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Abstract Knowledge of the brain has much advanced

since the concept of the neuron doctrine developed by

Ramón y Cajal (R Trim Histol Norm Patol 1:33–49, 1888).

Over the last six decades a wide range of functionalities of

neurons in the visual cortex have been identified. These

neurons can be hierarchically organized into areas since

neurons cluster according to structural properties and

related function. The neurons in such areas can be char-

acterized to a first order approximation by their (static)

receptive field function, viz their filter characteristic

implemented by their connection weights to neighboring

cells. This paper aims to provide insights on the steps that

computer models in our opinion must pursue in order to

develop robust recognition mechanisms that mimic bio-

logical processing capabilities beyond the level of cells

with classical simple and complex receptive field response

properties. We stress the importance of intermediate-level

representations to achieve higher-level object abstraction in

the context of feature representations, and summarize two

current approaches that we consider are advances toward

achieving that goal.

Keywords Computer modeling � Intermediate visual

processing � Boundary grouping � Shape representation �
Feedback connections � junctions

1 Introduction

Object recognition is a very hard problem, the best proof of

this is to consider that the first works started in the 1960s

(Robert’s and Guzmán’s theses) and up to now there are

thousands of papers published each year with solutions to

achieve that goal. Due to the complexity of this problem,

many scientists and engineers have resorted towards neu-

rophysiology for solutions on how the human visual system

solves such a difficult task with astonishing efficiency and

accuracy. The earliest models inspired by the primate

visual system [24, 25] appeared little after the influential

works of Hubel and Wiesel [31, 32] that revealed key

mechanisms of the functional architecture of the visual

cortex. Most importantly, the response characteristics of

individual cells to stimulus probes in different areas were

identified, characterized as, e.g., simple, complex, and

hypercomplex (or, endstopped). Inspired by these findings,

Fukushima [21] introduced the Neocognitron which has

influenced many models after it, such as, e.g., convolu-

tional nets [38], the four-layer hierarchical Visnet model

[75], and until the most recent models of a layered archi-

tecture of generic sum/MAX [44, 58, 67] operations. Some

of these models also serve as reference architectures in

computer vision applications.

The mammalian visual cortex is hierarchically orga-

nized into different areas, of which V1 and V2 are the

largest. Cortical processing along a hierarchy of stages is

segregated in two different pathways with connections

between them: The occipitotemporal pathway (V1, V2, V4,

PIT and AIT) is concerned with object recognition features

[39, 69], while the occipitoparietal pathway (V1, V2, V3,

MT and MST) is associated with spatiotemporal charac-

teristics of the scene [6]. The functional architecture of the

cortical visual system can be characterized by some key
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characteristics. One is that neurons become increasingly

more selective to complex stimuli and less sensitive to

stimulus variation, covering larger areas of the visual field.

At the bottom of the hierarchy, neurons in V1 are selective

for edges (among other features), and at the top, AIT

neurons respond to complex objects with significant vari-

ation in their orientation, size, illumination and

foreshortening.

The distributed nature of sensory processing in cortical

architecture is well suited to allow integration of local

responses to specific features with more global scene-

related context information [22, 40, 79]. For example, the

receptive field properties to a first approximation can be

described as filters. The output responses of a stage of

signal filtering are nonlinear, reflecting a transformation of

cell membrane potentials into output firing rates [12].

Output responses are normalized through mutual compe-

tition of neural responses between cells in local pools in the

spatial surround of target cells. As a consequence,

responses show spatial frequency interactions, cross-ori-

entation inhibition, and contrast saturation properties [13,

14]. Grouping mechanisms enforce the integration of local

responses in feature space to form more abstract proto-

typical items of boundary fragments. Such operations uti-

lize cortical mechanisms such as lateral interactions

between like-oriented feature preferences, as in V1 layers

II/III for orientation [7]. However, the extent and the tim-

ing properties of such lateral interactions cannot explain

the rapidness of integration as observed in experiments. It

has thus been suggested that feedback signals from higher

stages in the neural processing hierarchy mainly contribute

to such feature grouping [53, 62]. Although feedback is a

prevalent feature of cortical processing, its functional role

is still a major topic of current research investigation [41,

66]. The two dominant theories consider feedback as a gain

enhancement mechanism that biases competition [68, 73]

or as one implementing predictive coding where higher-

order cortical areas carry predictions to lower-order areas

[56] (see discussion in [72]).

The recent approaches to object recognition are mainly

driven by the ’’edge doctrine’’ of visual processing pio-

neered by Hubel and Wiesel’s work. Edges, as detected by

responses of simple and complex cells, provide important

information about the presence of shapes in visual scenes.

Their detection, however, is only a first step at generating

an interpretation of images that is invariant against certain

variances in scene properties and layout as well as their

geometric transformations. Consider, for example, Fig. 1.

In (a) localized image features, like oriented contrasts, need

to be integrated to form prototypical boundary fragments

for shape segmentation. Localized higher-order features

need to be inferred that determine shape identities [43] or

to determine the motion characteristics of such shapes [11].

However, edge integration is informative for the visual

system only when the shape it bounds is assigned to be a

figural component of the scene and not a mere occasion as

part of the background. The assignment of border-owner-

ship, or surface-belongingness [42] is therefore another key

process operating in the above hierarchy (Fig. 1b). Taken

together, the evidence about the functional organization of

the mammalian visual system speaks in favor of the role of

Fig. 1 Segmenting an image into figural parts and background

(pattern in a is redrawn after [64]). Depending on the ownership

assignment an image region is assigned to be a (foreground) figural

shape (pattern b, gray triangles pointing towards the surface region

that ‘‘owns’’ the boundary) or merely a part of the background (The

region in the upper right is circumscribed completely by boundaries

that are owned by different surface regions, displayed by a dashed

contour). Therefore, the shape is occasional and not represented as

independent shape. The wedge shaped region below is bounded by a

contour that is completely owned by this surface patch (displayed by

the continuous contour). The region on the upper left is partially

occluded by the wedge-shape patch. A resulting boundary mainly

consists of components owned by that region, while the occluding

part (delimited by the T-junctions) is not owned. In this case, the

‘‘open ends’’ are suggested to be grouped and completed amodally to

generate a most likely coherent shape. c The Kanizsa square shows

similar arrangement with shape components composed of illusory

contours and the segregation into occluding regions (pattern d with

central square and four peripheral circular regions). Unlike the case in

a, b the outline of the central occluder needs to be grouped by filling

the illusory boundaries such that the ownership direction can be

globally assigned in an unambiguous fashion (d)
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intermediate-level processes and representation. These

establish interfaces linking spatially high resolution with

object and more task related representations. Such inter-

mediate processing stages that operate upon initial simple

and complex cell outputs lead to the formation of neural

representations of scene content that allow robust shape

inference and object recognition.

The aim of this paper is to present some recent devel-

opments in the neural computational modeling of inter-

mediate-level shape processing. We focus on the steps that

computer models in our opinion must pursue in order to

develop robust recognition mechanisms that mimic bio-

logical processing capabilities beyond the level of cells

with classical simple and complex receptive field response

properties. The goal is to provide the reader with some

promising new directions of further investigation aiming to

arrive at intermediate-level representations rich enough to

provide the input to different behavioral tasks and analyses.

In Sect. 2 we summarize two examples that build upon the

original simple and complex cell models incorporating

mathematical approximations to cells well known to exist

in intermediate areas and which have been mostly

neglected by many computer models in the past. In Sect. 3

we discuss and conclude on the aspects a computer model

of the visual cortex should incorporate given recent evi-

dence and findings.

2 Modeling Intermediate-level Processing Inspired

by the Visual Cortex

Our focus here will be on works that include cells and

mechanisms other than the classical simple and complex

neurons utilized in mechanisms beyond initial stages of

processing. In this section, we will briefly first present

modeling efforts for V2 processing for feature extraction

and boundary grouping and the functional consequences

derived from this. We will then continue to present results

of computational investigation for generating shape repre-

sentations based on curvature-sensitive cell mechanisms in

V4.

2.1 Boundary Grouping and Detection of Complex

Localized Features: Modeling V1–V2 Interactions

Processing in V2 contributes to generating representations

of boundaries as well as to localized contour features, or

junctions. Why does the visual system bother to group

oriented contrast to form extended boundaries? Why is it

useful to complete fragmented contour segments and fill-in

illusory contours? [52]. Consider the Kanizsa square pat-

tern depicted in Fig. 1c: The square region in the center is

defined by the long-range groupings of the like-oriented

flanking contrast configurations generated by the pacmen

patches. These are generated by the occlusion of peripheral

circular patches through a central square with same lumi-

nance as the background. The appearance of such illusory

contours depends upon the presence of symmetric bilateral

input contrast to generate a neural boundary response fill-

ing the gap between them [29, 54].

Several neural computational models have been sug-

gested to explain long-range grouping of contrasts and

illusory contours [5, 26, 47, 77]. In [46, 48], it has been

suggested a taxonomy of long-range grouping models

which identifies the elements of how information is inte-

grated from a space-feature domain representation to

enhance the gain of target activations. In a nutshell, the

spatial neighborhood is represented by spatial long-range

filters (or weighting functions) and with the sub-fields

combined non-linearly. The support from the feature

domain (orientation in our case) is defined by a spatial

relatability, or compatibility, measure that is evaluated

based on geometric configurations of oriented contrast

configured tangential to a smooth contour fragment [36,

49]. This relatability is represented as an independent

weighting function that is combined with the spatial

weighting to generate a 3D weight kernel in the ðx; hÞ-
space with x ¼ ðx; yÞ. The computational mechanisms

mainly utilize some weighting function (K) in which the

feedforward input is matched against the expected config-

uration and generates a support measure:

supportx;h ¼ input
left
x;h � input

right
x;h ð1Þ

with

input
left=right

x;h ¼
X

x0;/

rx0;/ � relatexx0;h/ � Kleft=right

xx0;h ð2Þ

and � to denote a proper combination of the subfield

integration. In the model V2 grouping cell integration

mechanism, subfields are combined multiplicatively. The

relatabilty measure relate is defined by a geometric con-

figuration of, e.g., co-circular arrangements of oriented

contrasts (see examples and a discussion by [46]). The

support measure yields an activation zx;h / supportx;h

which, in turn, is used to combine it with the signal gen-

erated by bottom-up input. One such model is realized by a

recurrent feedback mechanism that enhances those input

features compatible with the activation calculated by the

integration mechanism,

gx;h / sFF
x;h � 1þ kzFB

x;h

� �
ð3Þ

with g denoting the resulting gain enhanced response after

the modulation of the driving input by top-down feedbacks

driving feedforward input, and k is a constant scaling factor

(compare [47] and [71]). The feedback signal is meant to
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be delivered by V2 boundary integration cells, referred to

as zx;h above. If feedback is missing the available feed-

forward activity is left unchanged. In combination with a

stage of activity normalization such feedback signals yield

enhancement of activities that receive support from larger

context information while those activities that have not

received any feedback will be suppressed. The dynamic

integration to yield an output activity r can be formally

defined by

_rx;h ¼ �arx;h þ gx;h � crx;h � px;h

_px;h ¼ �px;h þ
X

x0;/

rx0;/ � Kpool
xx0;h/

ð4Þ

where the activity normalization is accomplished by a pool

of integrated activity from a neighborhood in the space-

feature domain (represented by a separate state variable p);

symbols a and c are constants and Kpool
� denotes a

weighting function for the pool integration. For an analysis

of the computational properties of an even more elaborated

version of such a circuit, refer to [9]. Activity normaliza-

tion is realized by a mechanism of shunting inhibition in

the rate equation for the output state r. The resulting effect

of divisive inhibition leads to down-modulating the activ-

ities depending on context information. Such an effect has

been dubbed biased competiton in attention selection [18,

57]. Related mechanisms of activity normalization have

been successfully incorporated into vision algorithms for

contrast detection [1, 27], keypoint detection [2, 76], and

object recognition [34].

All such models mentioned above consider processing

in the space-feature domain that arrives at a representation

in which boundaries are enhanced and completed, while

background clutter is much reduced. However, more

computational intelligence is necessary to allow an inter-

mediate-level interpretation of the layout of the visual

scene components. While the illusory contour formation

such as for stimuli in Fig. 1c takes time [59], the localized

shape features (junctions of different configurations)

undergo a reinterpretation over time.1

Several experimental investigations by Rubin [65] show

compelling evidence that such junction features play an

important role in figure-ground segregation and the inter-

pretation of surface depth ordering. Figure 1d illustrates

the tagging of surface boundaries according to their border

ownership direction (indicating which side of the attached

region is in front) such that surface regions can be reliably

segregated. Also, occluded boundaries can be completed

amodally (compare also Fig. 1b in the case of complex

figural surface arrangements without illusory boundaries).

Evidence suggests that such a representation of border-

ownership is created at different stages along the visual

hierarchy at areas V2, V4 and TE (the latter as part of the

inferotemporal cortex, IT; [4, 64, 78]). In case of the

Kanizsa figure presentation onset, the localized junctions of

the pacmen segments are initially defined entirely by the

localized corners of the figural contrast elements. However,

when the illusory boundaries have been established via

long-range grouping mechanisms, the L-junctions (corners)

that define the lips of the pacmen mouths are reinterpreted

as T-junctions in which the stem belongs to the circular

boundary of the occluded region while the roof is generated

by contrast as well as illusory segments of the occluding

square region in front. Border-ownership assignment

evaluates salient convex boundary features and utilizes

T-junctions as additional evidence indicating surface

occlusion directions.

Weidenbacher and Neumann [76] modeled the mecha-

nisms of contour grouping and localized feature extraction

incorporated in one coherent model. The reassignment of

activation, or likelihood, for L- and T-junction configura-

tions is demonstrated as a temporal process (Fig. 2): The

dynamic interaction between different stages of contour

and boundary representations in model areas V1 and V2

allow the creation of boundary representations, which, in

turn, define context information for the interpretation of

localized junction features. It also demonstrates how dif-

ferent filter mechanisms contribute to the extraction of key

features and how the core processing principles, such as

feedback, establish such representations robustly over time.

Figure 3 shows how different responses by the different

filtering mechanisms generate distributed representations

of various boundary and junction features. While the

boundary representations are made explicit, we make no

explicit claim which of these localized features are

explicitly represented in a specific feature map, such as

corners of different opening angles [33]. We argue that the

junction configurations can be reliably read out from the

distributed responses of cells as in areas V2 and V3. The

read out mechanism is also capable to assign transparent

surface layout of occluded surface regions (compare [45]).

While we acknowledge that the assignment of border

ownership is reflected in a separate quality that tags

boundary signal responses (see Discussion), we have gen-

erated qualitative depth segregation for overlapping sur-

faces that demonstrate the coherence of the assignment of

the labeling of extended boundaries (see [71]).

In all, the results demonstrate that processing beyond

initial simple/complex cell filtering is necessary to create

boundary groupings and localized features together with

1 Such reassignment of interpretation to meaningful figural surface

layout coheres with different processing phases demonstrated in

experiments by Roelfsema et al. [62]. While initial responses are

mainly driven by image features, later response facilitations are

generated as a consequence of selective feature enhancements

generated during grouping and figure-ground segregation processes.
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proper scenic interpretations. Grouping mechanisms play

an important role in filling illusory contour segments. The

neural processing machinery can make use of such

groupings as well as the representations generated to mark

localized shape features such as corners or junctions.

Below we show further modeling at such intermediate level

range of processes that generates robust shape representa-

tions based on salient contour curvature features.

2.2 2DSIL: A Feedforward Model of Shape

Representation Through Endstopped Neurons

Hubel and Wiesel [31] identified hypercomplex cells,

which are currently referred to as endstopped. These were

originally classified due to their response characteristics

that depended on specific stimulus configurations that

caused a target cell to fire. A large population of cells

with such type of receptive field property has been iden-

tified in area V2. One such population of V2 neurons also

respond to contours, both real and illusory [29], the latter

of which requires bilateral input of flanking contrasts. Ito

and Komatsu [33] and Boynton and Hegde [8] have found

that other V2 neurons are selective for angles and corners,

and that these showed submaximal responses for bars.

Fig. 2 Illusory boundary grouping and localized feature intepretation

for the Kanizsa square pattern (Fig. 1). Bipole cell responses and T-/

L-junction likelihoods from a readout of model cell activations in area

V1 and V2 grouping. Initial signal responses are shown in the top row

(no recurrent processing). Results of recurrent processing are shown

after one cycle (middle row) and after three recurrent cycles (bottom

row). Illusory boundaries are signalled by V2 bipole cell activities and

are completed over time. A result of this grouping and completion

process is that localized features are reinterpreted over time:

L-junctions at the open mouths of the Pacmen are re-interpreted as

T-junctions (corresponding to surface occlusions) once the illusory

boundaries have been established in the neural representation. Results

from [76]
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 area

illusory
contourcontour

occlusion
transparency

3D-corner
2D-cornercue type

struct.
cell type

Fig. 3 Map of the distributed representation of boundary and feature

configurations that uniquely define different structural configurations

as a basis for various junction types. Small scale grouping and end-

stopped cells in model area V1 and long-range grouping cells in

model area V2 define the basic feature repository for relevant corner

and junction types as well as boundary grouping computations. Map

taken from [76]
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Dobbins et al. [19] provided physiological evidence that

this type of cells may also be selective for curvatures and

hypothesized a model which could fit those responses.

Taken together, such evidence suggests that localized

shape features are accessible for detailed processing of the

visual scene configuration. It is not clear, however, whe-

ther different configurations of junctions are made explicit

or whether their selectivity is rather represented in a

distributed fashion.

Cortical area V4 follows after area V2 in the object

recognition pathway. In the hierarchical object recognition

pathway, V4 is the area just before the inferotemporal

cortex (IT), where object recognition is achieved [69, 70].

Experiments in monkeys where area V4 was ablated

showed that V4 is important for the perception of form and

pattern/shape discrimination. Neurons in V4 selective to

higher-order feature combinations characterizing shapes

and their responses can be fit by a curvature-position

function [50, 51]. In such a representation, the object’s

curvature is attached to a certain angular position relative

to the object center of mass. Most V4 neurons represent

individual parts or contour fragments [15].

Models of object recognition typically neglect the con-

tributions of cells in intermediate areas of the visual cortex

as are known from neurophysiology. These include end-

stopped cells which have been incorporated into a recent

feedfoward hierarchical model of shape representation,

named 2DSIL [60, 61]. Curvature is considered an

important component in order to achieve object recognition

in the human brain. The model is composed of simple,

complex, endstopped, curvature and shape cells (Fig. 4).

Simple neurons of visual area V1 are sensitive to bar and

edge orientations. In 2DSIL these are implemented using a

Difference of Gaussians formulalism. These have been

shown to provide a good fit to neuronal responses [28]. V1

simple model cells are organized into hypercolumns con-

sisting of 12 orientations and 4 different scales (Fig. 4).

Complex cells respond to orientations but are invariant

with respect to their location inside the receptive field. The

best known hypothesis is that may be the result of the

addition of simple cells along the axis perpendicular to

their orientation. In 2DSIL a complex cell is the sum of 5

laterally displaced model simple cells within a column

(Fig. 5a left).

Endstopped cells—having a great presence in area V2—

have different properties from orientation-selective cells.

Kato et al. [35] as well as later works have shown that this

type of cells includes end-zone inhibitory areas. Model

endstopped cells provide us with a coarse curvature esti-

mation so that we can later divide contours into curvature

classes. Dobbins et al. [19] provided the grounds for the

design of this type of cell in 2DSIL (Figure 5a):

RES ¼ U½cc/ðRcÞ � ðcd1/ðRd1Þ þ cd2/ðRd2ÞÞ�

U ¼ 1� e�R=q

1þ 1=Ce�R=q

ð5Þ

cc, cd1 and cd2 are the gains for the center and displaced

cells. Rc, Rd1 and Rd2 are the responses of the center (a

simple cell) and the two displaced complex cells. / and U
are rectification functions.

By varying the orientations of the inhibition zones (e.g.,

45� and 135�) with respect to the center excitatory zone, we

can obtain cells that respond to the sign of the curvature,

that is, the direction to where it steers (one direction, let’s

call it positive, or the opposite, let’s call it negative) (Fig.

5b).

Rþ ¼ U½cc/ðRcÞ � ðcd145
/ðRd145

Þ þ cd2135
/ðRd2135

ÞÞ�
R� ¼ U½cc/ðRcÞ � ðcd1135

/ðRd1135
Þ þ cd245

/ðRd245
ÞÞ�

ð6Þ

where cc, cd1� and cd2� are the gains for the center and

displaced cells as before. Rc, Rd1�and Rd2� are the responses

of center and displaced cell at the specified orienations with

respect to the center cell.

We can obtain curvature cells due to the neural con-

vergence of these three types of endstopped cells. Let’s call

Rcurvi
the response of an endstopped cell (Eq. 5) to the

preferred direction (that at which Rsign [ Ropposite sign, Eq.

6). The response of a model shape-selective cell follows on

the works of [50, 51] in which the response to a shape

would correspond to the response of the local curvatures of

the shape with respect to its center (Fig. 5c):

Rshape ¼
Xn

i¼1

ciRcurvi
ðkÞ k ¼ maxm

j¼1ðkjÞ

ci ¼
1

2p
e�ðx

2þy2Þ
ð7Þ

where k is the preferred curvature direction and ci is a

Gaussian weight that would account for partial excitation

depending on the selective curvature in distance-angular

position.

2DSIL outperformed or provided comparable results

when compared to state of the art computer vision models

as well as with Serre et al. [67] (without the need of a

learning stage for intermediate layers) at a real-world

image recognition [60]. The hypothesis that this may be the

way neurons in area V4 represent shapes was tested in a

later work [61], where the responses from model shape-

selective cells were compared with the responses from real

cells in area V4 to 370 stimuli. The model fitted real cells

with an average accuracy of 83 %. An example of

responses of a model shape cell to different stimuli is

shown in Fig. 5d.
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3 Discussion

The basic modeling here focuses on a mesoscopic level of

scale in which layered representations of cells and their

connections are considered (Figs. 3, 5). A critical novelty

in comparison to static filters as suggested by the Hubel-

Wiesel edge filter conception are the inclusion of direct

higher-order computations (curvatures, contours, corners,

etc.), lateral intra-cortical connections as well as top-down

feedback cortico-cortical interactions, these last two form

dynamic loops between processing units creating certain

dynamics. Driving input to the layered architecture (that is

composed of several hierarchically organized areas) is

generated by feedforward signals. In the following we

summarize what we think are next steps computer models

need to take into account in order to advance towards such

goal of building an advanced competence to process visual

input.

The operations upon intermediate-level representations

may be suited preferentially to access feature compositions

in a deep cascade of stages along a feedforward, signal-

driven process. In order to integrate context information at

the various stages of such distributed, hierarchically-orga-

nized representations mechanisms of lateral signal inte-

gration and top-down feedback supplement the processing

sketched here. We can then outline several characteristics

of computations in the brain that seem to define a charac-

teristic set of operational principles, namely: (1) a more

complex bottom-up, feedforward filtering process, (2) lat-

eral integration, and (3) feedback.

Regarding the first point, models usually define a fil-

tering operation, each of which is characterized by a static

kernel weighting function defined in space-feature

domains. Several computer models have been successful at

modeling the cortex this way, but there is still a long way to

go to reach the point where we can say that we have built

Fig. 4 Architecture of 2DSIL.

Adapted from [61]
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an ‘‘artificial visual cortex’’. In chapter 2.2, we have

summarized a model that reaches a higher level of

abstraction than precedent models by considering the direct

computation of intermediate-level representations. The

differences between 2DSIL and other recent models, e.g.

Serre et al. [67] and Cadieu et al. [10] are several. Whereas

those previous models define their cell types as combina-

tions of edge cenit responses successively over seven

hierarchical layers, here our neurons in each layer compute

quite different quantities. The goal was to include curva-

ture computations directly, and not indirectly through the

conjunctions of edges. How the visual cortex might

accomplish this has been extensively investigated; end-

stopped cells play a major role. However, except for the

notable exception of Dobbins et al. [19], they have not been

adequately investigated computationally. This is where our

approach diverges from others’. This is also what enables

our faithful representation of curvature and 2D shape. The

success of the approach in modeling the neural levels

involved is evident in the matches to neural recordings

which surpasses those shown by Cadieu et al. [10] as

shown by Rodrı́guez-Sánchez and Tsotsos [61]. The results

obtained by the model are very similar to those of the

neurons in area V4, and are accomplished without any

learning or classifier method.

Secondly, feedback and lateral signal integration influ-

ence the response of a target cell after its initial response to

a driving input signal. We have focused our discussion in

Sect. 2.1 on feedback which is generated at higher-level

cortical stages or parallel processing pathways to provide

contextual information to be re-entered at stages lower in

the hierarchy influencing the evolution of each cell’s

responses [20]. The functional role feedback signals play

remains a topic of intensive investigation to reveal how

feedback signals interact and combine with the driving

feedforward streams. Two main theoretical conceptions

have been developed: (i) the reduction of the residual error

between the feedforward signals and the predictive signals

provided by the feedback from higher stages of processing

[3, 74], and (ii) the modulatory enhancement of the gain for

those cell responses where a matching top-down predictive

signal template has been generated [17]. This feedback

signal amplifies the sensory signal such that the subsequent

competition between neurons yields a competitive advan-

tage for the enhanced response patterns (biased competi-

tion) [18, 23, 63, 73]. The framework outlined above for

boundary grouping and localized feature extraction focused

on the latter which aims at amplifying activities that

receive matching feedback while the predictive coding

approach tends to drive the signal differences to zero. For

example, boundary representations from grouping in model

V2 and junction configurations in model V2/V3 send their

output activations to curvature sensitive cells in model V4

where the activities are integrated. These cells, in turn,

send their feedback to the input populations of neurons to

further enhance their activation.

The temporal evolution of activations have demon-

strated how a context-sensitive interpretation of features

(a) (c) (d)

(b)

Fig. 5 Main cell types in 2DSIL (reproduced with permission from

[61]). a Curvature-selective endstopped cell is composed of simple

and complex cells. Note that a complex cell is the result of the

addition of five simple cells at the same orientation. b Sign-selective

endstopped cell. c Shape-selective cell d Response of a shape

selective cell to different stimuli. This cell is selective to the stimulus

on top, but provides high responses to other stimuli that are similiar

(in a curvature-part fashion) to the preferred stimulus. These

responses were compared with real V4 cell responses in [61]
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are derived in complex scenes and that the messaging

processes require time to propagate their information. It

remains to investigate a full scheme of boundary grouping

in which multi-dimensional features such as disparity and

border-ownership assignment are integrated. This would

allow the selective reassignment of boundary fragments

such that in case of mutual occlusions boundary segments

can be completed amodally, as sketched in Fig. 1b, d. We

should emphasize here that the grouping mechanisms dis-

cussed above are based on automatic and hardwired pro-

cesses that utilize filters and operate in parallel over the

visual scene.

It is now believed that feedback is mainly involved in

the rapid computation of figural regions and assignment of

ownership direction [16, 63, 78]. Following the analysis in

Neumann et al. [48] neural mechanisms for such ownership

should incorporate the following criteria: (i) long-range

integration of real luminance contrasts and illusory

boundaries (as discussed above), (ii) closed figural shape

are composed of a majority of convex curvature or junction

segments (which outnumber concave elements if those are

present), and (iii) selective integration of (potential) spatial

occlusion signals at T- and X-junctions as well as line

endings. At T-junctions, for example, occlusions from

opaque surface regions arise at the opposite side of the

stem, while X-junctions often occur for overlapping con-

figurations of transparent surfaces. So far, the proposed

neural models that compute figure-ground direction and

border-ownership utilize isotropic grouping of bottom-up

input from prior boundary integration stages (e.g., [16]).

Such models account for relatively simple stimulus con-

figurations that have also been used in physiological

experiments. It remains to demonstrate whether such

mechanisms resolve ownership computation for more

complex scenes in realistic camera images. Tschechne and

Neumann [72] propose a recurrent computational network

architecture that integrates the ideas outlined in this paper

and embedded them in the recurrent feedback processing

principles outlined above. In a nutshell, the model proposes

hierarchical distributed representations of shape features to

encode surface and object boundary over different scales of

resolution corresponding to visual cortical areas V1–V4

and IT. Multiple low- and intermediate-level component

representations interact by feedforward hierarchical pro-

cessing which is combined with feedback signals driven by

representations generated at higher stages. Global contex-

tual configurations and local information is made available

to represent contour details and to assign border ownership

directions to eventually segregate figural shape from

background. In addition, the integration of multi-dimen-

sional features at the ownership grouping cells including

boundaries as well as localized junctions features of T- and

X-configurations remain to be simulated explicitly.

Finally, it is also worth including a few lines (due to

their recent popularity) about deep learning and convolu-

tional networks [30, 37]. These proposed network archi-

tectures utilize several principles suggested in this

contribution. For example, deep networks rely on the

stacked hierarchy of connected layers to accomplish

learning representations of features and their combinations

rich enough to detect structure in complex data. Our sug-

gestion of intermediate-level representations and the pro-

cesses operating upon them is related to this concept. We

have emphasized how specific organizational principles

support the establishment and integration of such mid-level

can be utilized to derive richer shape related representa-

tions use in subsequent object recognition tasks. The pro-

cessing principles involved, namely filtering, normalization

and selective modulation via feedback, have been utilized

in part in convolutional networks (see Sect. 2.1). In par-

ticular, variants of activity normalization have been proven

useful in the past to stabilize recognition tasks that are

organized in a layered hierarchical structure for object

recognition. However, some criticisms remain regarding

the biological plausibility of deep networks and convolu-

tional nets in their current technical definition namely that

they rely on large datasets and their status as greedy

algorithms.
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