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I. INTRODUCTION

We address the problem of grasping novel objects in a
way that minimizes the torques that the hand is required to
produce. The problem of grasping new objects has received
a lot of attention in the past few years [1], [2], [3], [4],
most of which has focus on finding grasps for which the
shape of the gripper locally matches the shape of the object.
While selecting a grip that makes it difficult for the object
to escape is clearly important, it also seems natural that the
inertial parameters of objects need to be taken into account.

In this paper, we present a planner that suggests grasps
that respect both of these criteria. Our planner searches for
grasping points where the gripper nicely fits to the object,
with a strong preference for grasps that are near the center of
mass of the object. In other words, our planner finds grasping
solutions that fulfill constraints imposed by both local shape
and forces acted by the object. Our planner allows the robot
to avoid situations that can be potentially dangerous for the
robot itself, for example trying to grasp a large object by one
of its extremities and risk damaging the robot’s hand.

The main challenges of planning grasps for novel objects
is that we only have an incomplete model of the object
available. If we assume that we take a single snapshot of
the object from a 3D sensor, it then is an involved task to
find suitable finger placements of the robotic hand on the
unknown backside surface of the object. It is also equally
hard to infer the position of the object’s center of mass when
only one side of the object is visible.

We overcome the finger placement problem by using a
part-based grasp planner, by which previously-learned proto-
typical parts [2] are fitted to the incomplete object snapshot,
yielding a gripper pose that aligns the fingers to the object’s
surface.

We then infer the object’s center of mass from vision.
The object’s center of mass is set at the center of gravity
of the visible side. While this approach is simple, it already
allows us to produce useful behaviors, as shown in the next
section. In future work, we envision learning the mapping
between a partial view and the object’s mass and center
of mass. We believe that important clues for predicting the
mass of an object can be obtained from vision. The object’s

1Alexander Rietzler and Justus Piater are with the Institute of Com-
puter Science, Technikerstrasse 21a, University of Innsbruck, Austria
{alexander.rietzler,justus.piater}@uibk.ac.at

2Renaud Detry is with the EECS department, University of Liege,
Belgium. Email: renaud.detry@ulg.ac.be

3Marek Kopicki and Jeremy L. Wyatt are with the University of Birming-
ham, England. Email: {M.S.Kopicki,jlw}@cs.bham.ac.uk

This work was supported by the EU project IntellAct (FP7-ICT-269959),
the Swedish Research Council (VR) and the Belgian National Fund for
Scientific Research (FNRS).

Fig. 1: Prototypes used for grasp planning.

color, texture and reflective diffusiveness have the potential to
discriminate between materials such as wood, metal, plastic
or glass.

In the rest of this paper, we present a proof of concept for
planning grasps that optimize both the object-gripper shape
alignment and inertial parameters.

II. EXPERIMENT
In this section we discuss how our grasp planner works

and we show planning results for three objects. We can divide
our grasp planner into two parts. One part is responsible for
the alignment of the gripper with a part of the object that fits
the gripper’s shape, whereas the second part weights possible
object-relative gripper poses by the torque produced at the
grasping point.

A. Criterion 1: Object-gripper Shape Matching

We address the shape-alignment problem with a part-based
planner [2]. The robot learns the shape of parts by which
objects are often grasped, from a set of examples provided
by a teacher. This process provides the robot with a set of
grasping prototypes (Fig. 1), that each associate a point cloud
to a gripper pose. The point cloud of a prototype represent
the shape of an object part such as a handle, or a short
section of a cylinder. The gripper parameters associated to
a prototype are its position, orientation, and preshape of the
manipulator. In this work we use five prototypes that have
been previously learned from real world grasp examples [2].
They are shown in Fig. 1.

The part-based planner allows the robot to suggest a grasp
for a novel object by fitting all the prototypes to the partial
view of the object, and selecting the grasp associated to
the prototype that best fits the data. We denote a proto-
type’s point cloud by P as well as the point cloud of
the object’s partial view by S, with P = {pi}i∈[1,N ] and
S = {si}i∈[1,M ], where the pi and si are points in R3.

To rank different alignment hypothesis we define a similar-
ity measure between two point clouds by a cross-correlation
function

s∗(P,Q) =

∫
R3

φP (x)φQ(x)dx, (1)

where φP (x) and φQ(x) are probability density functions
computed from P and Q via kernel density estimation.



B. Criterion 2: Finding A Low-force Grasp

The previous section defined a criterion for defining how
well a given gripper pose fits the object’s shape (Eq. 1).
This section discusses a criterion finding a low-torque grasp.
In this paper, we do not have a way of estimating the
object’s mass. As a result, this section defines a relative
torque criterion, i.e., one that allows the robot to compare
two grasps on the same object and compute which of these
two grasps requires the least force.

This criterion relies on the definition of a weighting
function, that models the torque that the hand needs to
produce at the grasping point. We define the grasping point
as the mean of all the contact points between the prototype
and the fingers of the robotic hand and we approximate this
point to be about in the center of the robotic hand. The torque
at the grasping point can be computed by

τt = (t− rcom)× fext, (2)

where t is the grasping point, rcom is the center of mass
of the object and fext is proportional to g · ez , i.e., the
gravitational acceleration of the object. With our conventions
of coordinate frames the force is acting along the Z-axis.
Finding the exact position of the center of mass given
a partial 3D snapshot of the object is not an easy task.
Therefore we approximate rcom with the centroid of the
object snapshot S. This approximation assumes a tabletop
scenario where the table is segmented off the perceived point
cloud via dominant plane removal. We define the torque-
weighting function as

Wt = 1 + max(0, b− c|τt|), (3)

where t corresponds to the position of the gripper (i.e., the
grasping point) in the world reference frame. The constants
b and c are chosen manually, such that the Wt outputs a
number between 1 and 1+ b for a suitable range of torques.

C. Finding The Optimal Gripper Pose

With our grasp planner we can compute new grasps by
maximizing both the similarity measure (1) and the torque-
weighting function (3) with respect to the gripper pose (t, r)

arg max(t,r){s∗(Tt,r(P ), S) ·Wt ·Rt,r}. (4)

Here, T(t,r)(·) the transformation of its argument by t, r,
and Rt,r is the reachability function, which equals to 1 if
the grasp for the current pose guess can be planned without
collision and an existing solution from inverse kinematics,
or 0 otherwise.

D. Results

Figure 2 shows the output of our grasp planner for three
common household objects. In all grasps, the robot prefers
poses near the center of mass of the object. For instance,
the torque of the grasp of Fig. 2(b) is six time lower than
the torque of the grasp that is suggested if Wt is ignored
in Eq. 4. In the leftmost image of Fig. 2(c), we would have
preferred a grasp slightly closer to the disk of the pan. This
experiment illustrates that striking the right balance between

(a) Guitar (b) Axe

(c) Frying pan

Fig. 2: Grasps for three different objects computed with our
grasp planner with torque weighting parameters b = 0.4
and c = 0.1. (c) Here, we can see the grasps planned for
a frying pan with torque weighting (left) and without torque
weighting (right).

low torque and good shape alignment is not easy. In the case
of this frying pan, the point cloud at the leftmost end of the
handle is more noisy than the rightmost end, which prevents
our planner from placing the gripper at the leftmost pose.

III. CONCLUSION

We presented a method for planning grasps that account
for both the shape of the object at the grasping point,
and the torque that the object applies on the gripper. By
approximating the center of mass of the object from a partial
point cloud, our method allows a robot to avoid dangerous
grasps, and prefer grasps closer to the actual center of mass
of the object. In future work, we plan to let the robot learn
the mapping from various 2D and 3D features to an object’s
mass and center of mass, to refine the torques inferred by
our model.
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