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Abstract— 3D Object recognition is one of the big problems
in Computer Vision which has a direct impact in Robotics.
There have been great advances in the last decade thanks
to point cloud descriptors. These descriptors do very well at
recognizing object instances in a wide variety of situations. Of
great interest is also to know how descriptors perform in object
classification tasks. With that idea in mind, we introduce a
descriptor designed for the representation of object classes. Our
descriptor, named SCurV, exploits 3D shape information and is
inspired by recent findings from neurophysiology. We compute
and incorporate surface curvatures and distributions of local
surface point projections that represent flatness, concavity
and convexity in a 3D object-centered and view-dependent
descriptor. These different sources of information are combined
in a novel and simple, yet effective, way of combining different
features to improve classification results which can be extended
to the combination of any type of descriptor. Our experimental
setup compares SCurV with other recent descriptors on a large
classification task. Using a large and heterogeneous database of
3D objects, we perform our experiments both on a classical,
flat classification task and within a novel framework for
hierarchical classification. On both tasks, the SCurV descriptor
outperformed all other 3D descriptors tested.

I. INTRODUCTION

Over the last decade, we have seen the appearance of
many types of descriptors. Some are global, others exploit
local information, some are for 2D applications, others can
be applied in 3D. The bibliography is as varied as their
applications. In the 3D case, even though there is a large
number of studies that compare descriptors in different
situations, it is still unclear how these descriptors compare
with one another in a large classification task since most of
them report results on small instance recognition data sets.
Thus, it would be of interest to test the different methods on
a classification task using the same common large database
that includes both a large number of objects and a wide
variety of different classes. This is of interest in Computer
Vision and Robotics in order to evaluate the best strategies
that are to be considered for the future. Nonetheless, in order
to build robots and systems, we want them to behave in ways
similar to humans, thus not only recognizing a small set of
object instances, but also being able to classify large sets of
object classes as humans do.

The human visual system is indeed the inspiration of our
own descriptor, SCurV. Biological inspired computations can
be used for Computer Vision tasks as shown in previous
works [1], [2], [3]. We developed SCurV to extract values
similar to the ones computed by certain neurons in the
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brain. In 3D, neurophysiological studies have found neu-
rons that are selective to surface curvature, orientation and
the position of surface fragments [4]. Configuration of 3D
surface fragments is encoded by those neurons in an object-
centered frame, but the spatial frame is only partially defined
by the object since neural representations are different de-
pending on viewpoint. The descriptor we propose (SCurV)
also combines those two relatively contradictory facts about
neural encoding through a novel way of combining feature
vectors by using the tensor product. The features we compute
contain a global representation based on curvatures and a
local representation based on viewpoint distributions. We
then compare this descriptor to ten recent descriptors on
the same classification task to evaluate if our descriptor
can outperform current 3D descriptors in the aforementioned
task.

Considering the large number of 3D descriptors introduced
over recent years, it is of also of great interest for the
Robotics and Computer Vision community to provide a
framework where we tan take complementary descriptors
and improve recognition performance by simply combining
them, thus exploiting the strengths of each one. We also show
that the way we combine our global-centered object rep-
resentation and the local-pointwise object distribution may
be extended to any feature combination whose information
is complementary in order to improve classification results.
Our way of combining descriptors is a kernel version of the
tensor product that avoids some disadvantages of the classical
concatenation of features.

Most current classification tasks involve multiclass or
binary classification. For such tasks, a dog, a cat and a boat
are different to the same degree; they belong to different
classes in a flat sense, where all classes are at the same
level. For humans, they are different, but a dog is more
different from a boat than a dog is from a cat (both are
quadruped animals). Humans are able to classify objects in
a hierarchical fashion (e.g. bees and ants are insects, dogs
and horses are quadruped animals, etc. ), which seems to
be the result of geometric similarity [5]. Finally, we also
provide a framework where we evaluate SCurV and other
state-of-the-art descriptors at a hierarchical classification of
object classes.

II. RELATED WORK

Descriptors operate in what is currently known as point
clouds, which typically correspond to points from range
images. Most of the applications of these descriptors are in
Robotics, involving tasks such as object search or manipula-
tion. The literature on 3D descriptors is very extensive, so we



will try to summarize here the most recent methods. Some
of these descriptors are extensions of 2D shape counterparts.
These include 3D versions of Belongie’s shape context [6]
such as 3D shape context [7], unique shape context [8] and
intrinsic shape context [9] or an extension of Johnson and
Hebert’s spin images [10] to intrinsic spin images [11]. An-
other set of descriptors obtain different values (such as angles
or normals) that are grouped into histograms. These include
point feature histograms (PFH) [12], viewpoint feature his-
tograms (VFH) [13] and other variants [14], [15], [16], as
well as the ensemble of shape functions [17]. Additional
approaches include the use of eigenvalue decomposition for
a repeatable reference frame in the signature of histograms of
orientations (SHOT) [18], voting schemes (point pair features
[19]), spherical harmonics [20] and the spherical blurred
shape model [21]. Some of the aforementioned descriptors
(those available from the PCL) are further summarized next
in section II-B.

A. Comparing Descriptors

Previous work has been done on comparing 3D descrip-
tors. Recent work [22], [23] has tested their performance
in outdoor scene scenarios. Alexandre [24] performed a
descriptor comparison based on keypoint extraction. Some
other works [25], [21] have tested descriptors using the
Washington dataset [26], the former [25] present a thorough
study regarding robustness to different degrees of noise,
while the latter [21] adds sign language and facial expression
performance. It is also worth to mention the work of Tombari
et al. [27] on 3D detectors perfomance under noise, clutter,
occlusion and viewpoint. The work of Akgul and collab-
orators [28] showed that density-based shape descriptors
outperform histogram-based descriptors. That study, as well
as other recent work (e.g. [29]) have dealt with content-
based image retrieval, thus not evaluating performance in
a classification task, but using similarity measures between
object instances.

We are interested here in classification performance. The
aforementioned work in the image retrieval literature pro-
vided us with the dataset we were looking for, containing
objects as different as a ship and a spider, objects found
in nature (animals, trees, etc.), man-made objects (hammers,
lamps, guitars, ...), and with a wide variety of shapes and
forms, including textured objects and objects with inscrip-
tions. That dataset is the Princeton Shape Benchmark (PSB)
[30]. The object models in this dataset were synthetically
generated (alas, there is no comparable database of real 3D
objects). Being extensively used in image retrieval, it is also
highly suited to 3D object classification. A particularly nice
feature of the PSB is the organization of its classes into a
hierarchy, thus allowing us to perform not only the classical
flat classification, but also report results on a hierarchical
classification.

B. 3D Descriptors

For our comparison we selected ten state-of-the-art de-
scriptors based on feature histograms, histograms of orien-

tations, spin images, shape context and shape distributions,
all available from the Point Cloud Library (PCL)! [31].

a) The Ensemble of Shape Functions (ESF) [17]:
ESF follows the D2 shape distribution approach of [32],
which is the distribution of the distances between pairs of
random points on the shape. Wohlkinger and Vincze propose
three types of distribution (approximated as histograms): A
histogram of distances between points whose junction lines
lie on the object’s surface (on distances), another histogram
for lines lying outside the surface going through points that
are on the surface (off distances), and a third histogram of
distances which is a mix of both.

b) Point Feature Histograms (PFH, FPFH, VFH,
CVFH, OUR-CVFH) [12], [14], [13], [15], [16]: Rusu
presented the Point Feature Histograms (PFH) in 2008 and
later updates in 2009 (Fast Point Feature Histograms, FPFH),
2010 (Viewpoint Feature Histograms, VFH), 2011 (Clustered
VFH) and 2012 (OUR-CVFH). PFH is based on computing
the difference between the normals of two points in a
neighborhood and the line joining both points, which define
a Darboux frame (u, v, w). FPFH [14] is a later version of the
descriptor that, instead of using all possible point pairs inside
the neighborhood, sets one point against the points in the
neighborhood. VFH [13] is another update of FPFH where
a viewpoint component is added that contains information
regarding the histogram of the angles between a viewpoint
direction and each normal. CVFH [15] and OUR-CVFH [16]
are extensions of VFH, where the former adds an angular
and an L1 distributions, while the latter includes a Reference
Frame component in addition to the angular distribution.

c) Signature of Histograms of Orientations (SHOT)
[8]: SHOT first defines an invariant local reference and then
computes the difference between two points normals in point
clouds. SHOT consists of two steps: the computation of a
histogram and a signature. The histogram is the number
of points that fall into bins with respect to a function (the
cosine) of the angle between the difference of the normals.
The signature corresponds to a spherical grid that combines
radial, azimuth and elevation axes. This grid is divided into
32 bins filled with the histogram counts, each of which is
multiplied by a weight proportional related to the distance
to the central bin.

d) Shape Context descriptors: The shape context [6]
is a global descriptor that captures the distribution of points
with respect to specific points in the shape. We will report re-
sults on 3D Shape Context [7] and Unique Shape context [8].
The 3D Shape Context (3DSC) corresponds to the histogram
of the relative coordinates of all the shape points with respect
to the current point. Matching is performed computing three
values: 1) the shape term 2) the appearance term and 3) the
position term. These three terms are combined by a weighted
sum. The Unique Shape Context (USC) [8] avoids the need
for a descriptor computation over different rotations as used
in 3DSC. USC computes a unique unambiguous reference
frame that is repeatable over both the normal axis and the

Uhttp://docs.pointclouds.org/trunk/group__features.html
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Fig. 1. How principal curvatures in the surface are approximated. a) First,

curvatures (bold black curves) are computed over the surfaces using pairs
of points (blank circles), one of them being the center point p. N and T
correspond to the normal and tangent vectors, arrows give their direction. b)
Curvatures are interpolated using a spline, providing the maximum curvature
kq. c) Tangent directions (x, y and z vector values) corresponding to the
two orthogonal surface curvatures are interpolated in the same way. The
interpolated tangent directions provide the curvature value corresponding to
kp in (b) through its polar angle Q value (see text).

tangent plane.

e) Spin Images (SI) [10]: One can think of spin images
as finding oneself in one point of a mesh and recording the
radial and elevation coordinates of the points that fall in
the neighborhood. These distance point values are grouped
together into a histogram. A shape is then a set of those
histograms.

III. SURFACE CURVATURE AND VIEWPOINT
LOCAL DISTRIBUTION DESCRIPTOR (SCURYV)

We describe here in detail our SCurV descriptor. This

descriptor is the result of computing the following quantities:

1) A global object-centered representation based on sur-
face curvature.

2) A local viewpoint-centered representation providing
degrees of convexity, concavity and flatness.

3) The final descriptor, which is the result of computing
the tensor product between the global object surface
components and the local viewpoint distributions.

Both parts of the descriptor (as well as those summarized

in section II-B) work with point clouds. Since the PSB uses
mesh files to represent 3D objects, 3D points are uniformly
sampled from the triangulated surface as later explained in
detail in section IV-B.

A. Global object-centered representation

For every point, a surface neighborhood is defined that
includes a number of points as obtained from a point cloud

selected by their proximity. For our experiments we tested
different neighborhood sizes (6, 8, 16, 32, 64 and 128 neigh-
bors). Since results were independent of the neighborhood
size and larger sizes meant more computation time, we
used the smallest neighborhood size tested (six neighbors;
less would be insufficient for our approach). Points falling
inside the surface neighborhood will provide a curvature
grid along the surface. We are interested in computing a
close approximation to the surface neighborhood principal
curvatures. We will do this by obtaining the maximum
curvature on the surface neighborhood and its orthogonal.
First, curvatures between the point of interest (p, at the
center of the neighborhood), and every other point (g;) falling
within the neighborhood are computed as (Fig. 1a)

; (D

where dT is the difference in tangent between the curve
joining points p and ¢;, and ds is the Euclidean distance
between the points. Tangent vectors are easily obtained by
noticing that the normal vector associated to every point is
orthogonal to its tangent plane (assuming that the point cloud
is sampled from a smooth manifold). If we project the line
joining p and ¢; into those tangent planes, we obtain the
tangent vectors corresponding to p and ¢g;. Thus, we can
obtain dT and the curvatures between p and ¢; (black curves
in fig. 1a and blank circles in fig. 1b). Each tangent vector
also has an associated direction (x, y and z vector values at
the colored circles in fig. 1c).

1) Curvatures on the surface: At this point we have
a number K (K =5 in our case) of curvature values.
The surface curvature will be obtained from the principal
curvatures, i.e. the maximum curvature obtained at a given
point, and its orthogonal curvature. These two curvatures will
define the surface neighborhood as shown in figure la. But
since we are obtaining curvatures from isolated points in the
surface, the point-wise maximum and minimum curvatures
on the surface neighborhood may be quite different to the
real principal curvatures in the surface due to quantization
(we have access to a set of points in the surface). In order
to solve this problem and obtain better surface curvature
approximations, we fit all the curvatures k; with a spline
interpolation (Fig. 1b) as well as also interpolating their
associated tangent directions (Fig. 1c).

Splines are piecewise polynomial functions connected
smoothly by joining points commonly known as knots with
a polynomial. Cubic splines are splines of order 4 (four
coefficients are required to specify a cubic polynomial). In
our case, the point-wise k; values obtained previously would
be the knots in a 1-D spline (Fig. 1b). A spline is defined in
each of the g knot intervals as [33]

m
S()C):ZCL[(X—]CZ‘)J,i:o,...7g, )

j=0
for a spline of order m+ 1 (m = 3 in our case) with

coefficients c;;. These coefficients are obtained by solving a
tridiagonal linear system [34].



Descriptor SCurV ESF VFH CVFH | OUR-CVFH | PFH | FPFH | SHOT | USC | 3DSC SI
Global/Local Both Global | Global Both Both Local | Local Local | Local | Local | Local
Size Global: 231, Local: 1000 640 308 308 308 125 33 352 1980 1980 153
TABLE I

DESCRIPTORS USED IN THE EXPERIMENTAL SECTIONS. SEE THE PCL [31] DOCUMENTATION FOR DETAILS.

surface curvature

location Distributions along point normal
a) b)

Fig. 2. Summary of the descriptor. SCurV is the tensor product between a
global shape representation (a) and a local viewpoint distribution component
(b). Top: Point cloud. a) Surface curvature-location representation. Plotted
are the averaged curvatures after spline interpolation of the two orthogonal
surface curvatures (Section III-A). For display purposes not all spherical
bins are shown. b) The local distribution corresponds to the projection of
the neighboring points onto the normal of the center point (Section III-B).
The left inset shows the point distribution corresponding to a flat surface;
the distribution on the right corresponds to a sharp/pointy surface.

Every g; point falling in the neighborhood of the central
point p is projected into its associated tangent plane (defined
through its normal vector). They are then attached to a polar
coordinate angle () with respect to the center point p on
this projected plane. The knots of the spline intepolation will
correspond to their point cloud quantized curvature k; values
(y-axis in Fig. 1b) with respect to those polar coordinate
angles (Q values, x-axis in Fig. 1b). The first knot will be
also the last in order to close the spline. This same process
is used to interpolate their tangent vector coordinates with
respect to the central point p as shown in fig.1c. Back to the
computation of principal curvatures, the largest value of the
spline computed this way will correspond to the maximum
curvature on the surface manifold, k, (Fig.1b). The curvature
whose tangent is orthogonal to k,’s tangent along the spline
will be the other curvature of interest (k;) to describe the
surface neighborhood curvature. Note that it will not always
correspond to the minimum curvature in the spline due to
interpolation errors, although it will be close to it. In order
to compute this latter curvature, we must obtain the vector
that is perpendicular to the tangent of curvature k, inside
the surface neighborhood. The Q values in figures 1b and
1c x-axis relate the curvatures with their interpolated tangent
directions in the neighborhood surface. Thus, we must obtain
the tangent direction orthogonal to the tangent corresponding
to k, (Fig. 1c). Its polar angle value Q will provide us with

the curvature k;, and is found by computing the cosine of
the angle between the tangent direction of k, and the rest of
interpolated tangent directions. The place where it is closest
to O provides the polar angle value (Fig. 1c) for obtaining
the corresponing k;, in figure 1b.

There exist two commonly-used surface curvature mea-
sures, the Gaussian and mean curvatures. Since using both
is quite redundant, we use the mean curvature (the arithmetic
mean of the principal curvatures) kmean = %(ka +kp) in our
SCurV descriptor since it produces better results.

2) Object radius computation: Part of the information
contained by the descriptor consists of a 2D histogram
(Fig. 2a) where one dimension (the y-axis in fig. 2a) is the
surface curvature computed before and grouped into bins in
a range [0,1] (steps of 0.1 in our experiments). The other
dimension consists of the radial distance of the curvature
value with respect to the centroid of the object grouped
in bins inside the sphere that covers the object (x-axis in
fig. 2a). The number of spherical radial bins used is 21, and
the number of curvature bins is 11. This 2D histogram is
transformed into a vector @&/ for its combination with the
viewpoint representation explained next.

B. Local viewpoint-centered representation

For each point, the ¢ nearest points (f must be sufficiently
large to cover large neighborhoods, e.g. 100) are selected
and projected onto the line going through that point with
the direction of the corresponding normal vector (Fig. 2b).
After sorting the projections we have a data sequence that
approximates the inverse function of the one-dimensional
distribution of the projections. For example, if a point lies
on a flat surface, that distribution concentrates in one point;
if the point is on a convex (concave) surface, then the bulk
of the projected distribution falls into the negative (positive)
part of its normal. In this way the projected distribution can
express the properties of the local shape.

The sorted vectors of projections are clustered by k-means
clustering to create “bag-of-words” type feature vectors (the
number of clusters is 1000 in our experiments). For each
object, we then group the points into a histogram by counting
those falling into the same cluster. The histograms are
normalized to have unit L; norm to form a proper probability
density function, producing a vector ¢,

C. SCurV as a result of the combination of global object-
centered and local viewpoint-centered shape representations

We use the tensor product to combine the object-centered
and the viewpoint-centered representations computed before.
We prefer the tensor product over concatenation because
when feature vectors are concatenated, then the family of
the distributions and the type of kernels could be lost, e.g. if
the features follow a Gaussian distribution, the concatenated



feature would generally not follow that distribution. On the
other hand, the marginal distribution is preserved by the
tensor product. The reason for this is that if the feature repre-
sentations have independent distributions, then the marginal
distributions of the tensor product reproduce the distributions
of the original factors.

The feature vectors of the 3D objects generated by the
two different procedures explained before are combined
by the tensor product, which implicitly yields all possible
combinations of the components of those vectors. Here we
apply the tensor product as an operation which can join two
independent vector spaces into one. One can show that the
tensor product of the features leads to a kernel which is the
point-wise product of the kernels built up on the distinct
features separately; thus the computation of the joint feature
has a complexity of O(n?), where n is the number of sample
items considered. It is based on the identity, valid in any
Hilbert space,

ny
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where (,) denotes the inner product, and ®/" | expresses the
tensor product of n, different vectors (n,=2 in our case). This
identity allows us to combine features in a computationally
simple way: Kernels can be independently computed and
combined from all possible configurations. For example if
we consider our two feature representations, ¢¢ and ¢,
then the joint kernel K can be computed by the point-wise
product of the kernels K¢’gl and K¢ C, since

Kij = (9 (xi) © 9" (i), 9% (x)) ® 9 (x;)) o

. g ¢
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This equation shows that even though the starting point
is the tensor product, it is implemented as the point-wise
product of the kernels, avoiding the need to work with
very large dimensions as well as being computationally
more efficient. For more details on the tensor product, the
theoretical background and proofs of the statements included

here, please consult [35].

IV. EXPERIMENTAL SETUP

A. The Princeton Shape Benchmark 3D object model
database

The Princeton Shape Benchmark (PSB) [30] consists of
1814 synthetic objects or models grouped into 90 training
and 92 test classes. We will use this dataset not in an
image retrieval task as most of other works do, but on
two different classifcation tasks. Since many classes in the
test do not appear in the training (and viceversa), for our
classification purposes we grouped all training and test
classes, giving a total of 161 different classes. Even though
it is extensively used in the shape-based retrieval literature,
it has attracted little attention from the 3D descriptor or 3D
object recognition literature due to the heterogeneity in terms
of classes and intraclass representations of 3D objects (see
fig. 3a for some examples). The main reasons why this is a

challenging database was already reported by Jayanti et al.
[36], and maybe that is why it has been neglected in the 3D
object classification literature. Nevertheless, we found that 1)
this dataset contains a very large number of heterogeneous
classes and objects, 2) objects are classified hierarchically
and 3) it is the closest to how humans hierarchically classify
the world (eg. fig. 3b). This three aspects are of interest for
1) test our SCurV descriptor on a large and heterogeneous
classification task, 2) evaluate it against other state-of-the-art
descriptors on that task, and 3) perform a novel hierarchical
classification of object classes. For a comparison of the PSB
with other databases and additional advantages of using this
dataset, please consult Shilane and co-workers [30].

B. Preprocessing

The objects are represented by point clouds uniformly
subsampled from the original PSB mesh files. To produce
realistic point clouds out of the mesh files describing the ob-
jects, a random sampling is applied which selects points from
the triangulated surfaces. In our experiments, the number of
sample items for feature computation is set to 5000. The
reason for using smaller samples to generate some features
is the reduction of otherwise too expensive computation.
Uniform sampling reduces the high variance caused by the
different triangulation methods applied in the generation of
the PSB. The distribution of those points is uniform with
respect to the entire surface of the object, thus the probability
of selecting a point from a triangle is proportional to the area
of that triangle.

C. Maximum Margin Regression classifier

We will make use of the same classifier for all the
descriptors. We will apply a maximum margin based re-
gression (MMR) technique [37], which is an extension of
the well known Support Vector Machine (SVM), but which
provides a better scheme for flat and hierarchical multiclass
classification as well as some other interesting properties,
which are summarized next. In maximum margin regression,
the aforementioned descriptors will serve as input, and
the predicted outputs represent the classes in the flat and
hierarchical classification tasks. The outputs, the classes, are
also represented via feature vectors to allow the application
of a regression approach (MMR) which can reduce the com-
putational complexity of the flat and hierarchical multiclass
learning to the complexity of a single binary classification.

MMR relies on the fact that the normal vector of the
separating hyperplane can be interpreted as a linear operator
mapping the feature vectors of input items into the space of
the feature vectors of the outputs. In the case of the SVM, the
space of the outputs is a simple one-dimensional space only
containing the vectors (—1) and (41) corresponding to the
two classes. Multiclass (including hierarchical) classification
is a simple application of the MMR framework. In this sce-
nario, a feature vector of class ¢ corresponding to an instance
i is represented as an indicator vector of dimension equal to
the number of classes, i.e., the vector component c is equal to
1 and all others are 0. Other multiclass representations which
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can incorporate available prior knowledge (e.g. imbalanced
class proportions) can be performed via appropriately chosen
output features. Further details regarding MMR can be found
in [37].

D. Evaluation: Hierarchical and flat multiclass classifica-
tions

A hierarchy of classes is represented by a rooted directed
acyclic graph (DAG). The root corresponds to a superclass
containing all subclasses. The next layer consists of those
subclasses which are not contained by any other classes.
Every new layer consists of those classes which are contained
by any class one layer closer to the root. The directed edges
start from the root and point to the contained classes from
the containers.

To build the kernel on top of this type of representation
the following steps are applied: (1) The nodes of the graph
are indexed by topological order, i.e., if there is a directed
edge from node A to node B then iy < ip holds for their
labels. (2) The feature vector ¢(N) of a node N is an
element of {0,1}", where n equals the number of nodes.
The components of ¢(N) correspond to the nodes and are
indexed by their topological order. (3) A component of the
feature vector ¢(N) is 1 if the corresponding node is on the
shortest path from the root to N, otherwise it is set to O.
This will correspond to the indicator of the path from root
to node.

For the evaluation of the hierarchical classification we
followed the work of [38]. Thus, the best evaluation measures
for this type of classification are precision, recall and their
combination into the F1 score. They are given by combi-
nations of the true positives T}, false positives F}, and false
negatives Fy,,

T, T,
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where P is the precision and R is the recall. A perfect
descriptor would have a recall value of 1 for any precision.
The F1 measure summarizes both as their harmonic mean.

In the hierarchical classification task, nodes that appear
both in the true and in the corresponding predicted paths
leading from the root node to the object class in the graph

are considered as the true positives. False positives nodes
are those that lie on the predicted paths but not on the
corresponding true paths. False negatives are those nodes that
can be found in the true paths but not in the corresponding
predictions.

In the flat classfication task, the classes can be modeled
by a two-level tree graph where one level contains only the
root node, and all object classes nodes occur in the second
level. Since the path consists of second-level nodes connected
only to the root, the numerical values of F,, and F; are equal
(as are then P and R). Thus, for the flat classification we
evaluate the accuracy, defined as the number of instances
in the diagonal of the confusion matrix divided by the total
number of instances.

In both the hierarchical and flat classification cases the root
node is excluded when the precision, recall, F1 and accuracy
scores are computed.

V. EXPERIMENTAL RESULTS

In the computation of the prediction results, a 5-fold cross-
validation procedure was applied to all descriptors. In the
learning procedure, first linear base kernels were computed
from the corresponding features. On top of those kernels,
a Gaussian non-linear kernel transformation was applied
to increase the flexibility and prediction capability of the
underlying features. The parameter corresponding to each
Gaussian kernel was found by cross validation restricted to
the training data, which we divided into validation test and
validation training partitions. Then, the learner was trained
only on the validation training items. The values of the
parameters for MMR were chosen such as to maximize
the F1 and accuracy scores on the validation test for the
hierarchical and flat multiclass classifications, respectively.

A. Flat classification

By flat multiclass classification (or just, flat) we mean
the classical classification where all objects are classified
as being equally different. Table II shows that the SCurV
descriptor outperforms all other descriptors at a classical
classification task with the 161 different classes and 1814
different objects from the PSB. We also report the case
when we use the simple concatenation of the global and



Flat Hierarchical

Descriptor accuracy | Precision  Recall F1
SCurV 0.39 0.56 0.54 0.55
concat(¢8,9') 0.35 0.45 0.45 0.45
ESF 0.34 0.47 0.45 0.46
CVFH 0.20 0.32 0.31 0.31
OUR-CFH 0.18 0.27 0.25 0.26
VFH 0.14 0.27 0.26 0.26
SHOT 0.14 0.24 0.23 0.23
usc 0.12 0.19 0.17 0.18
3DSC 0.11 0.19 0.17 0.18
SI 0.10 0.18 0.16 0.17
PFH 0.08 0.16 0.14 0.15
FPFH 0.08 0.16 0.14 0.15

TABLE II

CLASSIFICATION RESULTS FOR SCURV AND TEN OTHER DESCRIPTORS.

Flat Hierarchical

Descriptor | accuracy | Precision  Recall Fl1
SCurV 0.36 0.54 0.52 0.53
ESF 0.34 0.47 0.44 0.46
CVFH 0.20 0.31 0.29 0.30
OUR-CFH 0.14 0.25 0.23 0.24
VFH 0.12 0.22 0.21 0.22

TABLE III
CLASSIFICATION RESULTS UNDER NOISE FOR SCURV AND FOUR OTHER
DESCRIPTORS.

local representations (instead of the tensor product). ESF
provides very good results as well on this task. The other
3D descriptors accuracy scores proved to be worse. We can
also see that VFH, CVFH and OUR-CVFH perform much
better than either PFH and FPFH alone. As commented in
section II, they extend PFH with the concatenation of new
elements, showing the importance of combining different
sources of information in the descriptor.

B. Hierarchical classification

The results produced by SCurV and the other eight de-
scriptors on a hierarchical multiclass classification of the
Princeton Shape Benchmark data are also found in table II.
The precision and recall were computed node-wise for all
paths representing the classes of the test items. In this way
not only the leaf classes were considered, but also the higher
level superclasses were taken into account. Our descriptor
outperforms all competition, being followed closely by ESF.
CVFH, OUR-CVH, SHOT and VFH and the shape context
approaches show similar performance.

We would like to stress here that even though these
results are better than for the flat classification, they cannot
directly be compared to those. Results in these experiments
are boosted for all the descriptors by the simple fact that
where a correct classification in the previous experiment only
considered the leaf classes, now the classes above them are
also considered.

C. Robustness to noise

Curvature-based computations are prone to be influenced
by noise. All the objects from the PSB were corrupted by

adding Gaussian noise (variance = 0.1) to every object point,
and we ran the same classification processes. For comparison
we used the four best-performing competing descriptors
(ESF, CVFH, OUR-CVFH and VFH). Table II shows the
robustness of ScurV as well as those other four descriptors.
ESF and CVFH results were barely influenced by noise,
while SCurV, OUR-CVFH and VFH provided classification
scores below the noise-free results. Even though SCurV is
affected by noise, the spline interpolation mitigates its effect.
Thus, it is less prone to noise than the other two histogram-
based feature descriptors.

D. Discussion

a) Descriptor performance comparison: Our descrip-
tor clearly outperforms all other descriptors at the task of
object classification. The reason for this is the fact that our
approach focuses on a descriptor that combines a global
surface representation through curvature computation and a
local viewpoint distribution. We performed our experiments
using different types of descriptors (table I). In this work we
are interested in their classification capabilities. This task
(as well as the dataset) may suit global descriptors better
than local descriptors. Nevertheless, the study performed here
is of great interest for two reasons: First, the task involved
was not instance recognition but class recogntion. Thus we
tested how well different descriptors withstand intraclass
variation. Secondly, this was done over a very large dataset
containing many different object classes, thus also evaluating
the class-discriminative power of the descriptors tested. Our
evaluation holds for object classification only. Our results
and conclusions do not necessarily carry over to other tasks.

We tested SCurV and four other descriptors on the same
classifcation tasks with added noise. Noise had a higher
effect on SCurV than on ESF or CVFH, although it still
maintained the highest classification scores. It would be
interesting to test how much noise can SCurV withstand
compared to its competitors. Another limitation of our ap-
proach is computation time. Every object required approx-
imately 40 seconds on an Intel CPU Q9550. ESF and the
Feature Histogram approaches were faster; SHOT run on
similar timing and all others were computationally even
more intensive. The part most computationally intensive in
SCurV was the k-means clustering (section III-B). In fact, the
object-centered component (section III-A) took just slightly
less than a second per object. For future work we plan
to replace k-means by another, more efficient clustering
method. Finally, our descriptor still has to prove its validity
under occlusion, clutter, viewpoint and non-rigid shapes.

b) Advantages of combining features with the tensor
product: As mentioned in section III-C, the tensor product
preserves the family of the distributions of the factors as
well as the type of the kernels, i.e. the pointwise product of
Gaussian kernels is also Gaussian. Similarly, the pointwise
product of polynomial kernels also remains polynomial.

The advantage of the tensor product is shown in the
results, compare in table II, SCurV with concat((])gl ,(j)l"). We
performed some further tests to evaluate the tensor product



on feature combinations. The best case occurred when we
combined SCurV with ESF; the classification performance
increased to an accuracy = 0.43 in the flat classification and
an FI score = 0.58 in the hierarchical classification. Compare
these values to those of SCurV and ESF in table II, where
they were considered separately.

c) We performed a novel hierarchical classification
evaluation of descriptors: 1t would be of interest for future
work to evaluate if the proposed scheme for hierarchical
classification can have an effect on improving the overall
classification results at the lowest level. Thus, to study if
using hierarchical information can correctly classify leaf
nodes that were misclasified when using flat classificaiton,
i.e. could hierarchical information be used for a better overall
multiclass classification performance?

VI. CONCLUSIONS

We have presented a 3D descriptor, named SCurV, which
is designed for object class classification tasks. SCurV com-
bines a global-surface and a viewpoint-dependent representa-
tions in a novel way using the tensor product. Our descriptor
outperformed other state-of-the-art descriptors at two classi-
fication tasks with and without noise, where we performed
a flat and a novel hierarchical multiclass classification tasks.
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