org/
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Figure 4. Patch representation. The patch descriptor is computed based
on the relation of each reference patch with its neighbors. Its main axis of
symmetry (blue arrow) defines the local coordinate system. Together with
the reference patch, neighboring patches in different spatial locations may
form different surface shapes, e.g. convex (6;) or hyperbolic (6, and 63).
The descriptor encodes surface curvature for each relative spatial location.
The descriptor (red circle) is indexed by the quantized angle between the
main axis of each reference patch and the centroid of each adjacent patch
(61, 6,,63), and contains, in each bin, the corresponding curvature.

patch descriptor is formed by quantizing each neighboring
patch’s location angles, and writing its associated curvature
value into the corresponding orientation bin, as illustrated in
Figure 4.

At most one curvature value is written into each bin of
the descriptor. Bins not associated with a neighboring patch
are set to zero. If more than one neighboring patch maps to
a given bin, that bin’s curvature value is computed from all
those patches.

The structure of the descriptor is quite similar to the shape
context [18]. The differences are that we consider only one
reference point, and our descriptor is just invariant to in-
plane rotation. Due to this similarity, in order to obtain
the similarity between two descriptors, we make use of
the distance measure used in shape context. Given two
descriptor vectors P and Q which are composed of bins p
and g, the distance D(P, Q) between them is computed as the
Euclidean distance between their constituent bins C(p,q). In
order to make the descriptor orientation invariant, we rotate
it along the angular bins 7'(¢) and we compute the distance
between the transformed descriptor T(g) and g. The final
distance is the minimum distance among them,

D(P,Q Z argminC(p, T (

)+ Z argminC(p,T(q)).
peP  q€Q

q€0 peEP
)]

The final step is to construct a patch dictionary in
order to assign patch types to test data. The patch fea-
tures extracted as explained before are clustered using a
hierarchical agglomerative clustering approach. The reason
for using this type of clustering is because we do not
have any knowledge about the number of clusters, nor the
data distribution beforehand. First, each patch feature forms
a cluster. Clusters are then merged incrementally if their



average distance is below a specific threshold (whose value
is obtained as explained in Section III-B). Then, a patch
codebook is constructed, where the mean cluster values are
the codewords. The threshold used for clustering will be
used as the distance threshold for each codeword.

B. Part representation from patches and grasp information

In our approach, parts are associated with a semantic
meaning. This semantic meaning is obtained from the func-
tionality of those object parts through grasping experience.
Figure 5 shows an example where a robotic grasp is per-
formed on the object regions which belong to one object
part, such as its handle or body part. We extract information
about the grasped object regions for forming object parts on
novel objects.

We first decompose an object into patches as shown in
Figure 6(d). Next, we teach the robot to grasp the object by
manually moving its gripper to grasp the object (Fig. 6(a)).
We consider the patches touched by the robot for collecting
the information for forming object parts. To this end, we
collect statistics about co-occurrence of the adjacent patches
that can form an object part. Furthermore, we consider the
patches which are adjacent but do not belong to the same
object parts (based on grasping) and compute the distance
between their descriptors as described in Section III-A.
The minimum distance obtained from multiple object grasp
examples is the threshold for patch clustering.

For object part segmentation, we obtain the probability
that two adjacent patches form an object part. An object
part is denoted by Y, a non-object part by ¥ and the patches
by X = {xi,...,x,}. Hence, we are interested in computing
p(Y|x1,xp) where x; and x, are adjacent, which can be
written as

p(x1,%2|Y)p(Y)
p(x1,x2)

_ p(x1,x2|Y)p(Y)

= e (3)
p(x1,%2[Y)p(Y) + p(x1,x2|Y)p(Y)

where we consider a uniform prior probability distribution

for Y and Y. Therefore, we need to learn two probability

distributions p(x1,x2|Y) and p(xj,x;|¥) for each two adja-

cent patches x; and xp, which we collect from positive and

negative examples.

To obtain the probability p(xj,x2|Y), we already com-
puted the patch clusters and the codebook as discussed in
Section III-A. Next we consider pairs of adjacent patches
x1,xy which belonged to one object region during grasping
and we match them to the learned patch codebook. We
obtain all the possible codebook identifiers cy, to which
a patch x; can be matched. From multiple examples we
obtain the probability p(ci,c2|Y) of each co-occurring pair
of codewords c¢; and c¢; forming a part.

To compute the probability p(x1,x2|¥), we consider the
adjacent patches which belong to the different object parts.

p(Y|x1,x) = 2)

Figure 5. Kinesthetic grasp teaching for collecting patches that form a
region and hence a part.
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Figure 6. Figure 6(a) shows the kinesthetic grasp teaching on a pot. The
original RGB-D data is depicted in Figure 6(b). The supervoxels are shown
in Figure 6(c). Object decomposition into patches is shown in Figure 6(d).
The patches contacted by grasping are shown in Figure 6(e).

In the same way, we match them to our codewords, and
we obtain the probability p(cy,c2|¥) of two co-occurring
clusters which do not form a part. These two probability
distributions will constitute our training data, and we employ
them for inferring the semantically meaningful object parts.

IV. PART INFERENCE IN NOVEL OBJECTS

We want to form parts in novel objects based on the
learned co-occurrence statistics. As a first step, we decom-
pose the novel object into patches. Starting from one patch,
we estimate the co-occurrence probabilities between each
patch and its neighbors. We then decide on merging the
patch with its most probable neighbor as explained later in
this section. We perform this procedure iteratively. At the
first iteration, patches are merged to form regions. Next,
regions are merged. We stop when no more merges are
possible. At the end of the procedure, parts based on learned
statistics have been identified.

A. From Patches to Regions

As mentioned earlier, we want to estimate the co-
occurrences between each patch and its neighbors, based on
the learned patch codebook. This information is then used
to grow a region incrementally to form a part.

Let Y (x1,x2) denote the predicate asserting that patches x;
and x, belong to the same region. Then, p(¥ (x1,x2)|x1,X2),



or simply p(Y|x;,x2) for short, denotes the probability that
x1 and x, belong to the same region.

Given the object patches, we start from a random patch x;
and merge it with the patch x, from its neighborhood N(x;)
that is most probable to form a region with x;, based on the
learned codebook:

xo = argmax p(Y|x,x) )
XEN(x1)

p(Y|x1,x) can be factorized as

%, = argmax pruV)py)
C weny) P Y)p(Y)+ plxx|YV)p(Y)

&)

Assuming identical, uniform priors for ¥ and Y, (i.e. p(Y) =
p(Y)), we can simplify Eqn. 5 as

p(x7x1 |Y)

S 6
P V) + pleai|T) ©

X, = argmax
XEN(xy)

In order to compute the numerator in Eqn. 6, we marginalize
over our patch codebooks C,

plxxi|Y) =Y p(x,xi|¥,c)p(clY). )

ceC

The first term in Eqn. 7 can be further factorized as

px,xi|Y) =Y pllxi,Y.c)p(ale,Y)p(elY). @)

ceC

The observation likelihood of a patch x; being matched
to the codebook ¢ is computed independently of Y; there-
fore p(xi|c,Y) can be written as p(xj|c). To compute
p(x|x1,Y,c), we make use of the part co-occurrence table
and marginalize over all codewords in the patch codebook

H={h,...,h,} which can co-occur with c¢. Then we check

whether x can be matched to them:

p(xlxi,Y,c) =Y p(x,hlx1,Y,c) ©9)
heH

_ Z p(x|h,x1,Y,c)p(x1|h,Y,c)p(h,c|Y)p(Y)
hett pxalY,c)p(clY)p(Y)
(10)

Furthermore, we match the patch x to 4 independently of
x1,¢,Y; the same holds for x;. After substituting Eqn. 9 into
Eqn. 7, we obtain

p(x,x1|Y) = )p(h,clY).  (11)

Z pr|c (x1|h)

ceCheH

After calculating potential matches x for all the neigh-
boring patches of x; in this fashion, we merge those that
maximize the probability p(Y|x;,x) of forming a part.

Xk Xj X r 2
(a) (b)

Figure 7. Merging regions based on their constituent patches. (a) object
patches, (b) merged regions from patches. Starting from region ry, x;
denotes its boundary patches. Patches adjacent to x; inside ry are denoted
Xx, and x; inside r;.

B. From Regions to Parts

From the above procedure, we obtain a collection of
regions. To merge regions incrementally to compose parts,
we follow a similar procedure as above, starting from a
random region and merging neighboring regions. We start
with a region r; as depicted in Figure 7.

We want to merge region r; to a region which is most
probable to form a part with ry, i.e.:

r; = argmax p(Y|ry,r) (12)
reN(ry)
Y)p(Y
— argmax p(rlar| )p( ) (13)

reN(ry) P(r] s r|Y)p(Y) +p(r1 , V\Y)p(Y) )

where p(Y|r1,r) denotes the probability that r; and r belong
to the same part. Assuming identical, uniform prior proba-
bility distributions for ¥ and ¥, we compute instead

p(rl,r|Y)
p(ri,r|Y)+p(ri,r|¥)

r; = argmax (14)

reN(ry)

Any two adjacent regions contain adjacent component
patches along their common boundary. We marginalize over
these boundary patches to calculate p(ry,r|Y). As depicted
in Figure 7, region ry is composed of patches x; that are
adjacent to region r. We would like to form a contiguous
region by enforcing the co-occurrence of boundary patches
with their neighbors in | and r:

p(ri.rlY) =Y p(ri.nx;|Y) (15)
XjEr]

=Y p(rlri,x;,Y)p(rilx;,Y)p(x;|Y).  (16)
XjGrl

We consider p(ri|x;,Y), the conditional probability of
a region given a boundary patch x;, to be the conditional
probability of the individual patches in that region that are



adjacent to x;:
p<r1 |)Cj, Y) = H
{xlxer| AxeN(x;)}
iy
g e
{xlxeri AxeN(x;)} p<xj|Y)

p(xlxj,Y) a7

We compute p(x,x;|Y) in the same way as in Eqn. 11.
Moreover, we consider a uniform probability distribution for
p(x;]Y) based on the number of the patches in the region rq,
that is, p(x;|Y) = i where Nc¢ indicates the total number
of codewords.

In the same way, we calculate the conditional probability
for region r based on those patches in r that are adjacent to
patch x;:

p(rlri,x;,Y) = p(xilri,x;,Y). (19)
{xilxiernx;eN(x;)}
Furthermore, we consider that p(x|ri,x;) is independent of
r1 when its adjacent patches in r; are given:
[T kY (20)
{xilxgernxeN(x;)}
Lxi|Y
{xilxiernx;eN(x;)} p(X]|Y)

p(rlri,xj) =

We compute the terms in Eqn. 20 analogously to Eqn. 17.
After substituting them into Eqn. 15, we obtain

plrrY) =Y I1

Xj€ry {x|xeriAxeN(x;)} c1 €C. €H
p(xler)p(xj|h)p(hi,ci]Y)

Y plle)

{xilxiernxeN(x;)} c2€C,ha€H
p(xjlh2)p(h2, c2|Y)Ne.
V. EXPERIMENTAL EVALUATION
A. Experimental setup

We evaluated our part compositional method using two
datasets: our own collected IKEA kitchen objects as well as
a sample set of objects from the publicly available RGB-D
Washington object database [19]. Our IKEA dataset as well
as the part annotations we have made it available on our
website (IKEA RGB-D object part database?).

The experimental setup for recording the IKEA objects
consists of a robot with two KUKA 7-DoF Light-Weight
Robot 4+ arms with servo-electric 3-Finger Schunk SDH-
2 dexterous hands. There is a Kinect mounted in front
of the robot for capturing the RGB-D data. It should be
noted that our part segmentation method is independent of
a specific robot setup. A different setup with different hands
would yield similar segmentation results since we collect
information about co-occurring patches involved in grasping.

Zhttps://iis.uibk.ac.at/public/IkeaPartsObjectDataset/

Figure 8. Compositional representation for forming object parts.

We recorded 18 kitchen objects, each at 39 different
views (three different elevations and 12 different azimuths
spaced 30 degree apart). We made annotations of object parts
performed by kinesthetic grasp teaching. These annotation
values were used for training as well as for the ground
truth of object parts. We considered semantically meaningful
grasps that are associated with one and only one part of an
object. For the Washington dataset, we manually labeled the
graspable object parts which we used as ground truth.

B. Experimental evaluation

The compositional and probabilistic framework for object
segmentation allows us to generalize the segmentation to
novel object parts where only some low-level patches are
shared. The supervoxel merge threshold was kept at 10
degrees in our experiment. Figure 8 shows the compositional
capability of our method in a real scenario. In order to
show the applicability of our method for this object part
generalization, we evaluated part segmentation on novel
objects. To this end, we selected a random set of object
classes from the IKEA object dataset. We used 70% of
the objects from this set for training, from which 30% are
used as the labeled part examples to structure and guide
the clustering and collect statistics. Next, we applied the
learned model to novel object instances and we evaluated
the segmentation performance.

We used the maximum overlap [15], [14] of the segmented
parts with respect to the ground truth as evaluation metric.
For a pointcloud, we have a set G = {Gj,...,Gy } of human-
annotated ground-truth parts and a set S = {Sj,...,Sy} of
segments produced by the part segmentation method. Then
for each ground-truth part, a segment with the greatest
overlap is considered as the best estimator. The overlap
between a pair of ground truth and part segment is computed

_ Ginsj| .
as overlap; = [GiUS, - The overall score is computed as the
weighted average based on the size of each ground-truth
object part,

1
Wov = ——— ) |G;|-overlap 22)
Yi|Gil LG i

i



C. Results

We report on the following three evaluation conditions:
1. correlation of parts across different categories, 2. finding
parts on new objects across different datasets, and 3. a
comparison with the state of the art.

We evaluated the part segmentation based on novel,
previously-unseen object instances in the IKEA dataset. Fur-
thermore, to show the applicability of CPS across datasets,
we used the parts learned from the IKEA dataset and
evaluated them on the Washington RGB-D dataset. Although
the Washington dataset is a very rich object dataset, many
objects do not have a complex structure, composed of mul-
tiple parts. Therefore, we only considered objects composed
of at least two parts such as mugs, caps and staplers. Some
examples from our part segmentation method are shown in
Figure 9. As can be seen, CPS decomposes the objects into
semantically meaningful parts such as handles, bodies, etc.
that have functions.

There are mainly two sources of errors for our method.
The first is the view-based representation: As mentioned
in Section IV, CPS examines adjacent connected object
regions to form a part. However, due to the view-based
representation as well as reflection and transparency of
some object regions, some object regions are observed as
disconnected regions, which is shown for the mug body in
Figure 9(a) and the cap in Figure 9(g). The second source of
errors is noise propagated from the low-level supervoxels:
When the supervoxels are not accurate as demonstrated in
Figure 11, object patches and hence the part segmentation
will be affected by them. This problem can be seen in
Figure 9(e). These issues and the possible solutions for them
are discussed in Section V-D.

In order to show the applicability of our approach in com-
plex scenes, we also evaluated CPS in 14 different scenes
composed of IKEA objects, where the scenes contained
novel objects as well. An example of our part segmentation
method for a scene is shown in Figure 10.

Finally, we compared CPS with the recently-proposed
Locally Convex Connected Patches (LCCP) algorithm [15].
We included two scenarios, one considering negative part
examples (CPS) which is p(xj,x;|¥) and the other with-
out considering those (CPS-). Quantitative results of this
experiment are shown in Table I. These results are computed
based on overlap accuracy 22. As can be seen, CPS obtains
promising results for part segmentation.

The method is implemented on an Intel Core I5 2.6
GHz processor. The overall part segmentation takes on
average 5.6s for an object. The decomposition into low-level
patches and feature extraction takes on average 5.4s, and the
segmentation procedure takes on average 20ms.

D. Discussion

We have shown that our approach contributes to extract-
ing semantically meaningful object parts. Furthermore, the

r-'

(2) (b) (© (@
(e) () (€3] ()

Figure 9.
datasets.

Examples of segmented objects in IKEA and Washington

(a) Original scene (b) Scene segmented into parts

Figure 10. Example of a scene and its segmentation into parts. The scene
is first parsed into objects using PCL plane segmentation methods. The
parsed objects were then segmented into parts using CPS.

Figure 11. Example of a poorly-estimated part due to inaccurate supervoxel
segmentation.

Method IKEA | RGB-D | RGB-D | RGB-D | IKEA

objects mugs caps staples scenes

CPS 89% 78% 68% 76% 84%

CPS- 89% 57% 64% 76% 83%

LCCP [15] 82% 81% 69% 79% 73%
Table I

OVERLAP ACCURACY FOR OBJECT PART SEGMENTATION. LCCP 18
COMPARED WITH CPS, WITH AND WITHOUT USING THE TRUE
NEGATIVE EXAMPLES (CPS-).



compositional nature of our method allows for a high degree
of generalization for object parts since they can be learned
on one dataset and transferred and evaluated on another
one. We have also compared CPS with another state-of-
the-art approach and obtained promising part segmentation
overlapping accuracy.

Still, there are a number of issues which could lead to
an improvement of our compositional model. First, even
though our method is scale invariant, it is view-dependent.
Thus, at this point our part representation is not 3D rotation
invariant. View invariance may in the future be incorporated
into the compositional model (section IV). Secondly, our
model depends on correct supervoxel extraction. When the
low-level supervoxel segmentation is poor, it affects the
part segmentation. This problem could be overcome by
either designing our model to be less dependent on the
supervoxels, or by considering a different, more robust low-
level segmentation method. In the long term we aim to
build a part-based object model representation based on the
proposed part segmentation method, by first addressing these
issues.

VI. CONCLUSION

The contribution of our work consists of a novel composi-
tional model, named CPS, that works with three-dimensional
objects whose main characteristics are twofold: (1) Features
at the lowest level of our model are not based on a combina-
tion of isolated points, but represent the relationship among
neighboring patches. (2) Parts are semantically meaningful
and are learned from grasping experience. We presented a
statistical approach for segmenting object parts which is
based on the grasped segments of an object. These two
characteristics allow us to segment previously unseen objects
into meaningful parts.
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