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Abstract

Most objects are designed for certain functionalities. For
example, a knife is designed for cutting, and a hammer for
pounding. Indeed, functionalities are not related to the ob-
jects themselves but to certain object parts; e.g., the blade
of a knife affords cutting. A part can have different shapes
and can exist in different objects such as a scraper or a
peeler, but it carries the same functional meaning. There is
a strong correlation between object parts and affordances.
In this paper, we exploit this correlation to decompose ob-
jects into semantically meaningful parts. The semantics are
limited here to object affordances. We evaluate our method
on a part decomposition task, and obtained 77% weighted
overlap with ground-truth object parts.

1. Introduction

Learning object representations and the affordances re-
lated to them is an important aspect in robotics. In robot
vision, we are not only interested in recognizing and giving
names to the objects but also in how to use them. The term
affordance refers to the perceived and actual properties of
the object [8, 17] that determine how the object might pos-
sibly be used. Affordances provide strong cues to the opera-
tion of objects. For example, a knife affords cutting another
object, and a hammer affords pounding another object. An
important aspect about affordances is that we know effort-
lessly what to do with the object; there is no need for a label
or instruction.

As can be seen in Figure 1, affordances are not just re-
lated to the objects per se, but mostly to their parts. For
example, the head of a hammer affords pounding, the han-
dle of a hammer grasping and the inside of a mug contain-
ing. The latter is very useful in the robotics domain espe-
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Figure 1. Object part segmentation based on affordances. Ob-
ject parts in our model have semantic meaning based on their af-
fordances such as pounding, grasping and containing. We learn
a graphical model for part segmentation from locally-flat object
patches based on two sources of information: 1) the potential of a
patch yi to belong to a part xi, i.e. φ(xi, yi), and 2) the potential
of two adjacent patches to belong to the same part ψ(xi, xj) based
on their pairwise curvature value.

cially for generalization among novel objects. Robots must
be able to deal with unfamiliar objects. Recognizing af-
fordances can provide them with effective strategies for the
interaction with objects. For example, every sharp object
part can be used for cutting. It can be the blade of a knife
or a scraper. Therefore, a notion of an object part is needed
for efficient and generalizable affordance detection.

But what is an object part? Object segmentation into



parts has been widely used in computer vision [25, 6].
Although such methods have shown high performance in
object recognition scenarios, the parts they produce are
not necessarily applicable to robotic manipulation scenar-
ios. There is a gap between object part decomposition and
robotic affordances in that part decomposition and affor-
dances are not linked together. As mentioned earlier, af-
fordances provide a strong cue about the semantics of parts;
making use of this cue can benefit object representation in
terms of semantically meaningful parts. Here, we limit the
notion of semantics to affordances.

This paper addresses the problem of segmenting an ob-
ject in an RGB-D pointcloud into its parts. Affordances
such as pounding, containing, or grasping are related to cer-
tain object parts (Fig. 1a). We propose a bottom-up segmen-
tation approach that allows parts to be generalized among
novel objects. Parts in our model are composed of locally
flat patches. A Markov Random Field (Fig. 1b) relates those
patches among themselves (Fig. 1d) as well as with affor-
dances (Fig. 1c). This approach, which leads toward se-
mantically meaningful parts, is the main contribution of our
work.

In Section 2, we discuss related work for object part
segmentation and affordance detection. We describe our
affordance-based part segmentation method in Section 3. In
Section 4, we explain inference and affordance detection
based on our method. We report on the experimental eval-
uation for part decomposition and affordance detection in
comparison to other state-of-the-art methods in Section 5.

2. Related Work
Learning object affordances based on visual features has

been long investigated in the computer vision and robotics
communities. Affordance detection has been either per-
formed at the global object level, or through local object
segments. At the object level, affordances can be assigned
as object attributes [12]. Object level affordance is then in-
ferred based on attributes derived from appearance features.
Object affordances can also be detected based on the rela-
tionship of objects and the scene. In the work discussed by
Katz et al. [15], the affordances are inferred from the ori-
entations of object surfaces with respect to their underlying
surface. The main drawback of object-based affordance de-
tection is its limited generalization to novel objects.

At the local level, affordances have been related to ge-
ometric shapes in an object [24, 20], such as primitives
derived from CAD models or superquadrics [1]. These
methods make strong assumptions on geometric shapes and
primitives and mostly operate on CAD models. This limits
the applicability of these methods, and makes them diffi-
cult to apply in real domains. In order to make the local
level affordance detection applicable in practice, pixel-wise
affordance detection has been proposed [16]. In these meth-

ods object affordances are inferred from the aggregation of
appearance features from fixed-size object segments. Al-
though these approaches have shown good generalization
performance, they are limited to fixed-size object segments.
Moreover, the affordance prediction is error-prone since it
is obtained from object pixels which do not carry any se-
mantic meaning.

A compromise between fine and coarse affordance de-
tection can be made using object parts. Decomposing ob-
jects into parts has been performed using only visual fea-
tures [6, 7, 10, 5, 4, 28, 9] or geometric properties [25,
22, 19, 14, 27]. Although these approaches provide fairly
good decomposition, the parts produced by these methods
do not necessarily carry any semantic meaning or can be
used for affordance detection. To overcome this problem,
non-visual cues are used to guide the decomposition. In
other work [26, 11, 13], decomposition was guided by non-
visual cues such as actions. While these methods aim to
bring semantics into the object representation, their focus is
on decomposing a scene into objects rather than decompos-
ing objects into parts.

To the best of our knowledge, most object part decompo-
sition studies to date lack semantic and functional meaning
of parts. In this work, we employ affordances to guide ob-
ject part decomposition. We argue that in this way, decom-
position will result in functional parts useful in a robotic
manipulation scenario.

3. Learning a Part Model from Affordances

The input to our system is an RGB-D pointcloud. Since
we are interested in capturing shape information, we use
only its depth data. We consider an object to be represented
by a configuration of its functional parts. We obtain func-
tional parts based on labeled training data. We aim for gen-
eralization of object parts among different objects; hence
we consider a compositional representation for object parts.
A part in our model is represented by a configuration of lo-
cally flat surfaces, which we call patches. We then learn a
pairwise relationship between patches which can form ob-
ject parts. In the following we explain the learning proce-
dure for our method in more detail.

3.1. Patch Segmentation

Patches are at the lowest level of our part representation.
Patches are defined as locally flat surfaces but, if we con-
sider the neighborhood of any of them, there exist notice-
able changes in surface normals. Therefore, a patch itself
does not carry any discriminative information, but its rela-
tionship with neighboring patches carries useful informa-
tion.

In order to obtain the patches, we used the Region Grow-
ing Segmentation [18] (available in the Point Cloud Li-



Figure 2. Patch segmentation from pointcloud. Top row: RGB im-
age, middle row: pointclouds and bottom row: segmented patches;
colors indicate different patches.

brary [21]1). This algorithm segments a pointcloud into
surfaces based on the angles between normals of adjacent
points. The neighboring points get assigned to the same
surface if the computed angle is less than a pre-determined
threshold. As can be seen in Figure 2, this segmentation
ensures the flatness of patches up to the specified threshold
value.

We would like to represent a patch based on the geom-
etry and surface shape. As mentioned earlier, a patch is
represented based on its surface shape relationship among
its neighbors. To represent this relationship for a patch,
we consider points which are on the boundary of a patch
with its neighbors. Since we are interested in encoding sur-
face shape information, we compute surface normals of the
boundary patches. Therefore a patch is represented based
on surface normals of boundary points. Since patches do
not have a fixed size, the number of boundary points and
hence their normals vary among patches. To have a fixed
representation for all patches, we made a histogram of sur-
face normals.

In order to assign patch types to test data, we construct a
dictionary of patches. To this end, we cluster patches based
on histograms of surface normals. We use the K-Means
algorithm to obtain the clusters. Then, a patch codebook
C = {c1, . . . , cn} is constructed, where the mean cluster
values are the codewords.

3.2. Part Representation from Patches and Affor-
dances

A part in our model is formed based on patches and their
affordance cues. The ultimate goal in our approach is to
decompose a scene into parts. In this context, we must de-
termine 1) the number of parts present in a scene and 2)
the probability of a patch (or combination of patches) to be
assigned to a part in the scene.

For the first issue, we need to learn the maximum num-
ber of part classes in a scene. One can argue that this num-
ber is limited to the maximum number of affordances for
object parts. But the parts related to the same affordance
might differ in shape; e.g. container parts have shapes that
differ between, say, mugs and bowls. We thus learn a dic-

1http://pointclouds.org/

tionary of object parts based on visual information as shown
in Figure 1. As can be seen in the figure, the training data
consist in labeled object part affordances such as container
parts, scooping parts, etc. A part is composed of locally flat
patches which can be seen for the example parts in Fig. 1.
Let’s consider a part z consisting of patches {y1, . . . , yn}.
We will assign patch types by matching {y1, . . . , yn} to the
patch codebook C = {c1, . . . , cn}, where cyi would corre-
spond to the patch type ci that best matches the patch yi.
Since object parts in our model are scale invariant, they
might consist of different numbers of patches. Therefore,
we represent a part by a histogram of its constituent patch
types {cy1 , . . . , cyn}. In order to recognize part classes
X = {x1, . . . , xm} in test data, we construct a dictionary
of parts as follows. First, we cluster the parts represented
based on histograms of patch types using the K-Means al-
gorithm. Then, a part codebook is constructed, where the
mean cluster values are the codewords.

After obtaining the part classes X = {x1, . . . , xm},
the next step is to establish a relationship between patches
Y = {y1, . . . , yn} and those part classes. To model this
relationship, we will explore two sources of information.
The first source of information relevant to modeling the
relationship between part classes and patches is the prob-
ability of a patch type being a constituent of a part type
p(c|x), x ∈ X, c ∈ C. Considering the type x of training
part z and the types {c1, . . . , cn} of the constituent patches
of z, we collect statistics of co-occurrences of the patch
types {c1, . . . , cn} and part classes x from each training part
z. We then learn the probability p(c|x) based on the afore-
mentioned statistics. We obtain the second source of infor-
mation based on the pairwise geometric relation between
patches in order to decide whether they can be assigned to
the same part types. Considering two adjacent patches yi
and yj , this geometric relationship is defined based on the
curvature γyi,yj between them. As indicated in Fig. 1, the
pairwise curvature value gives information on surface shape
on the boundary of the patches. As an example, for the ham-
mer in the Fig. 1, a hyperbolic surface shape determines that
the patches belong to different parts (i.e. the handle and the
head of the hammer). In contrast, a convex shape for the
mug in Fig. 1 indicates that the patches belong to the same
part.

To determine whether two patches can have the same
part label, we train a classifier based on the pairwise curva-
ture values as follows. We, first collect curvatures between
pairs of adjacent patches which belong to the same part and
those which do not belong to the same part. We then train
a Support Vector Machine (SVM) classifier with an Radial
Basis Function (RBF) kernel based on those curvature val-
ues. We use the score of the classifier to determine the prob-
ability of neighboring patches yi and yj belonging to the
same part. Figure 1 illustrates the information flow start-
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ing from locally flat patches to representing parts in novel
objects.

3.3. MRF for Object Part Segmentation

For decomposing objects into parts, we use a pairwise
Markov Random Field (MRF). We decompose objects into
patches as discussed in Section 3.1. The nodes are the
patches and their connections are edges in the graph.

The graph of an MRF consists of a set of cliquesC (fully
connected sets of nodes). The joint distribution of all nodes
is represented based on the cliques in the graph,

p(X) =
1

Z

∏
c

ψc(xc), (1)

where ψc(xc) is called the potential function and Z is the
normalization constant, integrated over all the states x,

Z =
∑
x

∏
c

ψc(xc). (2)

It is common to represent the potential function as an energy
function to simplify the problem from a product of poten-
tials to a sum of energies. We restrict ourselves to pairwise
MRF, i.e., we consider only cliques of size two. In this case,
the energy function

E(x, y) =
∑
i

φ(xi, yi) +
∑
i,j

ψ(xi, xj) (3)

is composed of two terms, a unary potential φ and a pair-
wise potential ψ. The unary potential determines how likely
an observation yi belongs to a certain state/label xi. The
pairwise potentialψ encodes neighborhood information, i.e.
how different the label of one variable is from that of its
neighbor.

In our case, object patches are the observations and states
are the finite discrete set of object parts in a scene. The
number of states in our model is the maximum number of
part classes in a scene. The unary term φ determines the
likelihood that a patch yi belongs to a part of class xi as
shown in Figure 1. This likelihood is obtained from the
probability p(c|x) that a patch type c belongs to a part of
certain class x (see Section 3.2). We then compute the patch
type cyi of yi by matching it to the codebook C of patch
types (Section 3.2). Finally, we obtain the unary term as

φ(xi, yi; θφ) = exp(−θφ ∗ p(cyi |xi)), (4)

where θφ are the parameters of the unary energy function φ
and p(cyi |xi) is obtained during training. As can be seen,
the energy is minimized as the probability gets higher.

The pairwise term defines the pairwise neighborhood
likelihood of patches yi and yj belonging to part classes
xi and xj . Learning this pairwise neighborhood likelihood

for each part class combination is computationally very ex-
pensive. Instead, we define a potential that reflects whether
two patches belong to the same part class or not (Figure 1).
We learn this potential based on the classifier trained from
curvatures between adjacent patches γyi,yj as described in
Section 3.2. We represent the score of the classifier as
score(γyi,yj ). If the patches have the same label, the score
is non-negative, and negative if they are not. Since we use
the SVM classifier, the score corresponds to the distance to
the margin. We define the pairwise energy term based on
this score. We penalize neighboring patches having differ-
ent labels except for the cases determined by the curvature
classifier as explained below:

ψ(xi, xj) =


0, xi = xj
t, xi 6= xj , score(γyi,yj ) < 0

exp(−θψ · score(γyi,yj )), xi 6= xj , score(γyi,yj ) ≥ 0

(5)

When the patches have the same label xi = xj , the
energy is set to zero. Otherwise when labels are differ-
ent (xi 6= xj), we consider their pairwise curvature value
γyi,yj . The pairwise energy is set to a maximum value t
subject to score(γyi,yj ) < 0. The reason is to discourage
adjacent patches from having different labels. And when
score(γyi,yj ) ≥ 0, the energy is determined as a function of
the score. The energy is reduced as the score gets higher.
θψ is the parameter/weights of the function. We learn the
parameters of the model with stochastic gradient descent.

4. Inferring Parts in Novel Objects
In order to infer object parts in novel objects, we use the

learned MRF model described in Section 3 as follows. We
first segment the objects into patches Y = {y1, y2, . . . , yn}
and extract features from them following the procedure de-
scribed in Section 3.1. We then compute the Euclidean dis-
tance between features extracted from the patches and the
patch types {c1, c2, . . . , cm} in the patch codebook C. The
patches are assigned to the patch types {cy1 , cy2 , . . . , cyn}
to which have the smallest distance. We use these patch
types to compute the unary potential φ(xi, yi) between
patches and part classes. Next, we compute the curvature
between pairs of adjacent patches which is used for the pair-
wise potential ψ(xi, xj) in our model. We consider the ad-
jacency of the patches and represent them as a graph. Each
patch is one vertex in the graph and the edges are deter-
mined by the patch adjacency. We compute unary and pair-
wise potentials as described in Section 3.3.

After constructing the graph of patches, we perform in-
ference to find the best configuration of parts for an ob-
ject/scene. We compute the configuration which minimizes
the energy. The minimization of the energy in an undirected
graph is a NP-hard problem, and exact inference is thus not
possible. For this reason, we use a standard implementation
of Loopy Belief Propagation (LBP) [23].



Affordance Description
Grasp Can be enclosed by a hand for manipulation (handle).

Cut Used for separating another object (the blade of a knife).

Scoop A curved surface with a mouth for gathering soft material (trowel).

Contain With deep cavities to hold liquid (the inside of a bowl).

Pound Used for striking other objects (the head of a hammer).

Support Flat parts that can hold loose material (turner/spatula).

Wrap-grasp Can be held with the hand and palm (the outside of a cup).

Table 1. Affordance descriptions based on [16].

5. Experimental Results
We evaluated our method on the RGB-D part affordance

dataset [16]. The dataset contains RGB-D images and
ground-truth affordance labels for 105 objects. Each object
pixel is labeled with the most likely affordance as well as all
the possible affordances with their ranks. There are seven
labeled affordances: grasp, cut, contain, pound, scoop, sup-
port and wrap-grasp as shown in Table 1. In our experi-
ments, we only used the top-ranked affordance labels.

For training, we used the labeled data from the RGB-
D part affordance dataset. We consider a part as the con-
tinuation of adjacent pixels with the same top-ranked af-
fordances. We segment each part into patches based on
the method discussed in Section 3.1. We set the threshold
for the Region Growing Segmentation as mentioned in Sec-
tion 3.1 to three degrees. We learned 50 patch clusters and
20 part clusters with the K-Means algorithm and used them
in the MRF model as explained in Section 3.3. Finally, we
used the Undirected Graphical Model package (UGM) [23]
for inference and sampling. We used the learned MRF
model for inferring parts in novel objects.

We computed the decomposition performance using two
standard measures, Weighted Overlap (Wov) [2, 25] and
Rand Index (RI) [3, 14, 27].

Wov measures the parts’ maximum overlap with the
ground-truth parts. For a point cloud, we have a set G =
{G1, . . . , GM} of human-annotated ground-truth parts and
a set S = {S1, . . . , SN} of segments produced by the part
segmentation method. Then, for each ground-truth part, the
segment with the greatest overlap is considered the best es-
timator. The overlap between a pair of a ground truth and a
part segment is computed as overlapi =

|Gi∩Sj |
|Gi∪Sj | . The over-

all score is computed as the weighted average based on the
size of each ground-truth object part,

Wov =
1∑
i |Gi|

∑
i

|Gi| · overlapi . (6)

RI has been used for measuring the segmentation perfor-
mance on Mesh models [3, 14, 27]. In this work, we adapted
it for pointclouds. It measures the likelihood that a pair of
points are either in the same part in two segmentations, or

in different parts in both segmentations. Considering the
ground-truth and segmented partsG and S as before, gi and
si indicate the part ids of point i in G and S. We then con-
struct two matricesC and P of co-occurrences of part labels
between pairs of points in each segmentation. When a pair
of points i and j have the same part id in the ground-truth
parts, i.e. gi = gj , then Cij = 1. Likewise, when the points
have the same part id in the segmented parts, i.e. si = sj ,
then Pij = 1. The RI is then defined as

RI =

(
2

N

)−1 ∑
i,j,i<j

CijPij + (1− Cij)(1− Pij). (7)

Since segmentation dissimilarity is a more common
measure than similarity, we report 1 − RI. The lower the
number, the better the segmentation result.

Our evaluation is three-fold. First, we evaluated our
part decomposition method on novel object instances and
compared it with the Locally Convex Connected Patches
(LCCP) method [25] and object patches from Richtsfeld et
al.’s object segmentation method [19]. Next, in Section 5.2,
we report on part decomposition performance on novel ob-
ject categories. Finally, in Section 5.3, we show qualita-
tive results of applying our method on the cluttered scenes
from [16].

5.1. Part Decomposition on Novel Object Instances

For this experiment, we divided the data into training and
test sets based on the category split following [16]. We
used the data from the first category split for training and
the other for testing. Results are shown in Figure 3 where
our method is compared with the ground-truth parts. For a
better illustration, object parts are colored randomly. Seg-
mented parts which have the maximum overlap with the
ground-truth parts, are assigned to the same colors. Oth-
erwise, they are colored with a different random color. We
observe that our method decomposes objects into meaning-
ful and nameable parts such as the inside, the outside and
the handle of the mug, the curved surface mouth and the
handle of the scoop, etc. Due to the disconnectivity be-
tween patches, we observe an under-segmentation of object
parts e.g. in some cases the scissors.

The decomposition performance of our method is given
in Table 2. We also compared it with two other state-of-
the-art segmentation methods, the LCCP [25] method and
Richtsfeld et al.’s [19] object segmentation method. LCCP
segments objects based on local convexity of adjacent su-
pervoxels into parts. Richtsfeld et al. [19] provide an ob-
ject segmentation method from pre-segmented patches and
geometrical models. The patches are formed considering
geometrical information of surfaces and planes. Since our
task is object part segmentation, we used their segmented
patches for comparison.



Figure 5. Segmentation error for patches. Top row: RGB image of
objects; bottom row: segmented patches based on Region Growing
Segmentation. Each patch is shown in a different color. Patch
segmentation uses local information based on normals of adjacent
points. This results in over-segmentation in areas with too few
points.

We can see in Table 2 that our method achieves on av-
erage a higher Wov and a lower 1 − RI than the other two
methods. This shows the importance of including semantics
in addition to geometrical information.

5.2. Part Decomposition on Novel Object Categories

To prove the generalization capabilities of our method,
we applied it to novel object categories (categories not seen
during training). To this end, we used the novel category
split provided by Myers et al. [16]. The data are divided
into two sets with different categories. We followed the
same procedure for training as described in Section 5.1 on
the training split. Figure 4 shows how our method seg-
ments objects into meaningful parts, producing segmenta-
tions consistent among different objects. Since we have a
compositional representation of object parts from patches,
we are able to segment objects into meaningful parts even
though these categories have not being seen during train-
ing. Object parts are colored for a clear illustration. The
segmented parts which have the maximum overlap with the
ground-truth parts are colored the same. Otherwise, they
are colored with a different random color.

The quantitative results from this experiment are shown
in Table 3. We achieved on average better segmentation
performance than the other two state-of-the-art methods.
However, for some objects in Table 3, we obtained slightly
lower performance. Those objects are mostly locally flat
in their part connectivities. Since we consider the same
flatness threshold for patch segmentation, we obtain over-
segmented patches in some cases for those objects as we
see in Figure 5. Unfortunately, this error propagates to the
part segmentation as well. Making the patch segmentation
adaptive is left for future work.

5.3. Qualitative Results on Scenes

To show the applicability of our decomposition method,
we went one step further and evaluated it on cluttered
scenes. We used the scenes provided in the part affordance
dataset [16]. This dataset contains three different scenes
as shown in the first column of Figure 6. Each scene is
captured in different views. We used the model trained on

the objects in Section 5.1 and applied it on the cluttered
scenes. We show here the qualitative results of applying
our method to each scene at four different views. Since the
ground-truth labels in cluttered scenes are not provided, we
cannot provide a quantitative analysis. Even so, our results
demonstrate that our decomposition does not change much
between different views which proves the robustness of our
method to viewpoint changes. In addition, we are able to
segment a scene into meaningful object parts such as han-
dles, containing parts, blades, etc. Due to our compositional
part representation from locally flat patches, we are able to
perform segmentation where object parts are not fully visi-
ble. This segmentation with cluttered scenes in this way is
very useful for robotic manipulation tasks.

6. Discussion

We have shown that affordances can guide the segmenta-
tion of objects into their semantically meaningful and func-
tional parts. Object parts are associated with certain func-
tionalities, which in this work we exploit in order to guide
segmentation. Our decomposition relies on shape and geo-
metrical information derived from surface normals and cur-
vatures. Our experimental results show the validity of our
approach outperforming the state of the art in the first two
tasks and providing a segmentation very close to the ground
truth in cluttered scenes. Even so, there is still room for im-
provement, like the cases of disconnected object areas (e.g.
the scissors in Figure 3) or others where we obtain an over-
segmentation (Figure 5).

7. Conclusions

We explained here a novel method for 3D object part
decomposition using affordances. Our method is compo-
sitional starting from locally flat object patches to form
semantically meaningful object parts. The main contribu-
tion of our method is guiding compositional model with
affordances. To formulate this, we used a pairwise MRF.
The results show that our method decomposes objects into
semantically meaningful parts. We obtained on average
higher overlap with respect to the ground-truth object parts
in comparison to other state-of-the-art methods [25, 19]. We
showed the value of compositional part representation for
segmenting novel object categories (Section 5.2) and clut-
tered scenes (Section 5.3).
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Weighted Overlap
Our Method 95.8 87.9 72.7 75.2 77.3 79.5 84.2 76.3 93.6 44.4 81.2 64.8 72.6 79 59.9 77.4 82.6 76.7

LCCP 97.9 81.9 58.3 53.5 72.8 65.1 56.4 58 59.6 46.6 51.7 57.3 48.8 64.5 67.3 60 66.7 62.7

Patches in [19] 44.1 61.7 64.7 67.4 69.7 69.7 58.8 50.4 93 49.6 52.5 61.4 73.3 78.3 61.9 78.1 87.9 66

1 − Rand Index
Our Method 1.1 12.1 23.9 18.3 13.8 15.2 13.4 17.3 1 45.1 13.1 22.9 28.8 14.9 21.9 20.8 10.5 17.3

LCCP 3.3 16.5 31.8 35.7 18.9 25.8 22.3 29.8 14.8 28.9 15.9 18.4 25.4 24.1 26.2 23 17.6 22.3

Patches in [19] 68 26.6 28 31.5 24.3 24.7 25.6 31.2 4.4 51.3 45.2 31.4 27.4 18 27.8 18.4 8.3 29

Table 2. Part decomposition performance based on overlap Wov and 1 − RI scores on novel object instances: our method versus LCCP
and segmented patches in [19]. Results are given as percentages.

Figure 3. Part decomposition of novel object instances. First row: objects; second row: corresponding pointclouds; third row: ground-truth
parts illustrated by different colors; fourth row: segmented objects using our method. Colors are assigned randomly, each color representing
one object part. Segmented parts with the maximum overlap score with the ground-truth parts are colored the same; otherwise, they are
colored randomly.

Method cup ladle pot saw scoop shears shovel tenderizer trowel Average

Weighted Overlap
Our Method 87.8 80 76.3 87.8 85.1 55.2 73.1 50.3 77.9 74.8

LCCP 82.5 71.6 60.9 61.1 51.4 51.4 49.5 51.7 60.6 60.1

Patches in [19] 63.1 66.2 50.5 88.3 51.5 60.6 73.9 51.5 76.3 64.6

1 - Rand Index
Our Method 11.7 12.3 16.1 5.5 8.8 29.1 28.6 33.1 18 18.1

LCCP 16.6 19.1 27.3 12.3 16.3 23.4 24.7 30.1 22.5 21.4

Patches in [19] 26.1 26.8 31.3 8.8 45.6 30.7 27.1 37.3 20.4 28.2
Table 3. Part decomposition performance based on overlap Wov and 1 − RI scores on novel object categories: our method versus LCCP
and segmented patches in [19]. Results are given as percentages.
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