
ANN-based Representation Learning in a Lifelong
Open-ended Learning Cognitive Architecture

Alejandro Romero
GII, CITIC research center

University of A Coruña
A Coruña, Spain

alejandro.romero.montero
@udc.es

Justus Piater
Dept. of Computer Science
and Digital Science Center

University of Innsbruck
Innsbruck, Austria

justus.piater@uibk.ac.at

Francisco Bellas
GII, CITIC research center

University of A Coruña
A Coruña, Spain

francisco.bellas@udc.es

Richard J. Duro
GII, CITIC research center

University of A Coruña
A Coruña, Spain
richard@udc.es

Abstract— The frontier in robot autonomy is currently
Lifelong Open-Ended Autonomy (LOLA). Within these settings,
a robot must be able to operate and learn in domains that are
unknown at design time as well as reuse knowledge learnt in one
domain to facilitate learning in others throughout its lifetime.
Achieving LOLA goes beyond learning specific algorithms and
puts us squarely in the realm of cognitive architectures;
however, most cognitive architectures were not built to address
the LOLA problem, and thus, lack components and capabilities
that would be required for it. In fact, even though there is a
growing literature on learning representations, especially in the
framework of reinforcement and deep learning, hardly any
cognitive architecture considers the issue of autonomously
learning representations, which is a crucial problem to be able
to efficiently learn and abstract information when seeking
LOLA. This paper provides a vision of the general requirements
in terms of learning knowledge representations within cognitive
architectures geared towards LOLA and addresses a specific
problem in this context: the problem of learning representations
that facilitate obtaining world and utility models and deciding
on actions in situations where multiple goals can be activated.
The work is carried out in the framework of the development of
the e-MDB cognitive architecture for real robots operating
autonomously in real domains.

Keywords — cognitive robotics, cognitive architecture, open-
ended learning, lifelong learning, state representation learning

I. INTRODUCTION
 A really autonomous robot should be able to figure out by
itself how the domains it finds itself in work and how things
can be achieved in them. That is, throughout its lifetime, the
robot must be able to find goals compatible with the function
the designer wants from it and learn skills leading to those
goals in whatever domains it operates, which are often
unknown at design time: we thus require open-ended learning
autonomy (OLA). Additionally, to make this learning more
efficient, one would like these robots to transfer and reuse
knowledge learnt in previous domains to facilitate learning
and adaptation in new domains throughout their lifetimes. In
other words, the objective would be to endow robots with
lifelong open-ended learning autonomy (LOLA) so that they
can operate robustly in an unsupervised manner.

Achieving LOLA goes beyond specific learning
algorithms, such as Reinforcement Learning [1], that allow the

robot to learn particular skills or models related to goals
provided by a designer. It requires the capability of managing

all the knowledge that is learnt so that it can be contextually
related and reused, thus facilitating posterior learning and
operation. Also, to get the robots to do something in complex
domains, there is also a need to manage motivations, contexts,
and attention. In other words, for robots to autonomously learn
to operate in domains that were not considered at design time
and construct on this knowledge to address new domains as
they come up during their lifetimes, all the capabilities
mentioned above (and probably a few more) must be
integrated and regulated. This is the job of cognitive
architectures. However, most cognitive architectures were not
built to address the LOLA problem, and thus, lack components
and capabilities that would be required.

Following the classification of [2], cognitive architectures
come in three basic flavors: symbolic, hybrid, and emergent.
It is important to note here that possessing the capability of
learning is fundamental in order to be able to address LOLA,
and not all of the architectures presented in the literature
display this capability. In fact, many symbolic architectures
have no learning mechanisms and thus their knowledge must
be introduced by the designer when it is built, implying that
the domains the robot is going to operate in must be known at
that point. Examples of these are EPIC [3] or 4CAPS [4].
Others within the symbolic or hybrid group, such as DUAL
[5], ADAPT [6], ICARUS [7], incorporate learning
capabilities, but mostly through the modification of rules at the
higher level, without a versatile and unconstrained capability
of creating new rules for new domains. It is only within the
emergent cognitive architectures group, such as iCub [8] or
MDB [9], and in a small group of hybrid architectures, such as
MicroPSI [10], that versatile low-level learning mechanisms
can be found. Thus, only these types of architectures could
possibly achieve LOLA in robots.

Notwithstanding the previous comments, all the learning
systems within these architectures have implicitly or explicitly
assumed that the robot cognitive systems were provided with
specific and appropriate state space representations by their
designers. That is, the designers decided what is relevant from
the sensorial stream of the robot and how these relevant
features would be represented. Otherwise, given the large
number of sensors required by robots to address complex
domains and the dimensionality of the data they provide, the
spaces in which learning must take place would become huge,
making learning very difficult. Consequently, the learning
mechanisms of the architectures have focused on how to learn
whatever knowledge components the architectures required
(forward or inverse models, utility models, policies, etc.) using
these predefined state space representations.

Research supported by the Xunta de Galicia and the European Regional
Development Funds under grant ED431C 2017/12 and the Spanish Science
and Education Ministry through grant RTI2018-101114-B-I00 and the FPU
grant of Alejandro Romero. We wish to acknowledge the support received
from the Centro de Investigación de Galicia "CITIC", funded by Xunta de
Galicia and the European Union (European Regional Development Fund-Ga-
licia 2014-2020 Program), by grant ED431G 2019/01.

In the last few years it has become quite evident that to be
able to produce robots with the capability of progressively and
efficiently learning from their interactions with the world
when in LOLA settings, state spaces [11] as well as the
corresponding action spaces [12] need to be learned. There is
no way to predesign what the most appropriate state spaces
will be given that the domains and particular goals the robot
will have to achieve in each domain are not known when
designing it. In fact, within a domain and for the sake of
learning efficacy, different goals and tasks will probably
involve different state space representations (when trying to
block an object thrown at a robot, a 2D cartesian
representation of its position in time may be an ideal
representation, but for throwing objects, a representation in
terms of joint angular speeds may be better). Additionally,
there is the problem of the usually very high dimensionality of
the sensor data (such as image data). To make learning feasible
and efficient lower dimensional and more task specific state
spaces must be created.

To address these issues in the case of models, a promising
approach found in the Reinforcement Learning (RL) literature
is to learn the dynamics in a compact latent space. Thus, State
Representation Learning (SRL) algorithms are designed to
find a way to automatically compress high-dimensional
observation data into a meaningful low dimensional latent
space [12], the state space in robotic terms. Within this scope,
SRL algorithms have been applied to different problems like
reconstructing the observations [13], learning a forward model
[14], learning an inverse model [15], using feature adversarial
learning [16], or exploiting rewards [17]. Achieving this goal
directly from raw perceptions is a challenging quest that raises
a lot of interest in the field of Deep Reinforcement Learning
(DRL) [18], where deep ANNs are used with the aim of
obtaining forward and reward models over compressed latent
representations that allow performing predictions. This way
optimal policies can be obtained fully autonomously.

A very relevant work in the scope of the current paper,
albeit not in robotics, is [19], which gained a lot of attention in
the field of DRL. In it, the authors show the possibility of
training an agent to perform tasks entirely within its simulated
latent space. They learn a Variational Autoencoder model to
compress the visual input into a small representative code. In
addition, they use a model (called memory) to predict the next
values of the latent space based on an RNN. Finally, they also
learn a policy (controller) using a simple single layer linear
model. The automation degree of the whole process was very
high, showing that such approach is possible. The system was
applied with high success in two video games.

Later, [20] presented PlaNet, a model-based agent that
learns a latent dynamics model from image observations and
chooses actions by fast planning in latent space. The main
novelty of this approach is that of using a model with both
stochastic and deterministic paths. They test the algorithm on
20 visual control tasks of the DeepMind Control Suite [21],
using 64 × 64 × 3 images, outperforming the best model-free
algorithms, mainly because they require a smaller number of
episodes, showing the potential of planning in latent space. An
improvement of this work is carried out in [22], where they
present an algorithm called Dreamer, that learns long-term
policies through models operating in latent space. Their
method optimizes a parametric policy by propagating analytic
gradients of multi-step values back through learned latent
dynamics, with successful results in the same test-bed.

It is important to point out that most of these models have
been tested on simulated or game like environments,

considering a single model or policy, and that the success of
the approaches hinges on the assumption of the availability of
dense reward functions [23]. This assumption does not hold in
LOLA settings where rewards are defined on-the-fly and are
usually very sparse. This implies that state space
representation learning strategies would need to be coupled
with more elaborate approaches at the cognitive architecture
level that, for instance, allow leveraging on measures of
competence in the form of intrinsic motivations [24][25], to
choose the most adaptive task-directed representations of
skills. Moreover, LOLA implies online learning of models that
are defined during the lifetime of the system, so the typical off-
line parameter tuning in SRL is not feasible in this scope.

We have been addressing the LOLA problem during the
last few years from a developmental emergent cognitive
architecture perspective by means of the development of the
e-MDB (epistemic Multilevel Darwinist Brain) cognitive
architecture [9][26]. We contend that these processes for
autonomously obtaining the most appropriate representations
and producing mechanisms to be able to express data that is
provided in one representation in another representation
(representational redescription), are fundamental and need to
be integrated in cognitive architectures for the progressive
creation of really intelligent robots. In this paper, we will
address the first steps in the incorporation of SRL strategies
within a complete cognitive architecture for robots, in this case
the e-MDB cognitive architecture. In addition, we will
evaluate the different opportunities this provides, especially in
terms of generalization and abstraction, allowing the
production of general rules over general representations that
can be reused and adapted to different domains and situations.

The remainder of the paper is structured as follows: section
II is focused on presenting the basic components of the e-
MDB, together with the main knowledge elements involved
on its operation. This formalization is required to understand
the scope of LOLA. In section III, the global implications of
SRL in LOLA are established, and the specific ones faced in
this paper are described in detail. Section IV describes the
experimental setup and the experiment dynamics, to clarify
how the learning processes occur in time. Section V is devoted
to the presentation and discussion of the experimental results
obtained in a simple real robot setup. Finally, in section VI,
the main conclusions of this new research line are commented.

II. E-MDB COGNITIVE ARCHITECTURE

A. Architecture overview
The epistemic-Multilevel Darwinist Brain (e-MDB) is a

cognitive architecture for lifelong open-ended learning in real
robotic systems. It has been under development since the early
2000s and it allows artificial agents to learn from their
experience in dynamic and unknown domains to fulfill their
objectives. The architecture is made up of three main
components:

• A motivational system that establishes the robot’s
motivations and allows it to find new goals and select which
ones are active. Its operation is based on domain independent
needs and drives [27], since they allow assigning purpose to
the robot regardless of the domain in which it works. A
detailed explanation of its operation can be found in [28].

• A learning system that allows the creation and learning of
utility models [29], [30] to re-achieve goals and learn skills
associated with them. It is also devoted to learning world
models that represent the domains the robot is in. This system
works online supporting learning of emergent models.

• A memory system that allows storing and relating goals,
models and all the knowledge that is generated. As this
knowledge is domain dependent, the memory is based on a
contextual representation [31] to be able to reuse knowledge
in the appropriate conditions.

All these elements were initially tested using state space
representations chosen by hand by the designer. However, to
provide the architecture with real autonomy, it should be able
not only to learn the necessary knowledge elements, but also
to autonomously extract a representation with the most
important features for the task to be performed. Therefore, the
fourth main element of the architecture should be:

• A representational system that allows learning
appropriate state space representations. It will learn
representational redescription functions that automatically
compress high-dimensional observation data into low
dimensional latent spaces determining the state spaces with
which the different components of the robot cognitive
architecture will work.

B. Knowledge representation
The e-MDB learns and stores the following types of

knowledge nodes:

• Drives: A drive, Dj, reflects how far the system is from
satisfying an internal need (state the robot seeks to achieve or
maintain) provided by the designer as an indication of
purpose. Although they do not represent knowledge acquired
by the robot, they are included for clarity in the explanation.
There are two types: Cognitive and Operational. The former,
also called intrinsic drives, lead the robot to learn by
improving exploration (novelty drives, competence drives
[28]). The latter lead the robot towards achieving its domain
independent purpose as defined by the designer.

• Goals: They represent perceptual situations (points or
areas 𝐺!) that when reached within a domain reduce the value
of, at least, one drive Dj. These points provide utility.

• Utility Models (UMs): They are functions associated with
a goal 𝐺! , which indicate the probability of reaching it
(expected utility, û) starting from a certain perceptual point
𝑆" modulated by the utility achieved.

û = 𝑈𝑀(𝑆") (1)

• World Models (WMs): They are functions that represent
the behavior of the domain in which the robot is. They allow
predicting the perceptual state 𝑆"#$ that will result when an
action 𝑎% is applied when in state 𝑆":

𝑆"#$ = 𝑊𝑀(𝑆" , 𝑎%) (2)

• Policies (π): A policy 𝜋% is a decision structure associated
with a goal 𝐺! that provides the optimal action to be applied
when in a certain perceptual point 𝑆":

𝑎% = 𝜋%(𝑆") (3)

• P-nodes: They are discrete entities that group sets of
(continuous) perceptions. These perceptions have in common
that by applying the same action in the same domain, the same
perceptual state 𝑆"#$ is reached.

• C-nodes: The C-nodes or contextual classes are entities
that link P-nodes (initial perceptions), with goals (final
perceptions) and the Utility Models or policies necessary to go
from the former to the latter. They also relate the World

Models (different domains) to these nodes. The activation of a
given C-node depends on the activation values of the P-node,
goal and WM connected to it.

The different knowledge nodes are related to each other
through the operational structure shown in Fig. 1. This
structure is based on C-nodes, represented in red in the figure.
The activation of goals will depend on the drives (that are
domain independent). The activation of the P-nodes will
depend on the perception of the robot, whereas the activation
of the WMs will depend on the identification of the domain by
the robot. In this way, the most active context (P-node, goal,
and WM) will determine the action or policy to be executed.

All the knowledge nodes depend on the robot’s
perceptions. Hence the importance of the robot being able to
automatically obtain appropriate representations for each
domain and task. For a more detailed explanation of the e-
MDB operation, please refer to [28].

Fig. 1. Simplified schematic of the e-MDB operational structure.

III. REPRESENTATION AND MODEL LEARNING
Producing appropriate state space representations within

cognitive architectures involves transforming, the often very
high dimensional observation flow, from sensor space of the
robot to adequate latent representations for the different
knowledge components required by the architecture (World
Models, policies, Utility Models, etc.). These transformations
are carried out by redescription functions (R). In this line, a
series of points must be addressed to provide for useful
representational learning within cognitive architectures. Some
of them are:

• For the sake of learning efficiency, these latent spaces
should present the smallest possible dimensionality that
provides the features required by the particular knowledge
component to be able to perform its function, avoiding any
kind of distractors. Consequently, the knowledge
components of the architecture learn and operate in their
latent spaces and are associated to them and, therefore, to
their redescription functions.

• Goals and perceptual classes are defined in a given
representation (latent space) and this representation
heterogeneity must be handled by the motivational system.

• Redescription functions (R) are usually implemented as
neural networks that transform the information from an,
often very high dimensional, observational space (such as
that of an imaging system) to a lower dimensional state
space. Therefore, they are often large, requiring many
training samples to be able to train them successfully.

• In a cognitive architecture, different World Models, Utility
Models or policies could be obtained for the same

domain/task but operating over different latent spaces
produced by distinct redescription functions.

• Learning emergent knowledge components in the form of
ANNs in latent spaces of unknown dimensionality and
complexity implies learning methods that manage the
network structure as well as the weights.

• When operating in LOLA settings, the assumption of the
availability of dense reward functions does not hold.
Knowledge representation learning needs to be coupled
with a motivational system, and to competence based
intrinsic motivations to choose the most adaptive task-
directed representations of skills.

• Finally, LOLA implies changing domains/tasks
throughout the lifetime of the robot. Additionally, the time
spent in a domain at one point may not be enough to
completely produce the most adequate representation and
further future incursions in that domain will be necessary
to complete these learning processes. This entails the need
for the contextualization of knowledge representations.

Many of these points involve architectural aspects for
managing multiple redescription functions, densifying
rewards, allowing for staged learning, balancing the
contributions of components addressing the same issue but
using different state representations, etc.

In this paper, we are going to describe a first
implementation of state representation learning within the e-
MDB by exploring the learning of world and utility models in
latent space based on some of the most extended techniques in
SRL and contemplate the implications this has at the
architectural level.

Fig. 2 summarizes the overall learning process that will be
analyzed here. It is composed by 3 main stages. The first one
is Representation Learning. In this work, we will only consider
image sensors obtained from the robot’s camera as the raw
observational system. In this stage, a SRL process is
accomplished that learns a redescription function and provides
the latent space. The second stage is devoted to Model
Learning. The latent space obtained in stage 1 is stored in a
Working Memory and used here for WM and UM learning in
online settings. Execution is the third stage. In it, the WM and
UM are used in a deliberative process to select the action to be
applied by the robot in the environment. Finally, this action is
applied through the robot actuation system, providing a new
sensorial state that completes this loop. It must be pointed out
that stage 3 takes place after stage 1, because a latent space is
required, but stage 2 runs in parallel with the other two. The
learning processes involved in stage 2 are, typically, highly
time consuming, so stage 3 uses the latest available models,
without waiting for these learning processes to complete.
Section IV contains a description of the learning dynamics.

As it can be observed in Fig. 2, in this approach there is no
predefinition of the robot state space, and deliberation is
performed in the autonomously obtained latent space. In fact,
both WMs and UMs operate over the latent space. Due to the
reduction in dimensionality, learning on the latent
representation is much simpler than learning on the full
observation space. Additionally, learning using the latent
representation is cheaper in that it does not require interaction.
This setup is completely novel in LOLA setting, being this
proposal the main scientific contribution of the current work.
The following subsections contain a description of these 3
stages in the scope of the e-MDB.

Fig. 2. Overview of the learning process. It consists of a VAE that extracts
image features, a WM that models the domain behavior and a Utility Model
to evaluate candidate actions.

A. State Representation Learning
To be able to define an appropriate representation from

raw observations in a cognitive architecture, one typical option
is to use a variational autoencoder (VAE). A VAE has an
hourglass structure that learns to make the output the same as
the input. The loss function is composed of a reconstruction
term (which makes the encoding-decoding efficient) and a
regularization term (which makes latent space regular).The
VAE allows the compression of raw images, with image
features extracted from an intermediate layer (the latent
space). As shown in Fig. 2, the Encoder (E) part is the one that
provides the desired redescription function. Therefore, the
perceptions or states (in the appropriate representation)
derived from the robot’s observation will be:

𝑆" = 𝐸(𝑜") (4)

The compression level of an autoencoder is given by the
dimensionality of the intermediate layer, which determines the
latent space. This level is usually set to allow for a quasi-
perfect reconstruction of the observations. However, when the
purpose of the representation is not reconstruction, but rather,
the generation of WMs or UMs, this perfect reconstruction of
the observations is not necessary. In a cognitive architecture
we seek to produce operational, or goal directed WMs and
UMs. That is, models that only contemplate information that
is required for performing the tasks the robot is assigned with
an accuracy good enough to achieve them. This implies higher
levels of compression (lower latent space dimensionalities can
be sought) and thus abstraction of the observations.

B. World Model learning
World models are usually seen as predictors of the next

observation of the robot. However, within a cognitive
architecture they are predictors of the next state of the robot at
whatever abstraction level it is working. Thus, within a
cognitive architecture, a WM is a structure that takes its inputs
from a latent space and produces predictions on the next state
in that latent space. As such, it is obviously dependent on the
latent space in which it learns and thus must be related to the
redescription function that leads to it. It will not be valid in a
different latent space.

 In this work the WM is represented as a simple densely
connected ANN whose inputs are directly the learned
representation of the state and the action applied, and whose
output is the predicted state. To balance network inputs, the
low dimensional input actions are repeated into a tensor of the
same size as the latent state space. We train the WM to predict

only the difference between (latent) states in time t and t+1.
So that (2) becomes:

𝑆"#$ = 𝑆" +𝑊𝑀(𝑆" , 𝑎%) (5)

This learning process is performed online here, as
required in LOLA settings. Specifically, it consists of
introducing the WM between the encoder part and the
decoder part of the pretrained VAE and using temporally
ordered series of images as a training set (along with the
actions applied between images). In this way, the objective
will be for the VAE, with the WM modifying the latent space,
to be able to reconstruct the image at t+1. During the training
process the same error function as in the VAE training is used
and the VAE weights remain intact. Only those
corresponding to WM are varied.

C. Utility Model learning
 In the e-MDB, Utility Models are also represented as

ANNs, and they can be learned online from the traces
experienced by the robot when it reaches a goal. Thus, we can
use the information on the trace of states in latent space
(perceptions) that were followed to reach the goal as an initial
training set to train an ANN as a UM for that goal. Fig. 3
represents this process in a simple setup. Obviously, a single
trace will provide a poor model. Therefore, the robot will need
to reach the goal from different areas of state space to produce
more traces for more complete training. This trace acquisition
process must be performed with some exploration method.
Once a large enough set of traces with well evaluated states is
gathered, the training of the VF should be optimal.

Fig. 3. Schematic representation of the VF learning process. Points in the
state space (perceptions) are denoted by pi. The assigned utility goes from 1
at the goal point and decreases to 0 along the trace.

More details on how the general learning of UMs in open-
ended settings that is performed on the e-MDB can be found
in [32]. In this paper, the main difference comes from the
latent space that is used for state representation, and this
specific process will be detailed in section IV.

IV. REAL ROBOT EXPERIMENT

A. Experimental setup
A very simple robotic setup created for the sake of clarity

to analyze SRL and its influence on the online learning of the
models is shown in Fig. 2. It includes a Robobo robot [33]
placed on a table, where there is a red area it must reach.

The robot moves freely on the table at a constant speed,
and the actions control its direction of movement. They will
modify its orientation by an angle between -180º and 180º.
Actions are normalized to [-1, 1] before input to the WM.
Regarding perception, we use an RGB camera placed on the
ceiling of the room, which produces images of 12288 pixels
(height 64 x width 64 x 3 channels). Image data is input to the
VAE in its original range [0, 255].

Table 1 shows the construction of the VAE that provided
the best results. We use ReLU as the activation functions.
Network weights are updated using stochastic gradient descent
(Adam optimizer). Raw camera images are compressed into
64-dimensional image features (latent space size). The VAE is

trained over 50 epochs with 500 images per epoch (batch size
of 32). The parametrization of this VAE has been studied in
[34].

The WM has 128 inputs (64 from the latent space and 64
for the action representation), and 64 outputs (predicted latent
space). It consists of 5 convolutional layers with 64 neurons
each (the representation dimensionality). The activation
function is ReLU in the first 4 layers and Sigmoid in the last
one. The ANN-based UM parameterization is shown in Table
2. Again, network weights are updated using an Adam
optimizer with a mean square error loss function. In this case,
the UM has one output (expected utility) and 64 inputs (state
representation in latent space). The value of this expected
utility is in the range [0,1].

B. Experiment dynamics
The purpose for which the robot has been designed is to

reach the target area (red circle), whatever the initial positions
of the robot and the red circle on the table. Every time the robot
reaches the target area, its operational drive is satisfied, and a
new trial is initiated. Robobo starts each trial from a random
position, and the target area is also initiated to a random
position. In each time step, 10 random candidate actions are
generated within the continuous range of actions, from which
the robot must choose the best one for its purpose.

The experiment dynamics, based on the stages shown in
Fig. 2, is summarized in the following steps:

1) Initial steps: Initially, the robot explores the scenario
driven by an exploratory intrinsic drive that chooses random
actions. Hence, the deliberative process shown in Fig. 2 is not
used at this moment because no model is available. The robot
acquires information related to the domain and generates
image sequences in memory that can be used to learn a
suitable redescription function to provide an adequate
representation. This VAE learning is carried out in parallel
with this exploratory operation, using the images obtained in
on-line operation of the robot.

2) Representation function learned: Once the
representation function (VAE) has been learned, the robot
continues to explore randomly in online fashion (no
deliberation yet), obtaining new data in the latent space that
is used to learn the WM in parallel with the robot operation.
This process finishes when the WM prediction error is below
a predefined threshold.

3) WM learned: Once a reliable version of the WM has
been learned, the objective now is to generate traces that
permit reaching the operational goal and use this information
to produce a UM associated to it. In this case, the robot
behavior is guided towards the discovery of unvisited states
in its latent space through its novelty cognitive drive. Robot
actions (in fact the candidate states that are prospectively
generated with them) are evaluated using Novelty. Formally,
the novelty of the k-th candidate state Sc,k is:

𝑁𝑜𝑣! =
1
𝑀'𝑑𝑖𝑠𝑡,𝑆",! − 𝑆$/

%
&

$'(

𝑤𝑖𝑡ℎ𝑘 = 1	𝑡𝑜	𝑁(6)

where n is a coefficient that regulates the balance between the
relevance of distant and near states, Si is the i-th state in the
trajectory buffer and N is the number of candidate states
considered. At this point the e-MDB is already using the
deliberation process for action selection, but the utilities of the
final states achieved applying the actions are given by (6),
because there is no goal-specific UM available.

TABLE I. STRUCTURE OF THE VAE

TABLE II. PARAMETERIZATIONS OF THE ANN-BASED UM

ANN Parameter Value
Input neurons 64

Output neurons 1
Hidden layers [64, 16, 6, 2, 1]

Activation function tanh
Batch size Trace length

Training epochs 10

4) Utility Model learned: From this moment on, the
system has learned all the required knowledge nodes.
Candidate states (derived from candidate actions) are
evaluated using the deliberative process described in Fig. 2,
and the one that provides the highest utility is chosen. This
allows the robot to consistently achieve the goal, whatever its
position on the table. WM and UM are continuously updated
and improved as new data is obtained from robot interactions.

 Note that in this example there is only one domain and one
possible type of goal. However, the functions are trained to
generalize over the goal position. For multiple domains and
goal types, there would be multiple concurrent learning
processes of redescription functions, WMs, and UMs.

V. RESULTS AND DISCUSSION

A. Experimental results
Fig. 4 shows the performance of the robot (number of steps

needed to find the goal) in a single run and the different
learning stages it has gone through for 5000 iterations. Each
iteration corresponds to the execution of an action. The
different vertical lines indicate the learning periods of the
representation function, the WM, and the UM. These learning
processes make the robot improve its efficiency in reaching
the goal. It is possible to see how during the learning of the
redescription function and the modeling of the domain
(section from the beginning to the second vertical line), the
behavior of the robot is guided by randomly chosen actions.
These movements allow it to create an image dataset and make
it reach the goal from time to time. However, when the WM
is learned the robot starts to predict the results of its actions
and using novelty reaches the goal more consistently. This
allows it to create a better set of traces to use for UM training.
Similarly, when the robot learns the UM, the average number
of steps needed to reach the goal converges (around 5 steps),
as now the robot becomes very efficient in its deliberative
selection of actions. Thus, as the robot acquires knowledge,

there is a clear decrease in the steps necessary to reach the
goal.

Fig. 5 shows the results obtained for 30 independent runs
of the experiment using the proposed methodology. It includes
the values of the median and quartiles 1 and 3 resulting from
the 30 runs. For reasons of clarity, the figure shows intervals
with the steps necessary to achieve 5 goals. This graph verifies
in a more statistical manner that the trend shown in Fig. 4 is
maintained. It is important to note here that learning the WM
directly from the observations was unsuccessful, obtaining
very poor results. However, obtaining a WM from the latent
space representation was consistently successful (see Fig. 5).

 Finally, Fig. 6 displays the results of the 30 executions of
the experiment in terms of accumulated rewards. It shows the
values of the median and quartiles 1 and 3 of the accumulated
reward (goal achievements) obtained through the iterations for
the 30 executions of the experiment. Therefore, the greater the
slope of the line, the less time it takes to reach the goal. In the
figure, the different learning periods are also marked with
vertical lines. Again, it can be seen how as the robot learns the
redescription function together with the WM and then the UM,
the time needed to correctly solve the task decreases.

To illustrate the learning of the redescription function and
the World Model., Fig. 7 shows a series of robot traces to the
goal, along with the states predicted by the WM, which were
reconstructed into observations using the decoding part of the
autoencoder. The predictions are quite accurate even though
the reconstruction in terms of image quality is not very good
(reconstructing the image was not the objective at the task
level). It can also be noticed that the WM fails to predict the
states at the end of the image sequences. Since, at that moment,
the robot and the red object are placed in a new, unpredictable,.

Fig. 4. Goal achievements during a specific open-ended learning process.

Layer Input Output Processing Kernel Size Stride Padding

1 (64,64,3) (31,31,32) convolution (4,4) (2,2) no

2 (31,31,32) (14,14,64) convolution (4,4) (2,2) no

3 (14,14,64) (6,6,64) convolution (4,4) (2,2) no

4 (6,6,64) (2,2,128) convolution (4,4) (2,2) no

5 512 64 fully connected - - -

6 64 1024 fully connected - - -

7 (1,1,1024) (5,5,64) deconvolution (5,5) (2,2) no

8 (5,5,64) (13,13,64) deconvolution (5,5) (2,2) no

9 (13,13,64) (30,30,32) deconvolution (6,6) (2,2) no

10 (30,30,32) (64,64,3) deconvolution (6,6) (2,2) no

Fig. 5. Iterations needed to achieve 5 goals for 30 runs of the open-ended
learning process (median and 25 and 75 percentiles).

Fig. 6. Performance analysis for 30 runs of the experiment (median and 25
and 75 percentiles).

B. Discussion
The results presented in the previous section indicate that

it is possible to incorporate SRL strategies into cognitive
architectures for robots operating in LOLA settings, however,
new issues that are not contemplated by the SRL community
arise. In this simple scenario, a robot guided by the e-MDB
cognitive architecture has been able to automatically obtain a
representation function that has allowed the learning of the rest
of the knowledge nodes of the architecture required for this
task. This in turn has gradually improved the efficiency of the
robot in terms of solving the task.

During the performance of the different experiments, it has
been possible to verify that, on occasions, the representation
predicted by the WM may be distorted. This may lead the
learned UM to misvalue certain actions, since the predicted
latent spaces may contain errors. A possible solution would
be to study the feasibility of learning a representation and a
WM in parallel, which implies being able to stop the learning
of the autoencoder (although it does not reconstruct the
image) as soon as the WM is adequate. In fact, it would be
very interesting to completely do away with the full
autoencoder an just concentrate on obtaining the encoding
part (redescription function) by designing appropriate loss
functions. Another option may be to use the learned
deliberative models (UM and WM) to learn a policy that
allows obtaining the action to be applied from the current
latent state, without the need to make predictions that may
result in erroneous evaluations. Furthermore, it would also be
interesting to study how the robot can obtain the size of the
representation autonomously.

Fig. 7. Two WM prediction examples. Top rows: original images. Bottom
rows: reconstructed images from the next state predicted by the WM.

On the other hand, even though in this example there was
only one domain and task, LOLA implies facing different
worlds and with different goals, which also makes it necessary
to study how to manage multiple representations within the
cognitive architecture. As it is a developmental process, the
change of representation would probably not be done with a
single redescription function, but by progressively chaining
redescription functions that gradually reduce the
dimensionality of the state space. All these functions would be
valid at different levels of abstraction (and therefore would
give rise to different WMs and UMs that would also work at
these levels) and allowing the robot to face increasingly
complex tasks and domains. However this brings up issues of
consistency and the need for selecting the appropriate level of
abstraction for a particular task. All of these issues need to be
addressed in future work.

VI. CONCLUSIONS
This work represents a first step towards the introduction

of representation learning within a cognitive architecture. In
this line we have tested a direct VAE type of path towards
obtaining the representation, much in the same way as many
SRL papers, but within the e-MDB cognitive architecture to
verify the effect this would have over the learning of different
knowledge components of the architecture. We have
concentrated on obtaining world models and utility models in
order to construct deliberative processes. The results are very
promising, but this experiment has brought up a series of
issues on the incorporation of representation learning within
cognitive architectures that have not been contemplated by the
SRL community, in particular, all the problems of managing
multiple representations and the need for their
contextualization so that they can be reused.

REFERENCES
[1] R. S. Sutton and A. G. Barto, “Introduction to Reinforcement

Learning,” Learning, vol. 4, no. 1996, pp. 1–5, 1998, [Online].
Available: http://dl.acm.org/citation.cfm?id=551283.

[2] I. Kotseruba and J. K. Tsotsos, “A Review of 40 Years of
Cognitive Architecture Research: Core Cognitive Abilities and
Practical Applications,” Artif. Intell. Rev., vol. 53, no. 1, pp. 17–
94, 2020.

[3] D. E. Kieras, G. H. Wakefield, E. R. Thompson, N. Iyer, and B.
D. Simpson, “Modeling Two-Channel Speech Processing With
the EPIC Cognitive Architecture,” Top. Cogn. Sci., vol. 8, no. 1,
2016, doi: 10.1111/tops.12180.

[4] S. Varma and M. Just, “4CAPS: An adaptive architecture for
human information processing,” in AAAI Spring Symposium -
Technical Report, 2006, vol. SS-06-02.

[5] A. Nestor and B. Kokinov, “Towards Active Vision in the DUAL
Cognitive Architecture,” BulDML Inst. Math. Informatics, vol.
11, no. 1, 2004.

[6] D. P. Benjamin, D. Lyons, and D. Lonsdale, “ADAPT : A
cognitive architecture for robotics,” in Proc. 6th International
Conference on Cognitive Modelling, 2004.

[7] P. Langley and D. Choi, “A unified cognitive architecture for
physical agents,” in Proceedings of the National Conference on
Artificial Intelligence, 2006, vol. 2.

[8] N. G. Tsagarakis et al., “iCub: the design and realization of an
open humanoid platform for cognitive and neuroscience
research,” Adv. Robot., vol. 1, pp. 1–25, 2007.

[9] F. Bellas, R. J. Duro, A. Faiña, and D. Souto, “Multilevel
darwinist brain (MDB): Artificial evolution in a cognitive
architecture for real robots,” IEEE Trans. Auton. Ment. Dev., vol.
2, no. 4, pp. 340–354, 2010, doi: 10.1109/TAMD.2010.2086453.

[10] J. Bach, “MicroPsi 2: The next generation of the MicroPsi
framework,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2012, vol. 7716 LNAI, doi:
10.1007/978-3-642-35506-6_2.

[11] S. Kim, A. Coninx, and S. Doncieux, “Kim, S., Coninx, A., &
Doncieux, S. (2021). From exploration to control: learning object
manipulation skills through novelty search and local adaptation.,”
Rob. Auton. Syst., vol. 136, p. 103710, 2021.

[12] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State
Representation Learning for Control: An Overview,” Neural
Networks, vol. 108, pp. 379–392, 2018.

[13] S. Alvernaz and J. Togelius, “Autoencoder-augmented
Neuroevolution for Visual Doom Playing,” ArXiv Prepr., p.
1707.03902, 2017.

[14] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep
variational bayes filters: unsupervised learning of state space
models from raw data,” ArXiv Prepr., p. 1605.06432., 2016.

[15] A. Zhang, H. Satija, and J. Pineau, “Decoupling dynamics and
reward for transfer learning,” ArXiv Prepr., p. 1804.10689, 2018.

[16] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is
its own reward: Self-supervision for reinforcement learning,”
2019.

[17] S. Parisi, S. Ramstedt, and J. Peters, “Goal-driven dimensionality
reduction for reinforcement learning,” in IEEE International
Conference on Intelligent Robots and Systems, 2017, vol. 2017-
September, doi: 10.1109/IROS.2017.8206334.

[18] A. Plaat, W. A. Kosters, and M. Presuss, “Model-Based Deep
Reinforcement Learning for High-Dimensional Problems, a
Survey,” ArXiv Prepr., p. abs/2008.05598, 2020.

[19] D. R. Ha and J. Schmidhuber, “World Models,” ArXiv Prepr., p.
abs/1803.10122, 2018.

[20] D. Hafner et al., “Learning Latent Dynamics for Planning from
Pixels,” ArXiv Prepr., p. abs/1811.04551, 2019.

[21] Y. Tassa et al., “Deepmind control suite,” ArXiv Prepr., p.

1801.00690, 2018.
[22] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi, “Dream to

Control: Learning Behaviors by Latent Imagination.,” ArXiv
Prepr., p. abs/1912.01603, 2020.

[23] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi,
“Robust locally-linear controllable embedding,” ArXiv Prepr., pp.
1710.05373, 2017, 2017.

[24] G. Baldassarre and M. Mirolli, “Intrinsically motivated learning
in natural and artificial systems,” in Intrinsically Motivated
Learning Systems: an Overview, Springer Berlin Heidelberg,
2013, pp. 1–14.

[25] V. G. Santucci, G. Baldassarre, and M. Mirolli, “Grail: a goal-
discovering robotic architecture for intrinsically-motivated
learning,” IEEE Trans. Cogn. Dev. Syst., vol. 8, no. 3, pp. 214–
231, 2016.

[26] R. J. Duro, J. A. Becerra, J. Monroy, and L. Calvo, “Context
nodes in the operation of a long term memory structure for an
evolutionary cognitive architecture,” in GECCO 2017 -
Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2017, pp. 1172–1176, doi:
10.1145/3067695.3082465.

[27] N. Hawes, “A survey of motivation frameworks for intelligent
systems,” Artif. Intell., vol. 175, no. 5–6, pp. 1020–1036, 2011,
doi: 10.1016/j.artint.2011.02.002.

[28] A. Romero, F. Bellas, J. A. Becerra, and R. J. Duro, “Motivation
as a tool for designing lifelong learning robots,” Integr. Comput.
Aided. Eng., vol. 27, no. 4, pp. 353–372, 2020, doi: 10.3233/ICA-
200633.

[29] A. Romero, A. Prieto, F. Bellas, and R. J. Duro, “Simplifying the
creation and management of utility models in continuous domains
for cognitive robotics,” Neurocomputing, vol. 353, 2019, doi:
10.1016/j.neucom.2018.07.093.

[30] A. Prieto, A. Romero, F. Bellas, R. Salgado, and R. J. Duro,
“Introducing Separable Utility Regions in a Motivational Engine
for Cognitive Developmental Robotics,” Integr. Comput. Aided.
Eng., vol. 26, no. 1, pp. 3–20, 2019.

[31] R. J. Duro, J. A. Becerra, J. Monroy, and F. Bellas, “Perceptual
Generalization and Context in a Network Memory Inspired Long-
Term Memory for Artificial Cognition,” Int. J. Neural Syst., vol.
29, no. 6, 2019, doi: 10.1142/S0129065718500533.

[32] A. Romero, F. Bellas, A. Prieto, and R. J. Duro, “Developmental
Learning of Value Functions in a Motivational System for
Cognitive Robotics,” 2020, doi:
10.1109/IJCNN48605.2020.9206931.

[33] F. Bellas et al., The robobo project: Bringing educational
robotics closer to real-world applications, vol. 630. 2018.

[34] B. Meden, A. Prieto, P. Peer, and F. Bellas, “First Steps Towards
State Representation Learning for Cognitive Robotics,” in
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2020, vol. 12344 LNAI, doi: 10.1007/978-3-
030-61705-9_41.

