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Abstract

We propose an unsupervised, probabilistic method for
learning visual feature hierarchies. Starting from local,
low-level features computed at interest point locations, the
method combines these primitives into high-level abstrac-
tions. Our appearance-based learning method uses lo-
cal statistical analysis between features and Expectation-
Maximization (EM) to identify and code spatial correla-
tions. Spatial correlation is asserted when two features tend
to occur at the same relative position of each other. This
learning scheme results in a graphical model that allows a
probabilistic representation of a flexible visual feature hier-
archy. For feature detection, evidence is propagated using
Nonparametric Belief Propagation (NBP), a recent gener-
alization of particle filtering. In experiments, the proposed
approach demonstrates efficient learning and robust detec-
tion of object models in the presence of clutter and occlu-
sion and under view point changes.

1. Introduction
Feature representation is one of the most important issues
for learning and recognition applications in computer vi-
sion. In the present work, we propose a new approach to
representing and learning visual feature hierarchies in an
unsupervised manner. Our hierarchical representation is in-
spired by the compositional nature of objects. Most objects
encountered in the world, which can be either man-made or
natural objects, are composed of a number of distinct con-
stituent parts (e.g., a face contains a nose and two eyes, a
phone possesses a keypad). If we examine these parts, it
becomes obvious that they are themselves recursively com-
posed of other subparts (e.g., an eye contains an iris and eye-
lashes, a keypad is composed of buttons). This ubiquitous
observation constitutes our main motivation for arguing that
a hierarchical representation must be taken into account to
model objects in more flexible and realistic way.

Our long-term goal is thus to learn visual feature hierar-
chies that correspond to object/part hierarchies. The devel-
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opment of a hierarchical and probabilistic framework that
is tractable in terms of complexity is a central problem for
many computer vision applications such as visual track-
ing, object recognition and categorization, face recognition,
stereo matching and image retrieval. In this paper, the prin-
cipal objective is to obtain a probabilistic framework that
allows the organization of complex feature models. The
main idea is to use a graphical model to represent the hi-
erarchical feature structure. In this representation, which is
detailed in Section 2, the nodes correspond to the visual fea-
tures. The edges model both the spatial arrangement and the
statistical dependence between nodes. The formulation in
terms of graphical models is attractive because it provides
a statistical model of the variability of shape and appear-
ance. These are specified separately by the edges and the
low-level nodes of the graph, respectively.

An unsupervised feature learning method that allows the
construction of a hierarchy of visual features is introduced
in Section 4. The proposed framework accumulates statisti-
cal evidence from feature observations in order to find “con-
spicuous coincidences” of visual feature co-occurrences.
The structure of the graph is iteratively built by combin-
ing correlated features into higher-level abstractions. Our
learning method is best explained by first presenting the de-
tection process, which is described in Section 3.

Level 0

1

2

Figure 1: Object part decomposition (left) and correspond-
ing graphical model (right). In our representation, each
edge defines the relative location (defined by a distance and
an orientation) from the subfeature to the center of the com-
pound feature.

0-7695-2372-2/05/$20.00 (c) 2005 IEEE



For detection, we use Nonparametric Belief Propagation
[7, 19], a message-passing algorithm, to propagate the ob-
servations in the graph, thus inferring the belief associated
with higher-level features that are not directly observable.
The functioning and the efficacy of our method are illus-
trated in Section 5. Finally, Section 6 provides a discussion
of related work and biological analogies.

2. Representation
In this section, we introduce a new part-based and proba-
bilistic representation of visual features. In the proposed
graphical model, nodes represent visual features and are an-
notated with the detection information for a given scene.
The edges represent two types of information: the relative
spatial arrangement between features, and their hierarchical
composition. We employ the term “visual feature” in two
distinct contexts:

Primitive visual features are low-level features. They are
represented by a local descriptor. For this work, we
used simple descriptors constructed from normalized
pixel values and located at Harris interest points [5],
but our system does not rely on any particular feature
detector. Any other feature detector can be used to de-
tect and extract more robust information (such as SIFT
keys [10]).

Compound visual features consist of flexible geometrical
combinations of other subfeatures (primitive or com-
pound features).

Formally, our graph G is a mathematical object made up of
two sets: a vertex set V , and a directed edge set

−→E . For
any node s ∈ V , the set of parents and the set of children
are respectively defined as U(s) = {ui ∈ V|(ui, s) ∈ −→E }
and C(s) = {ci ∈ V|(s, ci) ∈ −→E }. Information about
feature types and their specific occurrences in an image will
be represented in the graph by annotations of vertices and
edges, as described next.

2.1. The Vertex Set
The vertices s ∈ V of the graph represent features. They
contain the feature activations for a given image. Our graph-
ical model associates each node with a hidden random vari-
able x ∈ R2 representing the spatial probability distribution
of the feature in the image. This random variable is continu-
ous and is defined in a two-dimensional space where the di-
mensions X ,Y are the location in the image. For simplicity,
we assume that the distribution of x can be approximated by
a Gaussian mixture:

p(x; Θ) =
N∑

i=1

wiG(x;µi,Σi) (1)

In order to retain information about feature orientation, we
associate a mean orientation θi ∈ [0, 2π[ to each com-
ponent of the Gaussian mixture. All mixture components
are collectively represented by the parameter vector Θ =
(µ1, . . . , µN ; Σ1, . . . ,ΣN ;w1, . . . , wN ; θ1, . . . , θN ).

Primitive feature classes lie at the first level of the graph.
They are represented by a local descriptor and are associ-
ated with an observable random variable y, defined in the
same two-dimensional space (X ,Y) as the hidden variables
x, and are likewise approximated by a Gaussian mixture.

2.2. The Edge Set

An edge e ∈ −→E of the graph models two aspects of the fea-
ture structure. First, whenever an edge links two features it
signifies that the destination feature is a part of the source
feature. Second, an edge describes the spatial relation be-
tween the compound feature and its subfeature in terms of
relative position. The annotation does not contain any spe-
cific information about a given scene but represents a static
view of the feature hierarchy and shape.

Each edge e = xt, xs is associated with a parame-
ter µst = [µx

st;µ
y
st] that defines the relative, orientation-

normalized, position of the compound feature xt versus the
other xs.

We also define a potential function ψs,t(xs, xt) that en-
codes the relative distribution of the compound feature with
respect to the subfeature. The conditional density is approx-
imated by a Gaussian mixture:

ψs,t(xs, xt) =
Ns∑
i=1

wi
s G(xt;ϑs,t(xi

s),Σ
i
s) (2)

where xi
s is the i-th component of the mixture xs, wi

s is the
component weight, ϑ is a function that computes the mean
of the compound feature component xi

t given the subfeature
location µi

s and orientation θi
s:

ϑs,t(x(i)
s ) = µi

s +
[

cos(θi
s) − sin(θi

s)
sin(θi

s) cos(θi
s)

] [
µx

st

µy
st

]
(3)

The use of Gaussian mixture models to represent spatial re-
lations (Eq. 2) has been successfully applied in many works
[17, 20]. It is especially useful for modeling relative posi-
tion variability between features.

3. Nonparametric Belief Propagation
In the preceding section, we defined the structure of our
graphical model used to represent visual features. We now
describe the detection process of a visual feature, given its
graphical-model representation. In our framework, infer-
ring the probability density function p̂(x|y) of features con-
ditioned on the primitives detected amounts to estimating
the belief of the nodes.



Nonparametric Belief Propagation (NBP) [7, 19] is per-
fectly suitable for our continuous parameter space of each
feature part and the non-Gaussian conditionals between
nodes. NBP is an inference algorithm for graphical mod-
els that generalizes particle filtering. It has the advantage
of allowing inference over general graphs and is not lim-
ited to Markov chains. The main idea of this inference
algorithm is to propagate information via a series of local
message-passing operations. Each message is represented
using a sample-based density estimate which is defined non-
parametrically as a Gaussian mixture. The conditional dis-
tribution (or belief) of each node is defined by the prod-
uct of the incoming messages of the node. Due to the in-
tractable complexity of an exact computation, this product
must be approximated. Several techniques are possible. In
this work, we use an efficient Gibbs sampling procedure
with 300 samples for each message.

Following the conventional NBP notation, a message
mij from node xi to xj is written

mi,j(xj) =
∫
ψi,j(xi, xj) φi(xi, yi)

∏
k∈Ni\j

mk,i(xi) dxi

where Ni is the set of neighbors of node i, ψi,j is the pair-
wise potential between nodes i, j, and φi(xi, yi) is the local
likelihood associated with the node i and obtained via the
observation function yi of a low-level feature.

The message update algorithm is summarized in Algo-
rithm 1 and illustrated in Figure 2. After a few iterations,
depending on the size of the graph, each node i can produce
an approximation of the conditional distribution p̂(xi|y) us-
ing the product of incoming messages. For more details
about Nonparametric Belief Propagation, consult the origi-
nal research papers [7, 19].

Algorithm 1 Message update using NBP

Draw samples {x̂i
t, ŵ

i
t}M

i=1 from the product of input
messages mkt(xt) using the Gibbs sampler,
Compute values for each outgoing message mtu(xu)
Means: xi

tu = ψt,u(x̂i
t, x

i
u)

Orientations: θi
tu using mkt(xt) (Eq. 4)

As we mentioned in Section 2.1, we associate an orienta-
tion to each sample. It is computed using the mean orienta-
tion of the incoming messages and local evidence at the lo-
cation of the sample. More precisely, we compute the mean
orientation θxz (l), z = 1, . . . ,M of the available mixture
components weighted by their corresponding weights:

tan θxz (l) = Sxz (l)
Cxz (l)

Cx(l) =
∑Nx

i=1 vi × wi cos(θi
x) (4)

Sx(l) =
∑Nx

i=1 vi × wi sin(θi
x)
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Figure 2: During an iteration of NBP, feature x3 received
messages from subfeatures x1, x2 and parent x4. Even if in-
dividual messages may contain uncertain information about
the location of feature (bottom left), the product of the in-
coming messages constrains the feature location (bottom
right).

where l is a location of the sample, θi
x is the orientation of

the i-th component of message x,Nx is the number of avail-
able components, vi = R(l, xi) is the response of compo-
nent xi at point l andwi is the associated weight. This could
have been integrated to NBP inference. To reduce the com-
plexity and avoid the use of a linear-circular distribution, we
compute it separately.

In our representation, higher-level features are not di-
rectly observable. Evidence is incorporated into the graph
exclusively via the variables yi representing primitives at
the leaves of the graph as described next.

To initialize the observable variables yi of the graph and
to compute the local evidence φi(xi, yi), we match the de-
tected local descriptors in an image with the most similar
existing feature descriptor at the leaf nodes of the available
graphs. We use the observed descriptor parameters (loca-
tion, orientation, similarity) to annotate the variable yi of
the corresponding node i ∈ V .

We illustrate the message-passing algorithm by present-
ing in Figure 3 the NBP detection process on an object.
The object model was learned during our experiments. The
product of incoming messages clearly allows a more precise
localization of the features.



Figure 3: Illustration of an upward message-passing iter-
ation during the NBP detection process. Starting from the
first level (top left), the detection process uses the presence
of primitives to predict the location of the second level fea-
tures (top center). The product of these messages (on the
right) refines the belief to a more precise localization. This
product is then used for the next level. The geometrical
model for each level is shown on the left. At the end of
this simple example, we obtain the final set of samples that
corresponds to the localization of the object model.

4. Visual Feature Learning
In this section, we introduce our unsupervised feature learn-
ing method that allows the construction of a hierarchy of
visual features. The general idea of our algorithm is to
accumulate statistical evidence from the relative positions
of observed features in order to find “conspicuous coinci-
dences” of visual feature co-occurrences. The structure of
our graphical model is iteratively built by combining corre-
lated features into new visual feature abstractions. First, the
learning process votes to accumulate information on the rel-
ative position of features and extracts the feature pairs that
tend to be located in the same neighborhood. Second, it
estimates the parameters of the geometrical relations using
either Expectation-Maximization (EM) or a voting scheme.
It finally creates new feature nodes in the graph by combin-
ing spatially correlated features. In the following sections,
we describe the three main steps of this unsupervised learn-
ing procedure.

4.1. Spatial Correlation
The objective of this first step of our learning process is to
find spatially correlated features. A spatial correlation ex-
ists between two features if they are often detected in the
same neighborhood. The size of the neighborhood to con-
sider is set proportionally to the space covered by the feature
parts. Co-occurrence statistics are collected from multiple
feature occurrences within one or across many different im-
ages. The procedure to find correlated features is summa-
rized in Algorithm 2. After its completion, we obtain a vote
array S concerning the relative locations of correlated fea-
tures. It is important to notice that before the first iteration
we apply K-means clustering to the set of feature descrip-
tors. This identifies primitive classes from the training set
and is used to create the first level of the graphical model.

Algorithm 2 Spatial Correlation Extraction
Successively extract each image I from the training set
Apply NBP (Section 3) to detect all features fI =
{fi0 . . . fin} ∈ G in image I
for each pair [fi, fj ] where fj is observed in the neigh-
borhood of fi do

Compute the relative position pr ∈ R2 of fj given fi

Vote for the corresponding observation [fi, fj , pr]
end for
Keep all pairs [fi, fj ] where

∑
pr

S[fi, fj , pr] > tc

4.2. Spatial Relations
In our framework, spatial relations are defined in terms of
relative position between features. We implemented two so-
lutions to estimate this parameter. The first method uses the



Expectation-Maximization (EM) algorithm, and the second
implements a fast discrete voting scheme to find location ev-
idence. The estimated geometrical relations are used during
feature generation (Section 4.3) in order to create new fea-
tures. First, however, we give some details on both methods
for the estimation of spatial relations.

4.2.1 Expectation-Maximization

In principle, a sample of observed spatial relations xr be-
tween two given features can be approximated by a Gaus-
sian mixture, where each component k represents a cluster
of relative positions µk of one of the two features fj with
respect to the other, the reference feature fi: f(xr; Θ) =∑K

k=1 wkGk(xr; (µk,Σk)).
EM can be used to estimate the parameters of the spatial

relation between each correlated feature pair [fi, fj ] ∈ S.
It maximizes the likelihood of the observed spatial relations
over the model parameters Θ = (w1...K ;µ1...K ; Σ1...K).
The Expectation (E) and Maximization (M) steps of each
iteration of the algorithm are defined as follows:

Step E Compute the current expected values of the compo-
nent indicators tk(xi), 1 ≤ i ≤ n, 1 ≤ k ≤ K, where
n is the number of observations, K is the number of
components and q is the current iteration:

t
(q)
k (xi) =

ŵ
(q)
k G

(
xi; µ̂

(q)
k , Σ̂(q)

k

)
∑K

l=1 ŵ
(q)
l G

(
xi; µ̂

(q)
l , Σ̂(q)

l

)

Step M Determine the value of parameters Θq+1 contain-
ing the estimates ŵk, µ̂k, Σ̂k that maximize the likeli-
hood of the data {x} given the tk(xi):

ŵ
(q+1)
k =

∑n
i=1 t

(q)
k

n
µ̂

(q+1)
k =

∑n
i=1 t

(q)
k (xi)∑n

i=1 t
(q)
k

Σ̂(q+1)
k =

∑n
i=1 t

(q)
k

(
xi − µ̂

(q+1)
k

) (
(xi − µ̂

(q+1)
k

)T

∑n
i=1 t

(q)
k

In our implementation, a mixture of only two Gaussian
components (K = 2) is used to model spatial relations. The
first component represents the most probable relative posi-
tion, and the second is used to model the noise. When the
location µ1 and variance Σ1 of the first component is esti-
mated between features i and j, we store the corresponding
information [fi, fj , µi,j ,Σi,j ] in a table T .

4.2.2 Voting

A faster method to estimate spatial-relation parameters is
to discretize distance and direction between features. The

idea is to create a bi-dimensional histogram for every corre-
lated feature pair [fi, fj ] ∈ S . The dimensions of these his-
tograms are the distance d and the relative direction θ from
features fi to fj . Each observation [fi, fj , pr] stored in ta-
ble S is projected into a cylindrical space [d, θ] and votes for
the corresponding entry [d, θ] of histogram H[fi, fj ]. After
the completion of this voting procedure, we look for signif-
icant local maxima in the 2D histograms and store them in
the table T . In our implementation, the distances are ex-
pressed relative to the part size and are discretized into 36
bins, while the directions are discretized into 72 bins (5-
degree precision).

Algorithm 3 Discrete Voting

for each vote vi1...n
of entry [fi, fj , pr] in table S do

Project pr(vi) ∈ R2 into a cylindrical space of the
relative orientation θ(vi) and the distance d(vi)
Vote for the Gaussian kernel at d(vi), θ(vi) in his-
togram H[fi(vi), fj(vi)]

end for
Find maxima [d, θ] in all histograms and store corre-
sponding relative positions µi,j in T

4.3. Feature generation

When a reliable reciprocal spatial correlation is detected be-
tween two features [fi, fj ], the generation of a new feature
in our model is straightforward. We combine these features
to create a new higher-level feature by adding a new node
fn in the graph. We connect it to its subfeatures [fi, fj ]
by two edges ei, ej that are added to

−→E . Their parameters
are computed using the spatial relation {µi,j , µj,i} obtained
from the preceding step, and are stored in table T .

The generated feature is located at the midpoint between
the subfeatures. Thus the distance from subfeatures to
the new feature is set to half distance between subfeatures
[fi, fj ]; µ1 = µi,j/2, µ2 = µj,i/2 and is copied to the new
edges; ei(fi, fn) = {µ1,Σ1}, ej(fj , fn) = {µ2,Σ2}.

5. Experiments

In this section, we illustrate our feature learning scheme
on an object recognition task using several objects of the
Columbia University Object Image Library (COIL-100)
[12]. This library is very commonly used in object recog-
nition research and contains color images of 100 different
objects. Each image was captured by a fixed camera at pose
intervals of 5 degrees. For our experiments, we used 5 views
around both sides of the frontal pose of an object to build
the object model. When the learning process is completed,
the model is thus tuned for a given view of the object.



As we mentioned before, our system does not depend
on any particular feature detector. We used Harris inter-
est points and rotation invariant descriptors comprising 256
pixel values. Any other feature detector can be used to de-
tect and extract more robust information (such as SIFT keys
[10]). We deliberately used simple features to demonstrate
the functioning of our method. To estimate the primitives of
each object model, we used K-Means to cluster the feature
space. The number of classes (between 16 and 60 in our ex-
periments) was selected according to the BIC criterion [16].

During learning, in order to avoid excessive growth of
the graph due to the feature combinatorics, we only kept
the most salient spatial relations between features. In Fig-
ure 5, for each object, the first level of the learned graphical
model is illustrated on the top center image. Each circle
corresponds to a low-level feature and is associated to an-
other one to create a new compound feature. On the bot-
tom of each image, we illustrate the detection results of our
models with NBP after only six iterations. During our ex-
periments, each message is sampled with 300 values. Two
graphical models are illustrated in Figure 8. They corre-
spond to the first two objects appearing in Figure 5. We
observe that some low-level features are connected to two
compound features because they are involved in two differ-
ent spatial relations.

A quantitative detection evaluation is presented in Fig-
ure 4. The first graph (on the left) illustrates the viewpoint
invariance of the five object models presented in Figure 5.
To generate the graph, we ran the detection process on a
series of images differing in viewing angle by increments
of 5 degrees. The models responded maximally around the
training views. We observe that the response quickly falls
at ± 40 degrees. This is caused by the loss of pertinent
features in the view. We obtained an average viewpoint in-
variance over 80 degrees. These results are remarkable con-
sidering the fact that we did not use affine-invariant features
at the leaf level. The second graph (right) demonstrates the
convergence of the detection process using NBP. This graph
was generated by measuring the uncertainty in the graph
across 23 message-passing iterations. In our experiments,
we observe that NBP converges to the optimal solution in
less than 7 iterations. In general, the number of iterations
required for convergence depends on the number of levels
in the graph.

We also demonstrate the robustness of our model in a
cluttered scene (Figure 6) and in the presence of occlusion
(Figure 7). The first example contains two different learned
object models. As we explained in Section 3, the detec-
tion process starts with low-level feature detection and then
propagate evidence in graph. Many primitives are detected
in the image. In this experiment, we add extra difficulty
by assigning every interest point to the most similar fea-
ture class, without requiring a minimum degree of similar-
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Figure 4: Maximum response of the five object models pre-
sented in Figure 5 on a series of images differing in viewing
angle (left). Convergence of NBP to the optimal solution
during the detection on different views of the objects (right).

ity (left of Figure 6). This results in noisy detection data.
However, the use of geometric relations to infer the pres-
ence of higher-level features allows an unambiguous detec-
tion. As we can see for the objects of the Figure 6, only a
few features are needed to detect the objects. In the second
example (Figure 7), NBP correctly infers the localization of
the occluded features.

6. Discussion
During the past years, great attention has been paid to un-
supervised model learning methods applied to object mod-
els [13]. In theses techniques, objects are represented by
parts, each modeled in terms of both shape and appear-
ance by Gaussian probability density functions. This con-
cept, which originally operated in batch mode, has been
improved by introducing incremental learning [6] and by
introducing variational Bayesian methods incorporating in-
formation obtained from previously learned models [3]. In
parallel, Agarwal et al. [1] presented a method for learning
to detect objects that is based on sparse, part-based repre-
sentations. The main limitation of these schemes lies in the
representation because it only contains two levels, the fea-
tures and the models.

A hierarchical model of recognition in the visual cor-
tex was proposed by Riesenhuber and Poggio [15] where
spatial combinations of view-tuned units are constructed by
alternately employing a maximum and sum pooling oper-
ation. Wersing and Körner [21] used a similar hierarchy
for object recognition where invariance is achieved through
pooling over increasing receptive fields. Unfortunately, in
such models there exists no explicit representation of object
structure.

A scheme for constructing visual features by hierarchical
composition of primitive features [14] has been introduced.
It uses an incremental procedure for learning discriminative
composite features using a Bayesian network classifier. In
this framework, the spatial arrangement of primitives was
rigid and limits the robustness of the system.



Figure 5: Detection results on a series of COIL-100 ob-
jects. The geometrical models between low-level features
are shown in the top center images. The detection results
with NBP are presented in the bottom images.

Figure 6: Cluttered scene containing two previously learned
objects. Low-level features detected in the scene (left) and
detection responses for both object models (right).

Figure 7: Spatial relations between the features of the first
level are presented in the top left image. The results of the
detection process after 6 iterations can be observed (for the
first level) in the bottom images. For the occluded object,
NBP correctly inferred the presence of missing first level
features.

Figure 8: Two graphical models learned on five different
views of the first two objects presented in Figure 5.



Recently, Felzenszwalb et al. [4] and Kumar et al. [8]
presented two different frameworks for modeling objects
both inspired by pictorial structure models. These frame-
works have some similarities to our work in the sense that
objects are modeled by different parts arranged in a graph-
ical model. The appearance and shape of each part are
also modeled separately. These techniques provide a good
tool to represent articulated structures. However, Felzen-
szwalb’s framework requires labeled example images to
learn the models and both schemes are also limited to a sin-
gle layer of features.

In neuroscience, recent evidence [2] reinforces the idea
that the coding of geometrical relations in high-level visual
features is essential. Moreover, recent work suggests that
the visual cortex represents objects hierarchically by parts
or subfeatures [9].

Even in the context of image structure analysis, hierar-
chical and probabilistic models such as HIP [18] demon-
strate encouraging results. However, in the case of object
recognition, it is not clear how to integrate rotation or trans-
lation invariance in such models.

The framework presented in this paper offers several sig-
nificant improvements over current methods proposed in
the literature. Taking advantage of graphical models, we
represent shape and appearance separately. This allows us
to deal with shape deformation and appearance variabil-
ity. Moreover, our topology can deal with minor viewpoint
changes without explicitly using affine-invariant features.
Our scheme is also invariant to rotation and translation of
the object. Scale invariance can easily be obtained by using
scale invariant features [11] and by normalizing the distance
between features with the intrinsic feature scale.

Finally, the use of Nonparametric Belief Propagation al-
lows a robust and flexible detection of higher-level visual
features. The proposed system spans the entire visual hi-
erarchy from low-level features to object-level abstractions
within a single, coherent framework. Learning occurs at all
levels. We argue that a hierarchical model is essential for
representing visual features. This appears to be a necessary
step towards more flexible learning methods applied to ob-
ject categories.

Future research will focus on two main directions: the
unsupervised discovery of visual categories and the integra-
tion of the hierarchical model in a task-oriented learning
environment. Many other applications are possible such as
face recognition, object tracking, stereo matching and im-
age retrieval.
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