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Abstract— The image of an object changes dramatically de-
pending on the lightning conditions surrounding that object.
Shadows, reflections and highlights can make the object very
difficult to be recognized for an automatic system. Additionally,
images used in medical applications, such as endoscopic images
and videos contain a large amount of such reflective components.
This can pose an extra difficulty for experts to analyze such type
of videos and images. It can then be useful to detect - and possibly
correct - the locations where those highlights happen. In this work
we designed a Convolutional Neural Network for that task. We
trained such a network using a dataset that contains groundtruth
highlights showing that those reflective elements can be learnt and
thus located and extracted. We then used that trained network
to localize and correct the highlights in endoscopic images from
the El Salvador Atlas Gastrointestinal videos obtaining promising
results.
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I. INTRODUCTION

Specular and diffuse reflections present in images can be
a nuissance for algorithms dealing with stereo matching, seg-
mentation, tracking, object recogntion and other applications.
The appearance of a surface can significantly vary in the
presence of reflected lights. For those applications, reflections
may cover surface details and appear as additional features
that are not intrinsic to the object. Highlights can have more
serious consequences in cases such as when present in medical
images. They can pose a factor in the correct evaluation of an
image or video, or at least make more difficult such evaluation
from an expert. One such example is cervical cancer screening;
i.e. to detect precancerous lesions during digital colposcopy.
These images contain reflective components that generally
appear as bright spots heavily saturated with white light.
Another example is endoscopic examination, where pictures
from the inside of the human body are displayed on a computer
monitor. They often contain large areas with light reflections.
Usually the physician can avoid these highlights by changing
the perspective, turning the tip of the endoscope. However, this
solution is not effective in case of a camera-in-pill examination
because it is not possible to force the pill to move to a better
position.

Fig. 1: Endoscopic images obtained from the El Salvador Atlas
of Gastrointestinal videos.

There is a large and interesting amount of work in highlight
segmentation and removal in computer vision. Most of it deals
with the separation between diffuse and specular reflectance.
We can classify them depending on whether they use a polar-
ization reflectance model [1], color spaces [2] or segmentation
[3], diffusion [4] or a multiview (stereo, motion) approach [5],
[6].

Concerning medical images, some algorithms deal just with
specular highlights and thus apply intensity thresholding [7],
[8], [9]. These thresholding methods use either a fixed range of
intensity values or implement a method where these thresholds
are adaptive in order to overcome the problem of having to
deal with different thresholds. The main problem of these
thresholding methods is the over/under-estimation of highlight
areas. Another group of methods rely either on averaging9978-1-5386-1842-4/17/$31.00 c�2017 European Union



[10], [11] or on difussion [12], [13]. Averaging algorithms
consist of selecting a specific neighborhood (e.g. L-shape) and
computing the average or median intensity of that neighbor-
hood. These methods rely on the assumption that the area
underneath of the highlight is homogeneous, failing then in the
case of large highlight areas (such as the ones in endoscopic
videos). Diffusion methods rely upon what is called digital
inpainting, which is image interpolation and suffer from being
insufficiently efficient. More recently, hybrids that combine
both methodologies have also been presented [14], [15].

We propose here a method where the type of highlight is not
important. Our method does not distinguish between diffuse
or specular highlights, as both can be problematic. It does not
make any assumptions either, but it learns the attributes that
correspond to highlights using a deep learning architecture
similar to the one used for object segmentation. We use a
dataset of natural images that contains groundtruth highlight
labelling for diffuse and directed lighting to train the network.
This trained network is then used for the analysis of highlight
areas in endoscopic medical images, of the type shown in Fig.
1.

II. METHODS

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a deep learning
method first introduced by LeCun et al. in 1989 [16]. They
gained renewed interest in 2012 when Krizhevsky et al. [17]
won the ImageNet [18] competition, for image classification,
by a large margin using a CNN. Since then, CNNs were
adapted to tasks other than classification and have become
one of the work horses for machine learning and computer
vision. In this paper we use an adapted version of the SegNet
[19] architecture for reflection segmentation as well as color
correction.

B. SegNet

SegNet has become the standard architecture for image seg-
mentation. It follows a general encoder–decoder architecture,
somewhat similar to autoencoders. The encoder part consists
of a VGG16 network [20] without the fully connected layers
at the end that are usually used for classification. In VGG16
a sequence of convolutional and pooling layers is repeated
until a sufficiently small resolution is reached. In the standard
SegNet architecture, this pattern repeats five times. This highly
reduced information is then decoded by repeated upsample and
convolution layers until the output has the same resolution
as the input image. Information about which elements were
chosen during pooling are forwarded to the upsample layers
to improve upsampling. A softmax layer is used to get class
probabilities for each pixel position.

C. Highlight-Segnet

This Segnet architecture is trained on pairs of images and
dense per–pixel–labels. For the task of reflection segmentation,

Fig. 2: Architecture of Highlight-Segnet

the input is an image with reflections. The labels specify for
each pixel whether it is part of a reflection or not. After
training, new images can be presented, and the network will
determine a reflection probability for each pixel. For color
reconstruction, the input is the reflection part of an image and
the per pixel labels are colors from a discrete set of possible
colors which were selected by octree color quantization [21].
The reason behind the use of octree color quantization is that
In the color correction task we have to consider that we would
have a very large number of classes if we consider every color
in RGB space (224 = 16, 777, 216). We then need to reduce
that large number of classes. Figure 2 shows the architecture
of the proposed system.

We used the implementation of SegNet provided with the
Caffe [22] deep learning framework. The number of neurons
in the last layer were adapted to correspond with our class
numbers.

III. EXPERIMENTAL EVALUATION

We perform two types of analysis. The first one consists of
segmenting areas of the images that contain highlights, while
the second involves removing those highlights and replacing
them with their corresponding values under ambient light
illumination. Most works on highlight detection and removal
report their results on sample images, here we include as
well a quantitative analysis. For this purpose we use a dataset
that includes the groundtruth highlight segmentation and the
Euclidean distance to the correct color under ambient light
conditions over a set of 200 images. Images are of size
150 ⇥ 150 pixels, and since the input to the training are the
pixel values and their labels, the learning algorithm has then
a total of 4,500,000 classification samples. The datasets used,
training, preprocessing and experimental results are described
below.

A. Datasets

We use two publicly available datasets for the evaluation
of our methodology. The Purdue RVL SPEC-DB Color Image
dataset [23]1 contains 300 real images with specular highlights
under three different conditions, namely ambient, diffuse and
directed. This dataset comes with a groundruth segmentation
of the image reflection areas for 200 of those images. There

1https://engineering.purdue.edu/RVL/Database/specularity database/index.html
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Fig. 3: Examples of highlight segmentation for the Purdue
RVL SPEC-DB Color Image dataset

were no constraints on the type of materials used. This dataset
is used for training the model and a first evaluation of its
performance. Another suitable dataset is the one reported in
[4]. this is, however, not publicly available and hence we could
not use it.

The second dataset, El Salvador Atlas of Gastrointestinal
Image dataset2 contains 4446 video clips from which we
extracted 340 endoscopic frames randomly from 15 different
random videos. As there is no groundtruth images from these
videos, we will use the images extracted from this dataset
purely for qualitative evaluation purposes. Figure 1 shows
some examples of these video frames.

2http://www.gastrointestinalatlas.com/english/english.html

Table 1: Reflection and Non-reflection Segmentation Precision,
Recall and F1-score for our model trained on the Purdue RVL
SPEC-DB Color Image Dataset, and thresholding methods on
the 40 test images

Precision Recall F1-score
Highlight-Segnet 0.80 0.81 0.80

Threshold (75) 0.43 0.96 0.59
Threshold (80) 0.52 0.93 0.67
Threshold (85) 0.32 0.86 0.47
Threshold (90) 0.18 0.52 0.27

B. Training

We use two different networks, one for each task, namely
segmenting reflective pixels (two classes) and correcting those
pixel values (75 classes as described below in section III-D).
We train each model using 150000 iterations, in batches of
4, with a decay rate of 0.9, and with a base learning rate of
0.001. For every 100 iterations, we test the learned network
on the validation data. The weights in all layers are initialized
with random values from 0.1 to 0.5.

C. Segmenting highlight areas

We train the network described in section II-C for classi-
fying two types of pixels: reflective and non-reflective. Since
the Purdue dataset contains the groundtruth reflective areas, we
train the network using this dataset. Most works in the field
of highlight detection do not perform a quantitative analysis.
But, using this dataset will allow us to perform a quantitative
analysis of our model. Training was done with 160 images
randomly selected, and the evaluation set consisted of the
remaining 40 images. We will evaluate the model using the
classical Precision, Recall and F1 score. They are given by
combinations of the true positives T

p

, false positives F
p

and
false negatives F

n

,
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p
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p
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T
p
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, F1 =
2PR

P +R
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where P is the precision and R is the recall. The perfect case
would have a recall value of 1 for any precision. The F1
measure summarizes both as their harmonic mean.

Figure 3 shows examples of highlight segmentation for
the Purdue dataset. A quantitative analysis is provided in
table 1. In order to confirm that the network was not just
learning high intensity pixel values, we include four different
threshold values (above 75%, 80%, 85% and 90% brightness)
– following the works based on thresholding (see section I) –
for comparison.

The trained network using the Purdue dataset images and
groundtruth is used for segmenting highlights in the 340
endoscopic frames extracted from the El Salvador Atlas Gas-
trointestinal videos. Results are shown in Fig. 3. We cannot
report on a quantitative analysis in this case as there is
no groundtruth for this dataset. Nevertheless, this evaluation
shows the cross-dataset validity of our approach. Even though
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Fig. 4: Highlight segmentation for El Salvador Atlas of Gas-
trointestinal Image Dataset

the training consisted of natural images, we can see that the
trained network can be applied to another very different type
of images, from medical endoscopy in this case. Figure 5
shows a comparison of the results from the network to the
two best performing threshold values (75 and 80). Processing
an endoscopy image would take 0.030 seconds, which can
be considered real-time. No preprocessing was applied on the
images from both datasets.

D. Highlight correction

For the trained network in the color correction task we
use an octree color quantization [21] to reduce the number
of classes to 75. The reason we chose 75 is that after trying
smaller and larger number of classes, we obtained the best
results with 75 (using the Purdue RVL SPEC-DB dataset as

Input Highlight-
Segnet

Threshold
75

Threshold
80

Fig. 5: Highlight segmentation for El Salvador Atlas of Gas-
trointestinal Image Dataset

our reference). We then map the pixels from the training
images to our set of quantized color map by assigning them
to the respective color class obtained from the network used
from the experiments in section III-C. For this purpose we
use the Euclidean distance value from the pixel to each one
of the 75 classes and assign it to the closest one. The input to
the network is the segmented highlight region. We only used
the Purdue highlight dataset for this task since it was the one
that provided images with highlights and their respective non-
highlight counterparts (ambient light). Figure 6 shows some
results of highlight correction.

In order to perform a quantitative evaluation, we used
two measures, the RGB Euclidean distance and the �E

ab

color difference which was established by the International
Commission of Evaluation (CIE). The RGB average Euclidean
distance (AvgED) is computed as follows:

AvgED =

P
N
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p
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o
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o
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o

)2

N ⇥W ⇥H
,

(2)
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Fig. 6: Colors correction examples of Purdue RVL SPC-DB
dataset. Input images are the segmented highlight regions from
the highlight segmentation network.

where N is the number of images, W is the image’s width,
and H is the image’s height. R, G, and B are the three color
values of a pixel in the output image, while R

o

, G
o

and B
o

are three color values of the corresponging pixel from the
groundtruth image (before quantization).

We also evaluated the Lab space �E
ab

difference since
RGB color space is not perceptually uniform and the dis-
tance in Lab color space is more consistent with the human
perception of colors. The �E

ab

color difference which was
established by the International Commission of Evaluation
(CIE). The Average �E

ab

is computed as follows:

Table 2: Reflection Removal: Average Euclidean distance
(RGB) and Average �E

ab

difference (CIE L*a*b* color
space) results from our trained model, Interpolation and Me-
dian filters.

AvgED (RGB) Avg�Eab (Lab)
Highlight-Segnet 38.79 17.36
Interpolation Filter 163.54889 41.887936

Median Filter 217.11523 60.94023

Avg�E
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=

P
N
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p
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where N is the number of images, W is the image’s width, and
H is the image’s height. L, a and b are the lighness, green-red
and blue-yellow color opponnents of a pixel from the output
network images, while L

o

, a
o

and b
o

are the Lab values of a
pixel from the groundtruth images (before quantization).

Table 2 shows both the average Euclidean distance in RGB
and the average �E

ab

difference in Lab color space.On a
typical scale, the �E

ab

value will range from 0 to 100. Our
Average �E

ab

is 17.36 which indicates that the output colors
from our network are quite close to the groundtruth and much
better than for example using an interpolation or median filters
as used in a number of previous works (see I).

A few qualitative samples for Image highlight correction for
endoscopic medical images is shown in Fig. 7, in this case we
can see that the results are far from optimal and we definitely
need to obtain better results for these type of images, either
by increasing training size or using a different method other
than the octree quantization. Processing an endoscopy image
would take 0.024 seconds, which can be considered real-time.
If we add this value to the segmentation timing (0.030+0.024),
segmenting and correcting an endoscopic image takes less than
0.05 seconds.

IV. CONCLUSIONS

We have presented two convolutional encoder-decoder ap-
proach to segment and correct highlights from images. Reflec-
tion elements are learned by the network from a dataset that
contains ambient and specular highlights. This learned network
shows highlight segmentation and correction capabilities when
faced with medical endoscopic images in real time, a type
of images which the network was not confronted to during
training. Even though results are quite promising, there is still
much work to do. The color-corrected endoscopic images are
far from perfect. For future work we would like to explore
a modified version of the correcting network where the pixel
values are obtained through regression instead of classification,
thus avoiding the octree quantization process. Additionally we
would need more training images. We also plan to explore the
performance of our system with other types of medical images.
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Fig. 7: Highlight correction examples for El Salvador Atlas of
Gastrointestinal Image Dataset.

Nevertheless we can conclude that deep learning algorithms
can be of great use to analyze highlights and medical images.
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