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I. INTRODUCTION

Compared to machines, humans are intelligent and dexter-
ous; they are indispensable for many complex tasks in areas
such as flexible manufacturing or scientific experimentation.
However, they are also subject to fatigue and inattention,
which may cause errors. This motivates automated monitor-
ing systems that verify the correct execution of manipulation
sequences. To be practical, such a monitoring system should
not require laborious programming.

To this end, we recently presented such a system (the so-
called Decision Maker, DM) that uses a probabilistic planner
and learns rules describing manipulation sequences from pre-
vious executions and human demonstrations [1]. Operating in
a virtual-reality environment, this system recognizes atomic
manipulations, defined in terms of touching events between
objects and extracts rules consisting of preconditions, manip-
ulation, and effects. The rule base is incrementally extended
and refined as new observations occur. Once a sufficient
rule base has been acquired, the DM can monitor ongoing
manipulation sequences by verifing that at each step a shorter
plan towards the desired goal state exists.

In this work, we describe our physical implementation of
a robot manipulation monitoring system. Figure 1 illustrates
its overall architecture. It consists of four levels of func-
tional modules. The first low-level (yellow modules) operates
on sensorial data and generates information about Tracked
Objects and their respective Poses. The mid-level (green
modules) includes the components used to detect touching
events between objects in the scene. The planning modules
form the high-level (blue modules) and are used to recognize
and plan actions. The final motor control-level holds the
execution modules (red modules) which are responsible for
learning, storing and executing robot movements. Next, each
perception and execution module will be briefly described.

II. PERCEPTION

A. Low-level
1) Sensor Buffer and Tracker: Our sensor buffer collects

data from various sources, and performs temporal synchro-
nization before fusing the data into a voxelized octree world
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Fig. 1. System Architecture showing the interaction between the perception
and execution modules. Yellow, green and blue modules represent the three
levels in the perception and the red blocks are the execution modules.

model. This is input to the tracker, which uses the object
detection to bootstrap object models. Tracking is performed
using a bank of independent parallel particle filters [2].
Independently tracked results are combined and interactions
between objects are resolved jointly using a task-specific
model.

2) Object Recognition: Object instance recognition is
used in the very first frame produced by the sensor buffer
to associate a known object identity to each of the objects
placed on the workspace table. We use Euclidean clustering
to separate the objects on the table, and then perform pose
estimation using an optimized RANSAC routine [3]. The best
matching candidate among the known objects is assigned to
the perceived object cluster.

B. Mid-level

1) Keyframe Detector: We represent the entire scene with
a graph: nodes represent the object centers in the scene, and
edges are for the touching relations between objects. We
employ extracted 3D scene graphs in order to detect topo-
logical changes in the scene, i.e. key frames, by comparing
the eigenvalues of graphs at each frame.

2) SEC Generator: Detected key frames are encoded in
a matrix format, so called Semantic Event Chain (SEC)
[4]. The SEC generator module enriches each detected key
frame with fine pose information imported from the low level
perception. The mid-level modules are particularly providing
the temporal anchor points indicating when to update the
scene graphs with low level pose information, instead of
recording the continuous pose data.
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C. High-level

1) Predicate Estimator: The predicate estimator module
evaluates the current state predicates on requests from the
DM. It estimates a set of predefined predicates using the
SEC representation enriched with the object poses. For
example, the predicate free(hole) is set true if this
particular hole of the Cranfield faceplate is not occupied, and
placed(object) is defined as true in the case of having
an object placed in a designated position on the faceplate at
the recently detected key frame.

2) Manipulation Recognition: A manipulation is defined
as a sequence of key frames, i.e. relational changes between
objects. This module compares the current SEC with a set of
known touching events corresponding to a manipulation such
as place peg into faceplate. If a known touching relation is
observed in the current key frame the respective manipulation
is detected and signaled to the DM.

3) Decision Maker (DM): The decision maker learns a set
of symbolic rules that define the behavior of demonstrated
manipulations. Those rules are further employed either to
execute the learned task even in a novel scene context, or
to evaluate the robot’s own performance while executing a
given task. In this regard, the estimated predicates are fused
with those learned rules to plan the remaining action steps
to reach the ultimate goal. The learning phase is addressed
using the REX-D algorithm [1] which is an efficient rein-
forcement learning (RL) method combined with additional
human demonstrations upon request.

III. EXECUTION

A. Motor Control Learner

In our framework the robot movements are programmed
by teleoperation [5]. The teleoperation is enabled by register-
ing 6D magnetic pose tracker to the robot and placing a pose
sensor on the operator to track the demonstrated movements.
During the demonstration the respective poses and associated
forces are recorded and stored. The tracked movements are
then employed to control the robot to imitate a particular
manipulation, such as place peg into faceplate.

B. Robot Controller

During the execution, the Robot Controller module loads
the recorded robot motion from the stored data (action
library). This loaded motion is then transformed from the
recorded target position to the new and actual target position
observed in the scene. The transformed robot motion is
finally used to perform the action.

IV. RESULTS AND CONCLUSION

The proposed robot execution and online monitoring
framework was tested on the Cranfield benchmark objects
described in [5]. Figure 2 illustrates a sample trajectory
between two consecutive key frames detected from the robot
execution of the action place(shaft). At the key frame t, the
plan place(shaft) was issued by the Decision Maker based on
the predicate evaluation. Once the given plan is executed (red
block), the performed robot action is correctly monitored at

Execute Plan

Predicates:
free(hole2): true
ontable(shaft): true
horizontal(shaft): false
…

Recognized:
place(shaft) 

Plan:
place(shaft)

New Predicates:
free(hole2): false 

… 

New Plan:
place(separator) 

Keyframe t Keyframe t+1Execution

Fig. 2. Monitoring a place(shaft) action. Top: Trajectory of the robot
movement. Middle: Key frames with tracked objects before and after the
manipulation. Bottom: High-level planing and monitoring results.

key frame t+1 and the next plan is further estimated from
the new predicates given on the right.

The evaluation experiments show that the system is able
to recognize and monitor robot manipulations on the fly. We
were able to distinguish and track all 9 Cranfield objects
during both human and robot manipulations. The low level
pose estimation is employed only once to bootstrap the
tracker in the beginning of the assembly sequence. The
concept of event chains discretizes the continuous motions
into temporal anchor points, i.e. key frames, at which the pose
information is further updated to decrease the computational
complexity of the entire system. The complete assembly
of 9 Cranfield objects by robot is shown in this video:
http://youtu.be/LXhzSckFy9I

REFERENCES
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