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Abstract— The frontier in robot autonomy is currently 
Lifelong Open-Ended Autonomy (LOLA). Within these settings, 
a robot must be able to operate and learn in domains that are 
unknown at design time as well as reuse knowledge learnt in one 
domain to facilitate learning in others throughout its lifetime. 
Achieving LOLA goes beyond learning specific algorithms and 
puts us squarely in the realm of cognitive architectures; 
however, most cognitive architectures were not built to address 
the LOLA problem, and thus, lack components and capabilities 
that would be required for it. In fact, even though there is a 
growing literature on learning representations, especially in the 
framework of reinforcement and deep learning, hardly any 
cognitive architecture considers the issue of autonomously 
learning representations, which is a crucial problem to be able 
to efficiently learn and abstract information when seeking 
LOLA. This paper provides a vision of the general requirements 
in terms of learning knowledge representations within cognitive 
architectures geared towards LOLA and addresses a specific 
problem in this context: the problem of learning representations 
that facilitate obtaining world and utility models and deciding 
on actions in situations where multiple goals can be activated. 
The work is carried out in the framework of the development of 
the e-MDB cognitive architecture for real robots operating 
autonomously in real domains. 

Keywords — cognitive robotics, cognitive architecture, open-
ended learning, lifelong learning, state representation learning  

I. INTRODUCTION 
 A really autonomous robot should be able to figure out by 
itself how the domains it finds itself in work and how things 
can be achieved in them. That is, throughout its lifetime, the 
robot must be able to find goals compatible with the function 
the designer wants from it and learn skills leading to those 
goals in whatever domains it operates, which are often 
unknown at design time: we thus require open-ended learning 
autonomy (OLA). Additionally, to make this learning more 
efficient, one would like these robots to transfer and reuse 
knowledge learnt in previous domains to facilitate learning 
and adaptation in new domains throughout their lifetimes. In 
other words, the objective would be to endow robots with 
lifelong open-ended learning autonomy (LOLA) so that they 
can operate robustly in an unsupervised manner. 

Achieving LOLA goes beyond specific learning 
algorithms, such as Reinforcement Learning [1], that allow the 

robot to learn particular skills or models related to goals 
provided by a designer. It requires the capability of managing  

all the knowledge that is learnt so that it can be contextually 
related and reused, thus facilitating posterior learning and 
operation. Also, to get the robots to do something in complex 
domains, there is also a need to manage motivations, contexts, 
and attention. In other words, for robots to autonomously learn 
to operate in domains that were not considered at design time 
and construct on this knowledge to address new domains as 
they come up during their lifetimes, all the capabilities 
mentioned above (and probably a few more) must be 
integrated and regulated. This is the job of cognitive 
architectures. However, most cognitive architectures were not 
built to address the LOLA problem, and thus, lack components 
and capabilities that would be required.  

Following the classification of [2], cognitive architectures 
come in three basic flavors: symbolic, hybrid, and emergent. 
It is important to note here that possessing the capability of 
learning is fundamental in order to be able to address LOLA, 
and not all of the architectures presented in the literature 
display this capability. In fact, many symbolic architectures 
have no learning mechanisms and thus their knowledge must 
be introduced by the designer when it is built, implying that 
the domains the robot is going to operate in must be known at 
that point. Examples of these are EPIC [3]  or 4CAPS [4]. 
Others within the symbolic or hybrid group, such as DUAL 
[5], ADAPT [6], ICARUS [7], incorporate learning 
capabilities, but mostly through the modification of rules at the 
higher level, without a versatile and unconstrained capability 
of creating new rules for new domains. It is only within the 
emergent cognitive architectures group, such as iCub [8] or 
MDB [9], and in a small group of hybrid architectures, such as 
MicroPSI [10], that versatile low-level learning mechanisms 
can be found. Thus, only these types of architectures could 
possibly achieve LOLA in robots. 

Notwithstanding the previous comments, all the learning 
systems within these architectures have implicitly or explicitly 
assumed that the robot cognitive systems were provided with 
specific and appropriate state space representations by their 
designers. That is, the designers decided what is relevant from 
the sensorial stream of the robot and how these relevant 
features would be represented. Otherwise, given the large 
number of sensors required by robots to address complex 
domains and the dimensionality of the data they provide, the 
spaces in which learning must take place would become huge, 
making learning very difficult. Consequently, the learning 
mechanisms of the architectures have focused on how to learn 
whatever knowledge components the architectures required 
(forward or inverse models, utility models, policies, etc.) using 
these predefined state space representations.  
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In the last few years it has become quite evident that to be 
able to produce robots with the capability of progressively and 
efficiently learning from their interactions with the world 
when in LOLA settings, state spaces [11] as well as the 
corresponding action spaces [12] need to be learned. There is 
no way to predesign what the most appropriate state spaces 
will be given that the domains and particular goals the robot 
will have to achieve in each domain are not known when 
designing it. In fact, within a domain and for the sake of 
learning efficacy, different goals and tasks will probably 
involve different state space representations (when trying to 
block an object thrown at a robot, a 2D cartesian 
representation of its position in time may be an ideal 
representation, but for throwing objects, a representation in 
terms of joint angular speeds may be better). Additionally, 
there is the problem of the usually very high dimensionality of 
the sensor data (such as image data). To make learning feasible 
and efficient lower dimensional and more task specific state 
spaces must be created.  

To address these issues in the case of models, a promising 
approach found in the Reinforcement Learning (RL) literature 
is to learn the dynamics in a compact latent space. Thus, State 
Representation Learning (SRL) algorithms are designed to 
find a way to automatically compress high-dimensional 
observation data into a meaningful low dimensional latent 
space [12], the state space in robotic terms. Within this scope, 
SRL algorithms have been applied to different problems like 
reconstructing the observations [13], learning a forward model 
[14], learning an inverse model [15], using feature adversarial 
learning [16], or exploiting rewards [17]. Achieving this goal 
directly from raw perceptions is a challenging quest that raises 
a lot of interest in the field of Deep Reinforcement Learning 
(DRL) [18], where deep ANNs are used with the aim of 
obtaining forward and reward models over compressed latent 
representations that allow performing predictions. This way 
optimal policies can be obtained fully autonomously.  

A very relevant work in the scope of the current paper, 
albeit not in robotics, is [19], which gained a lot of attention in 
the field of DRL. In it, the authors show the possibility of 
training an agent to perform tasks entirely within its simulated 
latent space. They learn a Variational Autoencoder model to 
compress the visual input into a small representative code. In 
addition, they use a model (called memory) to predict the next 
values of the latent space based on an RNN. Finally, they also 
learn a policy (controller) using a simple single layer linear 
model. The automation degree of the whole process was very 
high, showing that such approach is possible. The system was 
applied with high success in two video games. 

Later, [20] presented PlaNet, a model-based agent that 
learns a latent dynamics model from image observations and 
chooses actions by fast planning in latent space. The main 
novelty of this approach is that of using a model with both 
stochastic and deterministic paths. They test the algorithm on 
20 visual control tasks of the DeepMind Control Suite [21], 
using 64 × 64 × 3 images, outperforming the best model-free 
algorithms, mainly because they require a smaller number of 
episodes, showing the potential of planning in latent space. An 
improvement of this work is carried out in [22], where they 
present an algorithm called Dreamer, that learns long-term 
policies through models operating in latent space. Their 
method optimizes a parametric policy by propagating analytic 
gradients of multi-step values back through learned latent 
dynamics, with successful results in the same test-bed.  

It is important to point out that most of these models have 
been tested on simulated or game like environments, 

considering a single model or policy, and that the success of 
the approaches hinges on the assumption of the availability of 
dense reward functions [23]. This assumption does not hold in 
LOLA settings where rewards are defined on-the-fly and are 
usually very sparse. This implies that state space 
representation learning strategies would need to be coupled 
with more elaborate approaches at the cognitive architecture 
level that, for instance, allow leveraging on measures of 
competence in the form of intrinsic motivations [24][25], to 
choose the most adaptive task-directed representations of 
skills. Moreover, LOLA implies online learning of models that 
are defined during the lifetime of the system, so the typical off-
line parameter tuning in SRL is not feasible in this scope. 

We have been addressing the LOLA problem during the 
last few years from a developmental emergent cognitive 
architecture perspective by means of the development of the 
e-MDB (epistemic Multilevel Darwinist Brain) cognitive 
architecture [9][26]. We contend that these processes for 
autonomously obtaining the most appropriate representations 
and producing mechanisms to be able to express data that is 
provided in one representation in another representation 
(representational redescription), are fundamental and need to 
be integrated in cognitive architectures for the progressive 
creation of really intelligent robots. In this paper, we will 
address the first steps in the incorporation of SRL strategies 
within a complete cognitive architecture for robots, in this case 
the e-MDB cognitive architecture. In addition, we will 
evaluate the different opportunities this provides, especially in 
terms of generalization and abstraction, allowing the 
production of general rules over general representations that 
can be reused and adapted to different domains and situations. 

The remainder of the paper is structured as follows: section 
II is focused on presenting the basic components of the e-
MDB, together with the main knowledge elements involved 
on its operation. This formalization is required to understand 
the scope of LOLA. In section III, the global implications of 
SRL in LOLA are established, and the specific ones faced in 
this paper are described in detail. Section IV describes the 
experimental setup and the experiment dynamics, to clarify 
how the learning processes occur in time. Section V is devoted 
to the presentation and discussion of the experimental results 
obtained in a simple real robot setup. Finally, in section VI, 
the main conclusions of this new research line are commented. 

II. E-MDB COGNITIVE ARCHITECTURE 

A. Architecture overview 
The epistemic-Multilevel Darwinist Brain (e-MDB) is a 

cognitive architecture for lifelong open-ended learning in real 
robotic systems. It has been under development since the early 
2000s and it allows artificial agents to learn from their 
experience in dynamic and unknown domains to fulfill their 
objectives. The architecture is made up of three main 
components: 

• A motivational system that establishes the robot’s 
motivations and allows it to find new goals and select which 
ones are active. Its operation is based on domain independent 
needs and drives [27], since they allow assigning purpose to 
the robot regardless of the domain in which it works. A 
detailed explanation of its operation can be found in [28]. 

• A learning system that allows the creation and learning of 
utility models [29], [30] to re-achieve goals and learn skills 
associated with them. It is also devoted to learning world 
models that represent the domains the robot is in. This system 
works online supporting learning of emergent models.  



• A memory system that allows storing and relating goals, 
models and all the knowledge that is generated. As this 
knowledge is domain dependent, the memory is based on a 
contextual representation [31] to be able to reuse knowledge 
in the appropriate conditions. 

All these elements were initially tested using state space 
representations chosen by hand by the designer. However, to 
provide the architecture with real autonomy, it should be able 
not only to learn the necessary knowledge elements, but also 
to autonomously extract a representation with the most 
important features for the task to be performed. Therefore, the 
fourth main element of the architecture should be: 

• A representational system that allows learning 
appropriate state space representations. It will learn 
representational redescription functions that automatically 
compress high-dimensional observation data into low 
dimensional latent spaces determining the state spaces with 
which the different components of the robot cognitive 
architecture will work. 

B. Knowledge representation 
The e-MDB learns and stores the following types of 

knowledge nodes: 

• Drives: A drive, Dj, reflects how far the system is from 
satisfying an internal need (state the robot seeks to achieve or 
maintain) provided by the designer as an indication of 
purpose.  Although they do not represent knowledge acquired 
by the robot, they are included for clarity in the explanation. 
There are two types: Cognitive and Operational. The former, 
also called intrinsic drives, lead the robot to learn by 
improving exploration (novelty drives, competence drives 
[28]). The latter lead the robot towards achieving its domain 
independent purpose as defined by the designer. 

• Goals:  They represent perceptual situations (points or 
areas 𝐺!) that when reached within a domain reduce the value 
of, at least, one drive Dj. These points provide utility.   

• Utility Models (UMs):  They are functions associated with 
a goal 𝐺! , which indicate the probability of reaching it 
(expected utility, û) starting from a certain perceptual point 
𝑆"  modulated by the utility achieved.  

û = 𝑈𝑀(𝑆")  (1) 

• World Models (WMs):  They are functions that represent 
the behavior of the domain in which the robot is. They allow 
predicting the perceptual state 𝑆"#$ that will result when an 
action 𝑎%  is applied when in state 𝑆": 

𝑆"#$ = 𝑊𝑀(𝑆" , 𝑎%)  (2) 

• Policies (π):  A policy 𝜋%  is a decision structure associated 
with a goal 𝐺!  that provides the optimal action to be applied 
when in a certain perceptual point 𝑆": 

𝑎% = 𝜋%(𝑆")  (3) 

• P-nodes:  They are discrete entities that group sets of 
(continuous) perceptions. These perceptions have in common 
that by applying the same action in the same domain, the same 
perceptual state 𝑆"#$ is reached.  

• C-nodes: The C-nodes or contextual classes are entities 
that link P-nodes (initial perceptions), with goals (final 
perceptions) and the Utility Models or policies necessary to go 
from the former to the latter. They also relate the World 

Models (different domains) to these nodes. The activation of a 
given C-node depends on the activation values of the P-node, 
goal and WM connected to it. 

The different knowledge nodes are related to each other 
through the operational structure shown in Fig. 1. This 
structure is based on C-nodes, represented in red in the figure.  
The activation of goals will depend on the drives (that are 
domain independent). The activation of the P-nodes will 
depend on the perception of the robot, whereas the activation 
of the WMs will depend on the identification of the domain by 
the robot. In this way, the most active context (P-node, goal, 
and WM) will determine the action or policy to be executed. 

All the knowledge nodes depend on the robot’s 
perceptions. Hence the importance of the robot being able to 
automatically obtain appropriate representations for each 
domain and task. For a more detailed explanation of the e-
MDB operation, please refer to [28]. 

 
Fig. 1. Simplified schematic of the e-MDB operational structure.  

III. REPRESENTATION AND MODEL LEARNING 
Producing appropriate state space representations within 

cognitive architectures involves transforming, the often very 
high dimensional observation flow, from sensor space of the 
robot to adequate latent representations for the different 
knowledge components required by the architecture (World 
Models, policies, Utility Models, etc.). These transformations 
are carried out by redescription functions (R). In this line, a 
series of points must be addressed to provide for useful 
representational learning within cognitive architectures. Some 
of them are: 

• For the sake of learning efficiency, these latent spaces 
should present the smallest possible dimensionality that 
provides the features required by the particular knowledge 
component to be able to perform its function, avoiding any 
kind of distractors. Consequently, the knowledge 
components of the architecture learn and operate in their 
latent spaces and are associated to them and, therefore, to 
their redescription functions.  

• Goals and perceptual classes are defined in a given 
representation (latent space) and this representation 
heterogeneity must be handled by the motivational system. 

• Redescription functions (R) are usually implemented as 
neural networks that transform the information from an, 
often very high dimensional, observational space (such as 
that of an imaging system) to a lower dimensional state 
space. Therefore, they are often large, requiring many 
training samples to be able to train them successfully.  

• In a cognitive architecture, different World Models, Utility 
Models or policies could be obtained for the same 



domain/task but operating over different latent spaces 
produced by distinct redescription functions.  

• Learning emergent knowledge components in the form of 
ANNs in latent spaces of unknown dimensionality and 
complexity implies learning methods that manage the 
network structure as well as the weights. 

• When operating in LOLA settings, the assumption of the 
availability of dense reward functions does not hold. 
Knowledge representation learning needs to be coupled 
with a motivational system, and to competence based 
intrinsic motivations to choose the most adaptive task-
directed representations of skills. 

• Finally, LOLA implies changing domains/tasks 
throughout the lifetime of the robot. Additionally, the time 
spent in a domain at one point may not be enough to 
completely produce the most adequate representation and 
further future incursions in that domain will be necessary 
to complete these learning processes. This entails the need 
for the contextualization of knowledge representations. 

Many of these points involve architectural aspects for 
managing multiple redescription functions, densifying 
rewards, allowing for staged learning, balancing the 
contributions of components addressing the same issue but 
using different state representations, etc. 

In this paper, we are going to describe a first 
implementation of state representation learning within the e-
MDB by exploring the learning of world and utility models in 
latent space based on some of the most extended techniques in 
SRL and contemplate the implications this has at the 
architectural level.  

Fig. 2 summarizes the overall learning process that will be 
analyzed here. It is composed by 3 main stages. The first one 
is Representation Learning. In this work, we will only consider 
image sensors obtained from the robot’s camera as the raw 
observational system. In this stage, a SRL process is 
accomplished that learns a redescription function and provides 
the latent space. The second stage is devoted to Model 
Learning. The latent space obtained in stage 1 is stored in a 
Working Memory and used here for WM and UM learning in 
online settings. Execution is the third stage. In it, the WM and 
UM are used in a deliberative process to select the action to be 
applied by the robot in the environment. Finally, this action is 
applied through the robot actuation system, providing a new 
sensorial state that completes this loop. It must be pointed out 
that stage 3 takes place after stage 1, because a latent space is 
required, but stage 2 runs in parallel with the other two. The 
learning processes involved in stage 2 are, typically, highly 
time consuming, so stage 3 uses the latest available models, 
without waiting for these learning processes to complete. 
Section IV contains a description of the learning dynamics.  

As it can be observed in Fig. 2, in this approach there is no 
predefinition of the robot state space, and deliberation is 
performed in the autonomously obtained latent space. In fact, 
both WMs and UMs operate over the latent space. Due to the 
reduction in dimensionality, learning on the latent 
representation is much simpler than learning on the full 
observation space. Additionally, learning using the latent 
representation is cheaper in that it does not require interaction. 
This setup is completely novel in LOLA setting, being this 
proposal the main scientific contribution of the current work. 
The following subsections contain a description of these 3 
stages in the scope of the e-MDB. 

 
Fig. 2. Overview of the learning process. It consists of a VAE that extracts 
image features, a WM that models the domain behavior and a Utility Model 
to evaluate candidate actions. 

A. State Representation Learning 
To be able to define an appropriate representation from 

raw observations in a cognitive architecture, one typical option 
is to use a variational autoencoder (VAE). A VAE has an 
hourglass structure that learns to make the output the same as 
the input. The loss function is composed of a reconstruction 
term (which makes the encoding-decoding efficient) and a 
regularization term (which makes latent space regular).The 
VAE allows the compression of raw images, with image 
features extracted from an intermediate layer (the latent 
space). As shown in Fig. 2, the Encoder (E) part is the one that 
provides the desired redescription function. Therefore, the 
perceptions or states (in the appropriate representation) 
derived from the robot’s observation will be: 

𝑆" = 𝐸(𝑜")  (4) 

The compression level of an autoencoder is given by the 
dimensionality of the intermediate layer, which determines the 
latent space. This level is usually set to allow for a quasi-
perfect reconstruction of the observations. However, when the 
purpose of the representation is not reconstruction, but rather, 
the generation of WMs or UMs, this perfect reconstruction of 
the observations is not necessary. In a cognitive architecture 
we seek to produce operational, or goal directed WMs and 
UMs. That is, models that only contemplate information that 
is required for performing the tasks the robot is assigned with 
an accuracy good enough to achieve them. This implies higher 
levels of compression (lower latent space dimensionalities can 
be sought) and thus abstraction of the observations.   

B. World Model learning 
World models are usually seen as predictors of the next 

observation of the robot. However, within a cognitive 
architecture they are predictors of the next state of the robot at 
whatever abstraction level it is working. Thus, within a 
cognitive architecture, a WM is a structure that takes its inputs 
from a latent space and produces predictions on the next state 
in that latent space. As such, it is obviously dependent on the 
latent space in which it learns and thus must be related to the 
redescription function that leads to it. It will not be valid in a 
different latent space.  

 In this work the WM is represented as a simple densely 
connected ANN whose inputs are directly the learned 
representation of the state and the action applied, and whose 
output is the predicted state. To balance network inputs, the 
low dimensional input actions are repeated into a tensor of the 
same size as the latent state space. We train the WM to predict 



only the difference between (latent) states in time t and t+1. 
So that (2) becomes: 

𝑆"#$ = 𝑆" +𝑊𝑀(𝑆" , 𝑎%)  (5) 

This learning process is performed online here, as 
required in LOLA settings. Specifically, it consists of 
introducing the WM between the encoder part and the 
decoder part of the pretrained VAE and using temporally 
ordered series of images as a training set (along with the 
actions applied between images). In this way, the objective 
will be for the VAE, with the WM modifying the latent space, 
to be able to reconstruct the image at t+1. During the training 
process the same error function as in the VAE training is used 
and the VAE weights remain intact. Only those 
corresponding to WM are varied. 

C. Utility Model learning 
 In the e-MDB, Utility Models are also represented as 

ANNs, and they can be learned online from the traces 
experienced by the robot when it reaches a goal. Thus, we can 
use the information on the trace of states in latent space 
(perceptions) that were followed to reach the goal as an initial 
training set to train an ANN as a UM for that goal. Fig. 3 
represents this process in a simple setup. Obviously, a single 
trace will provide a poor model. Therefore, the robot will need 
to reach the goal from different areas of state space to produce 
more traces for more complete training. This trace acquisition 
process must be performed with some exploration method. 
Once a large enough set of traces with well evaluated states is 
gathered, the training of the VF should be optimal. 

 
Fig. 3. Schematic representation of the VF learning process. Points in the 
state space (perceptions) are denoted by pi. The assigned utility goes from 1 
at the goal point and decreases to 0 along the trace. 

More details on how the general learning of UMs in open-
ended settings that is performed on the e-MDB can be found 
in [32]. In this paper, the main difference comes from the 
latent space that is used for state representation, and this 
specific process will be detailed in section IV. 

IV. REAL ROBOT EXPERIMENT 

A. Experimental setup 
A very simple robotic setup created for the sake of clarity 

to analyze SRL and its influence on the online learning of the 
models is shown in Fig. 2. It includes a Robobo robot [33] 
placed on a table, where there is a red area it must reach.  

The robot moves freely on the table at a constant speed, 
and the actions control its direction of movement. They will 
modify its orientation by an angle between -180º and 180º. 
Actions are normalized to [-1, 1] before input to the WM. 
Regarding perception, we use an RGB camera placed on the 
ceiling of the room, which produces images of 12288 pixels 
(height 64 x width 64 x 3 channels). Image data is input to the 
VAE in its original range [0, 255]. 

Table 1 shows the construction of the VAE that provided 
the best results. We use ReLU as the activation functions. 
Network weights are updated using stochastic gradient descent 
(Adam optimizer). Raw camera images are compressed into 
64-dimensional image features (latent space size). The VAE is 

trained over 50 epochs with 500 images per epoch (batch size 
of 32). The parametrization of this VAE has been studied in 
[34].  

The WM has 128 inputs (64 from the latent space and 64 
for the action representation), and 64 outputs (predicted latent 
space). It consists of 5 convolutional layers with 64 neurons 
each (the representation dimensionality). The activation 
function is ReLU in the first 4 layers and Sigmoid in the last 
one. The ANN-based UM parameterization is shown in Table 
2. Again, network weights are updated using an Adam 
optimizer with a mean square error loss function. In this case, 
the UM has one output (expected utility) and 64 inputs (state 
representation in latent space). The value of this expected 
utility is in the range [0,1]. 

B. Experiment dynamics 
The purpose for which the robot has been designed is to 

reach the target area (red circle), whatever the initial positions 
of the robot and the red circle on the table. Every time the robot 
reaches the target area, its operational drive is satisfied, and a 
new trial is initiated. Robobo starts each trial from a random 
position, and the target area is also initiated to a random 
position. In each time step, 10 random candidate actions are 
generated within the continuous range of actions, from which 
the robot must choose the best one for its purpose.  

The experiment dynamics, based on the stages shown in 
Fig. 2, is summarized in the following steps:  

1) Initial steps: Initially, the robot explores the scenario 
driven by an exploratory intrinsic drive that chooses random 
actions. Hence, the deliberative process shown in Fig. 2 is not 
used at this moment because no model is available. The robot 
acquires information related to the domain and generates 
image sequences in memory that can be used to learn a 
suitable redescription function to provide an adequate 
representation. This VAE learning is carried out in parallel 
with this exploratory operation, using the images obtained in 
on-line operation of the robot.  

2) Representation function learned: Once the 
representation function (VAE) has been learned, the robot 
continues to explore randomly in online fashion (no 
deliberation yet), obtaining new data in the latent space that 
is used to learn the WM in parallel with the robot operation. 
This process finishes when the WM prediction error is below 
a predefined threshold. 

3) WM learned: Once a reliable version of the WM has 
been learned, the objective now is to generate traces that 
permit reaching the operational goal and use this information 
to produce a UM associated to it. In this case, the robot 
behavior is guided towards the discovery of unvisited states 
in its latent space through its novelty cognitive drive. Robot 
actions (in fact the candidate states that are prospectively 
generated with them) are evaluated using Novelty. Formally, 
the novelty of the k-th candidate state Sc,k is: 

𝑁𝑜𝑣! =
1
𝑀'𝑑𝑖𝑠𝑡,𝑆",! − 𝑆$/

%
&

$'(

𝑤𝑖𝑡ℎ𝑘 = 1	𝑡𝑜	𝑁(6) 

where n is a coefficient that regulates the balance between the 
relevance of distant and near states, Si is the i-th state in the 
trajectory buffer and N is the number of candidate states 
considered. At this point the e-MDB is already using the 
deliberation process for action selection, but the utilities of the 
final states achieved applying the actions are given by (6), 
because there is no goal-specific UM available. 



 

TABLE I. STRUCTURE OF THE VAE 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE II.  PARAMETERIZATIONS OF THE ANN-BASED UM 

ANN Parameter Value 
Input neurons 64 

Output neurons 1 
Hidden layers [64, 16, 6, 2, 1] 

Activation function tanh 
Batch size Trace length 

Training epochs 10 
 

4) Utility Model learned: From this moment on, the 
system has learned all the required knowledge nodes. 
Candidate states (derived from candidate actions) are 
evaluated using the deliberative process described in Fig. 2, 
and the one that provides the highest utility is chosen. This 
allows the robot to consistently achieve the goal, whatever its 
position on the table. WM and UM are continuously updated 
and improved as new data is obtained from robot interactions. 
 
 Note that in this example there is only one domain and one 
possible type of goal. However, the functions are trained to 
generalize over the goal position. For multiple domains and 
goal types, there would be multiple concurrent learning 
processes of redescription functions, WMs, and UMs.  

V. RESULTS AND DISCUSSION 

A. Experimental results 
Fig. 4 shows the performance of the robot (number of steps 

needed to find the goal) in a single run and the different 
learning stages it has gone through for 5000 iterations. Each 
iteration corresponds to the execution of an action. The 
different vertical lines indicate the learning periods of the 
representation function, the WM, and the UM. These learning 
processes make the robot improve its efficiency in reaching 
the goal. It is possible to see how during the learning of the 
redescription function and the modeling of the domain 
(section from the beginning to the second vertical line), the 
behavior of the robot is guided by randomly chosen actions. 
These movements allow it to create an image dataset and make 
it reach the goal from time to time. However, when the WM 
is learned the robot starts to predict the results of its actions 
and using novelty reaches the goal more consistently. This 
allows it to create a better set of traces to use for UM training. 
Similarly, when the robot learns the UM, the average number 
of steps needed to reach the goal converges (around 5 steps), 
as now the robot becomes very efficient in its deliberative 
selection of actions. Thus, as the robot acquires knowledge, 

there is a clear decrease in the steps necessary to reach the 
goal. 

Fig. 5 shows the results obtained for 30 independent runs 
of the experiment using the proposed methodology. It includes 
the values of the median and quartiles 1 and 3 resulting from 
the 30 runs. For reasons of clarity, the figure shows intervals 
with the steps necessary to achieve 5 goals. This graph verifies 
in a more statistical manner that the trend shown in Fig. 4 is 
maintained. It is important to note here that learning the WM 
directly from the observations was unsuccessful, obtaining 
very poor results. However, obtaining a WM from the latent 
space representation was consistently successful (see Fig. 5). 

 Finally, Fig. 6 displays the results of the 30 executions of 
the experiment in terms of accumulated rewards. It shows the 
values of the median and quartiles 1 and 3 of the accumulated 
reward (goal achievements) obtained through the iterations for 
the 30 executions of the experiment. Therefore, the greater the 
slope of the line, the less time it takes to reach the goal. In the 
figure, the different learning periods are also marked with 
vertical lines. Again, it can be seen how as the robot learns the 
redescription function together with the WM and then the UM, 
the time needed to correctly solve the task decreases. 

To illustrate the learning of the redescription function and 
the World Model., Fig. 7 shows a series of robot traces to the 
goal, along with the states predicted by the WM, which were 
reconstructed into observations using the decoding part of the 
autoencoder. The predictions are quite accurate even though 
the reconstruction in terms of image quality is not very good 
(reconstructing the image was not the objective at the task 
level). It can also be noticed that the WM fails to predict the 
states at the end of the image sequences. Since, at that moment, 
the robot and the red object are placed in a new, unpredictable,. 

 
Fig. 4. Goal achievements during a specific open-ended learning process. 

Layer Input Output Processing Kernel Size Stride Padding 

1 (64,64,3) (31,31,32) convolution (4,4) (2,2) no 

2 (31,31,32) (14,14,64) convolution (4,4) (2,2) no 

3 (14,14,64) (6,6,64) convolution (4,4) (2,2) no 

4 (6,6,64) (2,2,128) convolution (4,4) (2,2) no 

5 512 64 fully connected - - - 

6 64 1024 fully connected - - - 

7 (1,1,1024) (5,5,64) deconvolution (5,5) (2,2) no 

8 (5,5,64) (13,13,64) deconvolution (5,5) (2,2) no 

9 (13,13,64) (30,30,32) deconvolution (6,6) (2,2) no 

10 (30,30,32) (64,64,3) deconvolution (6,6) (2,2) no 



 
Fig. 5. Iterations needed to achieve 5 goals for 30 runs of the open-ended 
learning process (median and 25 and 75 percentiles). 

Fig. 6. Performance analysis for 30 runs of the experiment (median and 25 
and 75 percentiles). 

B. Discussion 
The results presented in the previous section indicate that 

it is possible to incorporate SRL strategies into cognitive 
architectures for robots operating in LOLA settings, however, 
new issues that are not contemplated by the SRL community 
arise. In this simple scenario, a robot guided by the e-MDB 
cognitive architecture has been able to automatically obtain a 
representation function that has allowed the learning of the rest 
of the knowledge nodes of the architecture required for this 
task. This in turn has gradually improved the efficiency of the 
robot in terms of solving the task. 

During the performance of the different experiments, it has 
been possible to verify that, on occasions, the representation 
predicted by the WM may be distorted. This may lead the 
learned UM to misvalue certain actions, since the predicted 
latent spaces may contain errors. A possible solution would 
be to study the feasibility of learning a representation and a 
WM in parallel, which implies being able to stop the learning 
of the autoencoder (although it does not reconstruct the 
image) as soon as the WM is adequate. In fact, it would be 
very interesting to completely do away with the full 
autoencoder an just concentrate on obtaining the encoding 
part (redescription function) by designing appropriate loss 
functions. Another option may be to use the learned 
deliberative models (UM and WM) to learn a policy that 
allows obtaining the action to be applied from the current 
latent state, without the need to make predictions that may 
result in erroneous evaluations. Furthermore, it would also be 
interesting to study how the robot can obtain the size of the 
representation autonomously. 

Fig. 7. Two WM prediction examples. Top rows: original images. Bottom 
rows: reconstructed images from the next state predicted by the WM. 

On the other hand, even though in this example there was 
only one domain and task, LOLA implies facing different 
worlds and with different goals, which also makes it necessary 
to study how to manage multiple representations within the 
cognitive architecture. As it is a developmental process, the 
change of representation would probably not be done with a 
single redescription function, but by progressively chaining 
redescription functions that gradually reduce the 
dimensionality of the state space. All these functions would be 
valid at different levels of abstraction (and therefore would 
give rise to different WMs and UMs that would also work at 
these levels) and allowing the robot to face increasingly 
complex tasks and domains. However this brings up issues of 
consistency and the need for selecting the appropriate level of 
abstraction for a particular task. All of these issues need to be 
addressed in future work. 

VI. CONCLUSIONS 
This work represents a first step towards the introduction 

of representation learning within a cognitive architecture. In 
this line we have tested a direct VAE type of path towards 
obtaining the representation, much in the same way as many 
SRL papers, but within the e-MDB cognitive architecture to 
verify the effect this would have over the learning of different 
knowledge components of the architecture. We have 
concentrated on obtaining world models and utility models in 
order to construct deliberative processes.  The results are very 
promising, but this experiment has brought up a series of 
issues on the incorporation of representation learning within 
cognitive architectures that have not been contemplated by the 
SRL community, in particular, all the problems of managing 
multiple representations and the need for their 
contextualization so that they can be reused.  
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