
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018 1

Exercising Affordances of Objects: A Part-Based
Approach

Safoura Rezapour Lakani, Antonio J. Rodrı́guez-Sánchez and Justus Piater1

Abstract—This study shows how learning relations between
affordances facilitates performing robotic tasks. Tasks usually
involve multiple affordances. For example, for pounding a nail
with a hammer, grasp-ability and pound-ability of the hammer
are important for performing the pounding task successfully.
Furthermore, these affordances are associated with parts of the
hammer. In the pounding task, the head of the hammer affords
pounding and the handle of the hammer affords grasping. We
propose an RGB-D part-based approach for performing tasks.
In our work, affordances are linked to object parts. We learn
affordances associated with manipulation and execution of the
tasks, i.e. grasping for manipulation and pounding for execution
in the task of pounding a nail. Since affordances are associated
with parts, tasks can be executed directly on the objects. Our
approach is evaluated in six different robotic tasks on a real robot.
We obtained an average of 65% task detection rate superior to
the baseline methods and an average of 77% task success rate.

Index Terms—RGB-D Perception; Visual Learning; Computer
Vision for Other Robotic Applications

I. INTRODUCTION

LEARNING affordances of objects and the tasks that can
be performed given them are important capabilities of

robots. Let us consider the robot in Figure 1. For cutting the
cake in Fig. 1(b), the robot should detect an object which
affords cutting like the knife in Fig. 1(a). It should also reason
that for performing the cutting task, objects should be grasped
from their handles such as the knife’s handle in Fig. 1(a).
Likewise to strike a ball as shown in Fig. 1(d), an object with
striking affordance such as the hammer in Fig. 1(c) is needed.
Furthermore, they should have a graspable part like a handle
for performing the task. These examples show the importance
of detecting affordances of objects and relations between them
to perform robotics tasks.

Affordances are defined as the functional properties of
objects which are offered to an agent [1], [2]. These properties
specify how an agent can use the objects to perform tasks.
The concept of affordances has been also widely studied in
robotics [3], [4]. Robots need to interact with objects in their
environments. Thus, reasoning about affordances of objects
is very important for them. In most cases, affordances are
associated with certain parts of the objects. For example, the
blade of a knife affords cutting or the head of a hammer
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(a) For cutting the cake, an object
should afford cutting and be gras-
pable from its handle.

(b) The robot grasps the knife
from a part which affords
handle-grasp affordance and
performs the cutting task.

(c) To strike the ball, the hammer
should afford striking and be gras-
pable from its handle.

(d) The robot strikes the ball by
grasping the hammer from the
part which affords handle-grasp
and moving the part which affords
striking.

Fig. 1. The robot is asked to perform two tasks: 1) cutting the cake in
Fig. 1(a) and 2) striking the ball in Fig. 1(c). The robot segments objects into
their functional parts and detects their affordances. It then executes the tasks
based on the affordances of object parts and their relations.

affords striking. These affordances alone cannot be exercised
in robotic tasks. For example, in order to cut the cake with
the knife in Fig. 1(b), not only should the knife afford the
cutting affordance but it also should afford the handle-grasp
affordance.

Learning relations between affordances plays an important
role for performing tasks. Some affordances are related to
manipulation of objects to perform a task and others are
related to execution of the tasks. For example, in the task of
cutting the cake, the handle-grasp affordance is important for
manipulating the knife (by grasping) and the cutting affordance
is important for executing the task.

In this paper, we propose a novel approach for performing
tasks using relations among multiple affordances. Most state-
of-the-art approaches for performing robotic tasks directly
associate single affordances to tasks [5], [6], [7]. The concept
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of part-based affordance detection on the basis of shape from
RGB-D data was introduced in [8]. In this paper, we use a
different algorithm for part-based affordance classification and
we demonstrate it on performing six different tasks. The hall-
mark of our work is that we distinguish between affordances
which are related to single parts and tasks which might be
linked to multiple parts and their associated affordances. The
contributions of our work are twofold: 1) learning relationships
between affordances by performing tasks on a real robot,
and 2) associating manipulative and executive affordances for
performing tasks.

In our work, affordances are detected following a part-
based approach on RGB-D pointclouds (Section III-A). Given
the RGB-D pointcloud of a scene, objects are segmented
into parts and their affordances are detected subsequently
(Section III-B). During execution of the tasks, we learn the
probabilities of co-occurrences of manipulative and executive
affordances (Section III-C). These probabilities are then used
to infer parts for manipulation to perform the tasks.

II. RELATED WORK
There have been several works on performing robotic tasks

based on affordances of objects using visual features. These
works are performed either on objects or on parts of objects.

In object-based methods, shape features such as size, con-
vexity, or shape context are approximated from the 3D model
of objects and an association between object features and
tasks is learned [5], [9], [6], [7]. Most studies have been
done on grasping affordance. In the work discussed in [5],
[9], task-based grasping for five different tasks (handover,
pouring, tool use, dish washing, and playing) is associated
with shape features extracted from 3D models of objects.
This association is learned with a Bayesian network and is
evaluated in a simulated environment. Along these lines, the
work discussed in [6] also studies task-based grasping. This
work uses selective attention in addition to the visual features.
The evaluation is performed on a real humanoid robot. The
object-based methods can perform manipulation tasks only
if the categories of objects are known. Thus, they cannot
generalize to novel objects.

To overcome the generalization problem at the object level,
part-based methods have been proposed. In these methods,
objects are segmented initially into parts using geometric
properties and affordances are associated with them [10], [11],
[12]. In the work discussed in [12], objects are segmented into
primitive shapes such as cubes and cylinders. The shapes are
then linked to grasps for different tasks such as pouring or
shaking. In the work discussed in [13], a CNN-based approach
is used to segment and classify objects. Objects have also been
segmented into parts based on local convexity [14]. In the work
discussed in [14], handles of objects segmented in this way
are used for task-based grasping. In their work, superquadrics
are fitted to the parts and grasps are associated with them.
This approach is then evaluated for 3D objects in a simulated
environment. The work discussed in [15] uses Reeb graph [16],
[17] to obtain parts. The parts are then used for task-based
grasping in a simulation environment. Even though the part-
based methods have a better generalization than the global

approaches, they are mainly limited to grasping affordance
and mostly in simulated environments. Moreover, parts used
in these methods are obtained independently of affordances of
objects.

We propose a part-based method for performing robotic
tasks for six different affordances of objects, namely grasping
(handle-grasp and wrap-grasp), pouring, scooping, cutting,
striking, and placing. Object parts in our work are obtained
based on affordances. Thus, useful for detecting affordance.
Finally, we applied our method in real robotic scenarios.

III. METHOD
In this section, we explain our approach for performing

tasks based on object parts. The input data to our method is
an RGB-D pointcloud. Since affordances are associated with
shape and geometrical features, we use only depth information.
The pointcloud is then segmented into parts (Section III-A)
and affordances are detected on the parts of the objects
(Section III-B). We then compute frequency of co-occurrences
of affordances for performing tasks (Section III-C) and we use
them to infer parts for manipulation.

A. Object Part Segmentation

The first step in our method is to obtain object parts. Since
we want to use parts for predicting affordances, parts should
be functional and useful for the affordance detection task.
Thus, we use an approach for part segmentation based on
affordances of objects [18]. As shown in Figure 2, this work
uses affordances to guide the segmentation of objects into
functional parts. Object parts are labeled during training based
on affordances such as containing or pounding (Fig. 2a) and
grouped into a number of part classes.

The segmentation is a bottom-up approach starting from
locally flat patches obtained from pointclouds of objects. The
patches are gradually combined using a pairwise Markov
Random Field (MRF) (Fig. 2b). The objective of the MRF
is to find the best assignment of part classes to the patches.
Let us consider Y = {y1, y2, . . . , yN} as the patches. In
the MRF, patches are assigned to random variables X =
{x1, x2, . . . , xN}. Each xi takes on one of L discrete values,
where l ∈ L represents a part class. The joint probability of
a particular assignment of the patches to the part classes can
be represented as an energy function

E(X,Y ) =
∑
i

φ(xi, yi; θi) +
∑
i,j

ψ(xi, xj ; Θij). (1)

The energy function in Eqn. 1 is composed of a sum of
unary potentials φ and a sum of pairwise potentials ψ. The
unary potential φ determines the probability of a patch be-
longing to a part (Fig. 2c). The pairwise potential ψ indicates
the probability of two adjacent patches belonging to the same
part (Fig. 2d). The parameters of the potential functions θ and
Θ are estimated by maximizing the likelihood of the training
data (i.e. minimizing the energy) over their coefficients by
stochastic gradient descent. Since the parts are functional, we
can use them directly to detect the affordances. More details
on how parts are segmented can be found in [18].
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Fig. 2. Object part segmentation based on affordances [18]. Object parts have
functional meaning such as pounding, grasping and containing. A graphical
model for part segmentation from locally-flat object patches are learned based
on two sources of information: 1) the potential of a patch yi to belong to a
part xi, i.e. φ(xi, yi), and 2) the potential of two adjacent patches to belong
to the same part ψ(xi, xj) based on their pairwise curvature value.

Fig. 3. A schematic diagram of an autoencoder with one hidden layer. It has
an input layer x and an output layer x′ and one hidden layer z. The network
attempts to reconstruct the input data. The number of neurons in the input and
output layers are the same. The hidden layer compresses the data by applying
an activation function.

B. Part-Based Affordance Detection

After obtaining object parts, the next step is to detect their
affordances. To this end, we extract features from parts and
train binary affordance classifiers using them. Instead of using
ad-hoc feature extraction methods, we use an unsupervised
approach for learning part features. A good feature descriptor
should preserve the most distinctive and frequent properties
of the parts. This can be seen as a dimensionality reduction
problem, and the reduced-dimensional representation of parts
will be the features.

To learn the parts’ features, we use autoencoders [19]. An
autoencoder is a kind of unsupervised neural network that is
used for dimensionality reduction and feature discovery. As
shown in Figure 3, an autoencoder is a feedforward neural
network with an input layer x, an output layer x′, and multiple
hidden layers z. Here, we use a simple autoencoder architec-
ture with only one hidden layer. The hidden layer z is also
considered a code or latent representation. The purpose of an
autoencoder is to reconstruct the input data x = {x1, . . . , xn}
with a non-linear dimensionality reduction through the hidden
layer. An autoencoder consists of an encoder and a decoder.
The encoder maps an input vector x ∈ Rd via a nonlinear
activation function σ, such as the logistic sigmoid, to a code
or latent representation

z = σ(Wx + b) ∈ Rp, p ≤ d,

where W is a weight matrix and b is a bias vector. The
decoder maps the code z to the reconstruction or output x′.
This mapping is done in the same way through an activation
function,

x′ = σ(W ′z + b′),

where W ′ is a weight matrix and b′ is a bias vector. Since au-
toencoders are a kind of neural network, the backpropagation
algorithm is used to learn the weights (i.e. W and W ′) of the
model. We use the codes z of the autoencoder as our features.

The input data to the autoencoder are parts. Since we are
interested in shape properties of the parts, we use surface
normals computed from their pointclouds. The surface normals
are located based on the coordinate of the depth image
associated with the pointcloud of the part. The input data to the
autoencoder must have the same size. But object parts might
have a different number of points and so different sizes. To
overcome this problem, we define a local coordinate system
for a part. The local coordinate system is a polar coordinate
system in the plane of the depth image, centered at the center
of the part’s image. Each point is then located by its distance
from the center and an angle with respect to the center. We
then divide the part’s image into a fixed number of bins. Within
each bin we compute the average surface normal values of the
points. Bins not containing any point are set to zero.

We use the codes associated with parts and the affordances
associated with them for training the affordance classifiers.
Since a part might have multiple affordances, we train binary
classifiers using Support Vector Machine (SVM) with a linear
kernel. The positive class for each affordance classifier consists
of the parts which are labeled with the particular affordance.
Likewise, the negative class contains the parts which do not
have the particular affordance.

C. Learning Relationships Between Parts for Exercising Af-
fordances

Given parts and affordances associated with them, the next
step is to exercise them by performing robotics tasks. To this
end, we need to learn a relationship between object parts
and their affordances with the tasks associated with them.
For example, every sharp object part affords cutting. But to
exercise them, we need to grasp them from the graspable parts
(i.e. handles). Let us consider the affordance associated with
the task of interest (cutting affordance in the cutting task)
as the executive affordance and the affordance of the part
which needs to be manipulated to perform the task (handles in
the cutting example) as the manipulative affordance. We then
collect frequency of co-occurrences between executive and
manipulative affordances for performing tasks during training.
Let T be a 2D table storing this co-occurrence frequency
where the rows are the executive affordances and the columns
are the manipulative affordances. Let A = {a1, . . . , aN} be the
set of all the affordances. Then, the co-occurrence frequency of
each executive affordance e ∈ A and manipulative affordance
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Affordance Description
Grasp Can be enclosed by a hand for manipulation.
Cut Used for separating another object.

Scoop A curved surface with a mouth for gathering soft
material.

Contain With deep cavities to hold liquid.
Pound Used for striking other objects.

Support Flat parts that can hold loose material.
Wrap-grasp Can be held with the hand and palm.

TABLE I
AFFORDANCE DESCRIPTIONS BASED ON [8].

Tasks Manipulative
Affordance

Executive
Affordance

Dropping in a box. Grasp Grasp
Cutting a cake. Grasp Cut

Scooping coffee beans. Grasp Scoop
Pouring coffee beans. Contain Contain

Striking a ball. Grasp Pound
Placing a sponge. Support Support

TABLE II
TASK DESCRIPTIONS BASED ON PAIRS OF AFFORDANCES.

m ∈ A is stored in T (e,m). The probability of a manipulative
affordance m given the executive affordance e is computed as

p(m|e) =
T (e,m)∑
mi
T (e,mi)

. (2)

The manipulative affordance is computed as

m∗ = argmax
m

p(m|e). (3)

The part associated with m∗ is then used for the manipulation.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed approach in two
ways. First, we evaluate the perception part of our method.
Then, we report on the task success rate after a successful
detection.

We used the RGB-D part affordance dataset [8] for training
part segmentation and affordance detection of our work. The
dataset contains RGB-D images for 105 tools. We construct
pointclouds from the RGB-D images. There are seven af-
fordances associated with the surfaces of the tools: grasp,
cut, scoop, contain, pound, support, and wrap-grasp. The
description of the affordances is given in Table I. Grasp
affordance here means grasping objects from handles, i.e.
handle-grasp. Each pixel of each object is labeled with an
affordance label.

We trained affordance classifiers on the RGB-D part affor-
dance dataset [8] and applied them on our own novel objects.
The objects used for learning the relationships between manip-
ulative and executive affordances are shown in Figure 4. Each
object was in 8 different poses for training. The objects used
for training of tasks associated with a particular affordance are
not included during testing of the same affordance. We used
12 objects in different poses for testing as shown in Figure 5.
The object categories, such as pot, pitcher, container, and pasta
server are novel and not provided from the RGB-D dataset [8].

Based on the definition of the affordances, we associated
them with six different tasks. These tasks and their correspond-
ing affordances are provided in Table II. Figure 6 shows the
tasks performed based on the affordances. The hand pre-shape
during manipulation for all the tasks is the rim grasp. Only
for the wrap-grasp affordance, the spherical grasp is used.

A. Experimental Setup

The experimental setup consists of a robot with two KUKA
7-DoF Light-Weight Robot arms with servo-electric 3-Finger
Schunk SDH-2 dexterous hands. In our experiment, we only
use one arm and hand. There is a Kinect sensor mounted in
front of the robot for capturing the RGB-D data.

In our experiment, we obtain pointclouds from the Kinect.
For efficiency, we use the Random Sample Consensus
(RANSAC) algorithm provided by the Point Cloud Li-
brary [20]1 to remove the table plane. Our part segmentation
method is then applied to the remaining points after table-
plane removal. We used the learned affordance classifiers of
the RGB-D part affordance dataset [8] for affordance detection
of the segmented parts.

For each task, we perform training on an object in multiple
poses. Training objects for each affordance are shown in
Figure 4. We label the manipulative and executive affordance
associated with the task on the segmented object. From this,
we learn frequency of co-occurrences of manipulative and
executive affordances.

In order to learn grasping for object manipulation, kines-
thetic teaching is performed. The procedure is as follows. First,
we segment the object into parts and compute their poses.
To compute the pose of object parts, we perform Principle
Component Analysis (PCA) on the pointcloud of the parts.The
eigen-vectors of PCA form the rotation matrix. The mean of
the part’s pointcloud is the translation vector. We then guide
the robotic arm to the manipulative object part and grasp
the part using a predefined hand preshape. For example, to
scoop coffee beans from the container (Fig. 6), the robot is
guided to grasp the handle using a rim grasp. We record the
6D pose of the robot’s end-effector (i.e., 3D position and 3D
orientation) and the pose of the manipulative object part. Let
us consider the pose of the robot’s end-effector as Tr and the
pose of the part as Tp. Then Tpr is the relative transformation
between the manipulative part and the robot’s end-effector.
This relative transformation is computed for each task and is
used to compute the robot’s end-effector pose for grasping
novel objects for similar tasks.

In the testing phase for a given task, we use the probabilities
of co-occurrences of affordances to find the manipulative
affordance. The manipulative part is the part associated with
this affordance. We then compute the pose of the manipulative
part using PCA. The end-effector pose is then computed by
applying the relative transformation Tpr to the pose of the
manipulative part. After computing the end-effector pose, we
perform the requested task.

1http://pointclouds.org/

http://pointclouds.org/
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(a) Dropping in a box. (b) Cutting a cake.

(c) Striking a ball. (d) Scooping coffee beans. (e) Placing a sponge on an object. (f) Pouring cof-
fee beans into an
object.

Fig. 4. Training objects used for learning relationships between affordances to perform tasks. Each object was in 8 different poses during training.

(a) Dropping in a box. (b) Pouring coffee beans into an object.

(c) Cutting a cake. (d) Striking a ball. (e) Scooping coffee beans. (f) Placing a sponge on an ob-
ject.

Fig. 5. Test objects used in the experiments. We used 12 objects in four different poses for the evaluation. The knives and the bowl and the cup were provided
only in one pose.

B. Task Detection Performance

In this section, we report on the evaluation results for
the perception part of our system. As mentioned earlier,
affordance classifiers are trained on the RGB-D part affordance
dataset [8]. We compared our affordance detection approach
with the other state-of-the-art methods reported in [21] on
novel object instances and categories of the RGB-D part-
affordance dataset. For this experiment, we first segment
objects provided from the RGB-D dataset into parts using the
part segmentation approach described in Section III-A. We
then apply our affordance detection method on the segmented
object parts. In [8] a ranked weighted F-measure was proposed
for measuring the accuracy for affordance detection. The
measure takes into account that a pixel can have multiple
labels, but assumes that the labels can be ranked. Table III
shows our evaluation results using this metric compared to
the other state-of-the-art methods. HMP [8] and SRF [8]
use state-of-the-art feature extraction methods for detecting
affordances of object pixels. VGG [21] and ResNet [21]
use Convolutional Networks (CNN) for predicting affordances

of object pixels. As can be seen in Table III, we obtain
substantially higher performance than the other methods. The
results show the importance of using a part-based approach
for detecting affordances. Furthermore, since parts are shared
among objects, we also can robustly detect affordances of
novel object categories.

The trained affordance classifiers are then applied on our
test objects. We compared our method with two baseline
approaches on six robotic tasks,

a) Random Selection of Manipulative Parts: As dis-
cussed in Section III-C, we learn co-occurrence frequency
between affordances to select the manipulative parts. We
replaced this by randomly selecting the manipulative parts for
performing the tasks.

b) Random Selection of Parts: We also replaced our
affordance detection approach with a method which randomly
selects executive and manipulative parts for performing the
tasks.

c) VFH [23] as Part Features: As discussed in Sec-
tion III-B, we use autoencoder for extracting part features.
We also performed experiments by using other state-of-the-art



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

Fig. 6. Tasks performed based on affordances. Based on the definition of the affordances, each affordance is mapped to a particular task. To be used for
manipulations, some thin object handles are covered.

Method Grasp Cut Scoop Contain Pound Support Wrap-grasp Average
Affordance prediction on novel instances

Our Method 0.31 0.30 0.29 0.39 0.11 0.27 0.29 0.28
HMP [8] 0.15 0.04 0.05 0.17 0.04 0.03 0.10 0.08
SRF [8] 0.13 0.03 0.10 0.14 0.03 0.04 0.09 0.08

VGG [21] 0.23 0.08 0.18 0.21 0.04 0.08 0.11 0.13
ResNet [21] 0.24 0.08 0.18 0.21 0.04 0.09 0.11 0.14

Affordance prediction on novel categories
Our Method 0.19 0.18 0.28 0.32 0.08 0.11 0.32 0.21

HMP [8] 0.16 0.02 0.15 0.18 0.02 0.05 0.10 0.10
SRF [8] 0.05 0.01 0.04 0.07 0.02 0.01 0.07 0.04

VGG [21] 0.18 0.05 0.18 0.20 0.03 0.07 0.11 0.12
ResNet [21] 0.16 0.05 0.18 0.19 0.02 0.06 0.11 0.11

TABLE III
AFFORDANCE PREDICTION ON NOVEL INSTANCES AND CATEGORIES OF THE RGB-D PART AFFORDANCE DATASET [8]: RANK WEIGHTED

F-MEASURES [22].

features such as viewpoint feature histogram (VFH).

The evaluation results of our method compared with the
other baseline approaches is given in Table IV. Table V
shows evaluation results per object for different tasks. As
mentioned earlier, there are four novel object categories in
this experiment, namely pot, pasta server, ladle, and bowl. As
it can be seen, we obtain a higher detection rate than other
methods for all the objects. This shows the strength of using a
part-based approach where parts are functional and distinctive.
The performance for cutting task is lower than the other tasks
for our method. The reason is that blades of knives contain
only few points. This makes it difficult for the classification
of the cutting affordance.

Table VI shows the running time of our task detection
experiments. We reported running times of different compo-
nents of our detection system. As can be seen, most time is
spent on computing features. In order to compute patches and
parts features, we need to compute neighborhoods for each
point which is an expensive operation. Developing efficient
algorithms for neighborhood estimation is not considered in
this paper.

C. Task Success Performance

We provided the task success rate of our experiment in
Table VII. Each object-affordance combination was tested 10
times for each task. As it can be seen, we obtain a high
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Method Dropping in
a Box

Cutting a
Cake

Scooping
Coffee
Beans

Pouring
Coffee Beans

into an Object

Striking a
Ball

Placing a
Sponge on
an Object

Average

Our Method 96 24 72 100 34 62 65
Random Selection of

Manipulative Parts 44 14 38 46 13 35 32

Random Selection of
Parts 25 5 14 18 5 20 14

VFH [23] as Part
Features 52 15 11 71 4 55 34.7

TABLE IV
TASK DETECTION RATE COMPUTED ON SIX DIFFERENT TASKS: OUR METHOD IS COMPARED WITH OTHER BASELINE APPROACHES.

Objects Our
Method

Random
Selection
of Manip-

ulative
Parts

Random
Selection
of Parts

VFH [23]
as Part

Features

Dropping in a Box
Ladle 100 80 30 100
Pasta
server 100 40 25 100

Pot 88 18 7 36
Angled
turner 100 60 35 100

Nylon
turner 86 51 37 86

Bowl 100 33 0 67
Cup 100 60 40 0

Pouring Coffee Beans into an Object
Bowl 100 30 20 100
Cup 100 80 10 70

Pitcher 100 40 40 60
Pot 100 33 0 56

Cutting a Cake
Paring
Knife 22 11 7 30

Ceramic
Knife 25 18 4 0

Scooping Coffee Beans
Ladle 77 43 19 9
Pasta
server 66 33 9 14

Striking a Ball
Chipping
hammer 35 16 8 0

Ball peen
hammer 34 10 2 8

Placing a Sponge on an Object
Angled
turner 63 37 16 32

Nylon
turner 61 33 25 88

TABLE V
TASK DETECTION RATE COMPUTED ON SIX DIFFERENT TASKS AND 12

OBJECTS: OUR METHOD IS COMPARED WITH OTHER BASELINE
APPROACHES.

success rate for most objects during testing. This shows that
the affordances detected on the parts of objects can be robustly
exercised in a real scenario which proves the applicability of
our method. For striking a ball, we obtained a lower success
rate. The reason is that objects used for this experiment (such
as hammers) are heavy and need to be grasped precisely to
be stable. Thus, in some cases, the robot cannot hold them
during the entire experiment.

V. CONCLUSIONS

We presented here a novel part-based approach for detecting
and exercising affordances of objects on RGB-D data. We
showed that a part-based representation where the parts are
functional results in a high affordance detection performance.
To show the generalization capabilities of our approach, we
applied it on novel object categories. We obtained a good af-
fordance prediction on these object categories (Section IV-B).

To prove the applicability of our part-based affordance
detection approach, we applied it in real robotic scenarios.
We learned the probability of co-occurrence of affordances for
adjacent object parts in performing six different robotic tasks.
Since parts are distinctive and their affordances are detected
robustly, we obtained a high task success rate (Section IV-C).
This proves the robustness of our approach in real scenarios.

APPENDIX

To justify certain design and parameter choices, we here
provide experimental results of our affordance detection ap-
proach on novel object instances of the RGB-D part-affordance
dataset [8] under various parameter settings. We give results
of using RBF and linear kernels for the affordance classifiers.
As can be seen in Table VIII, a linear kernel gives us a better
performance. We also changed the bin size for the patch fea-
tures as well as the patch and part dictionary sizes. As shown,
our method is robust to changes of these parameters. The
reason is that these parameters concern object segmentation,
but since we use an MRF for object segmentation, the global
optimization of the MRF compensates for different values of
these parameters.
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