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Abstract

We describe an unsupervised, probabilistic method for
learning visual feature hierarchies. Starting from lo-
cal, low-level features computed at random locations, the
method combines features hierarchically. At each level of
the hierarchy, pairs of features are identified that tend to
occur at stable positions relative to each other, by cluster-
ing the configurational distributions of observed feature co-
occurrences using Expectation-Maximization. Stable pairs
of features thus identified are combined into higher-level
features. This learning scheme results in a graphical model
that constitutes a probabilistic representation of a flexible
visual feature hierarchy. For detection, evidence is prop-
agated using Nonparametric Belief Propagation, a recent
generalization of particle filtering. In experiments, the pro-
posed approach demonstrates effective learning and robust
detection of objects in the presence of clutter and occlusion.

1. Introduction

Most natural and human-made objects have rigid local
shape and appearance, but often present more variability
at larger scales. Hierarchical approaches to object recogni-
tion have recently received increasing attention [1, 9, 2, 7].
They are well suited to represent shape variability at differ-
ent scales and granularities within a single coherent frame-
work. The current paper proposes an unsupervised genera-
tive method for learning hierarchical models that integrate
spatial constraints between features [4]. We use a graphical
model to represent the hierarchical feature structure (Sec-
tion 2). In such a representation, each node corresponds
to a visual feature class and is annotated with its possible
locations in the image. The edges model both the spatial ar-
rangement and the statistical dependence between two fea-
ture classes.

As was mentioned by G. Bouchard and B. Triggs [1],
nearby object features have strongly correlated positions
while more distant features are much more weakly corre-
lated. The proposed learning framework (Section 3) fo-
cus on modelling correlations between features. It accumu-

lates statistical evidence from feature observations in order
to find feature classes that are often detected in the same
neighborhood. Such features are said to be spatially corre-
lated. The graph is incrementally built by combining corre-
lated features into higher-level abstractions.

Detection (Section 4) is achieved by using Nonparamet-
ric Belief Propagation [8], a message-passing algorithm, to
infer the belief associated with higher-level feature classes,
that are not directly observable. Finally, the functioning and
the efficacy of our method are demonstrated on both artifi-
cial and real image data sets (Section 5).

Figure 1. Object part decomposition (left) and
corresponding graphical model (right).

2. A Hierarchical Representation of Features

In order to represent a hierarchy of visual features, a flex-
ible statistical framework is required. A graphical model is
perfectly suitable for this task (Figure 1). Nodes represent
feature classes and are annotated with the detection infor-
mation for a given scene. Edges represent two types of in-
formation; the distance between features and their hierar-
chical composition. The formulation in terms of graphical
models is attractive because it provides a statistical model
of the variability of shape and appearance. These are spec-
ified separately by the edges and the low-level nodes of the
graph, respectively.

The vertices s ∈ V of the graph represent feature
classes. They contain the feature activations for a given
image. The graphical model associates each node with a
hidden random variablex ∈ R2 representing the spatial
probability distribution of the feature in the image.

The edgese ∈ −→E of the graph model two aspects of
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the feature structure. First, an edge signifies that the des-
tination feature is a part of the source feature. Second, it
describes the spatial relation between the compound feature
and the subfeature in terms of distance. The annotation does
not contain any specific information about a given scene but
represents a static view of the feature hierarchy and shape.
Each edgeet→s from featuret tos is associated with param-
eters(dst, σst) that respectively define the distance between
features and the corresponding variance.

In our representation, we distinguish between two dif-
ferent types of features, primitive and compound features.
Primitive features correspond to low-level features. They
are represented by a local descriptor made of orientation-
normalized pixel values. Orientation normalization is ob-
tained by rotating the region around the point in the gradi-
ent direction. Descriptors are extracted at random locations,
any other feature detector can be used. Compound features
consist of flexible geometric combinations of other subfea-
tures (primitive or compound). Compound feature classes
are represented by a non-leaf node whereas primitive fea-
ture classes are leaf nodes at the first level of the graph.

3. Learning a Hierarchy of Feature Classes

The basic concept behind the learning algorithm is to
accumulate statistics of the relative positions of observed
features in order to findconspicuous coincidencesof fea-
ture co-occurrences. The structure of our graphical model
is built incrementally by combining spatially correlated fea-
tures into new feature abstractions.

Before the first iteration, the learning method applies a
K-means clustering algorithm to the set of feature descrip-
tors. This identifies primitive classes from the training set.
These classes are used to create the first level (leaves) of
the graphical model. After clustering, the procedure votes
to accumulate information on the distance (Λi,j) between
features and extracts the feature pairs (S ← [fi, fj ]) that
tend to be located in the same neighborhood. Then it esti-
mates the parameters (mean and variance of the distance) of
the spatial relation using Expectation-Maximization (EM).
It finally creates new feature nodes in the graph by combin-
ing the closest correlated features. This learning procedure
is applied iteratively to each new level in the graph. An
outline is given in Algorithm 1, and the main steps are de-
scribed in the following paragraphs.

Algorithm 1 Learning: learn(G, level)
1: Λ,S ← extract(G,level) // extract correlated features
2: for all feature pairs[fi, fj ] ∈ S do
3: Tij ←EM(Λi,j) // estimate models of spatial relation
4: T ← T ∪ closest(Tij) // keep the best relations
5: end for
6: G ← generate(G, T ) // generate new features

3.1. Finding Spatially Correlated Features

A spatial correlation exists between two feature classes
if they are often detected in the same neighborhood. The
key idea to finding correlated features is to apply a voting
scheme that will collect co-occurrence statistics (distances)
from the training set. These statistics are collected from
multiple feature occurrences within one or across many dif-
ferent images by considering each detected feature class and
by voting for the class of the closest features detected in the
same region. After applying this procedure over the training
set, we obtain a set of distancesΛ for every pair of classes.
To extract spatially correlated classes, we keep the pairs that
obtained the largest number of votes in a tableS.

3.2. Estimating Spatial Relations

In our framework, spatial relations are defined in terms
of distances between features. In order to estimate
this parameter from co-occurrence statistics, we use an
Expectation-Maximization (EM) algorithm. In principle,
a sample of observed distancesΛi,j between two given
feature classes[fj , fi] can be approximated by a Gaus-
sian mixture, where each component represents a cluster
of distances between these features. EM is used to esti-
mate the parameters of the spatial relation between each
correlated feature pair[fi, fj ] ∈ S. It maximizes the like-
lihood of the observed distances over the model parame-
ters Θ = (w1...K ; d1...K ;σ1...K). In practice, a mixture
of only two Gaussian components (K = 2) is sufficient
to model spatial relations. The first component represents
the most probable distance, and the second is used to model
the noise. When the distanced1 and varianceσ1 of the first
component are estimated between featuresi andj, we store
them at entry[i, j] in a tableT .

3.3. Generating New Features

When a reliable spatial relation has been estimated be-
tween a pair of feature classes[fi, fj ], the generation of a
new feature is straightforward. We combine these features
to create a new higher-level feature by adding a new node
fn in the graph. We connect it to its subfeatures[fi, fj ] by
two edges{en→i, en→j} that are added to the edge setE .

The annotations of edges are computed using the mean
and the variance of the distance[dij , σji] ∈ T estimated
during the preceding step. The relative position (i.e. dis-
tance) of the generated feature is chosen as the midpoint be-
tween the subfeatures. Thus the distance from subfeatures
to the new feature is set to one half of the estimated dis-
tance between subfeatures such thaten→i = {dij/2, σij}
and en→j = {dji/2, σji}. Finally, the new edges and
the new feature are respectively added to the edge set,
E ← E∪ {en→i, en→j}, and to the vertex set,V ← V∪ fn,
of the current graphG.



4. Inferring High-Level Features

Inferring the probability density function of hierarchi-
cal features conditioned on the detected primitives amounts
to estimating the belief of the corresponding higher-level
nodes. Feature detection can thus be posed as inference in
a graphical model. One way to do this is to use Nonpara-
metric Belief Propagation (NBP) [8]. NBP is an inference
algorithm for graphical models that generalizes particle fil-
tering. This algorithm propagates information by a series
of local message-passing operations. Following the NBP
notation, a messagemij from nodei to j is written

mi,j(xj) =
∫
ψi,j(xi, xj) φi(xi, yi)

∏
k∈τi\j

mk,i(xi) dxi

(1)
wherexi is the random variable associated with the node
i, τi denotes its neighbors andφi(xi, yi) is the observation
potential obtained via the detection of a low-level feature.
The potentialψi,j models the spatial relation between nodes
i, j. Since the priorp(xi) is uniform, it is proportional to
the conditionalψi,j(xj |xi). This is defined by a function
F (xi, di,j , σi,j) that maps the distribution of a nodei to a
connected nodej according to their spatial relation (Fig. 2).

Each random variablex is represented by a density
estimate that is defined as a set of weighted samples
{µm, wm}Mm=1. The parameters are the meansµm and
the weightswm of the particles. During an iteration of
NBP, each vertex receives messages from connected nodes.
Each message consists of a set of samples. By estimating
the product of theses incoming messagesmk,i(xi), a node
can compute the new local belief, an approximation of the
marginal distributionp(xi|y):

p̂(xi|y) = φi(xi, yi)
∏
k∈τi

mk,i(xi) (2)

An exact computation of this product being intractable,
we use the Gibbs sampler to drawM weighted samples
{µ̂m

i , ŵ
m
i }Mm=1 from the product of incoming messages.

The numberM of samples used to represent each message
is proportional to the image size.

A message sent fromi to j specifies the location evi-
dence of the destination nodej according to the belief avail-
able in the source nodei. Such a message is produced by
computing the product of messages received byi (except
the one received fromj) with the observation potential,

{µ̂m
p , ŵ

m
p }Mm=1 = φi(xi, yi)

∏
k∈τi\j

mk,i(xi) (3)

Then we resample from the conditionalψi,j(xj |xi). To do
this, each samplêµm

p is moved by distancedij in a set of
random directionsθk ∈ [0, 2π[ (eq. 4). The resulting par-
ticules constitute the new messagemi,j = {µm

ij , w
m
p }Mm=1.

µm
ij = µ̂m

p + dij [sin θk cos θk] (4)

P (xj|xi)xi

F (xi, dij, σij) dij

σij

Figure 2. Function F that computes the con-
ditional probability between two variables.

We approximate NBP by setting the variance of each
sample to a fixed value.

In our representation, higher-level features are not di-
rectly observable. Evidence is incorporated into the graph
exclusively via primitive classes at the leaves of the graph.
The observation potentialsφi(xi, yi) are defined by Gaus-
sian mixtures. For initialization, we match detected features
in an image with the most similar classes. Each component
is set to a detected location and thus represents a possible
location of the feature class. The weight of a component is
inversely proportional to the Mahalanobis distance between
the observed descriptor and the feature class. To deal with
occlusions, we add a high-variance Gaussian located at the
image center to the observation potential.

5. Experiments
We have investigated the behavior of hierarchies on two

object recognition tasks. During the first experiment, we
trained our models on the objects of the COIL-100 database
[5]. As a training set, we utilized 24 of the 72 available
views uniformly distributed around each object. Our prim-
itives were random patches described by rotation-invariant
descriptors of13 × 13 pixel values. We deliberately used
simple, relatively inexpressive features to demonstrate the
functioning of our method. The number of feature classes
was selected according to the BIC criterion. We limited the
combination of each feature to the three best spatial rela-
tions and we ended the procedure after six levels of combi-
nation. A graph resulting from learning one object model
is presented in Figure 3. Recognition was tested against
the 48 remaining images of each object. We give in Fig-
ure 4 the confusion matrices concerning the first 25 object
models for increasing number of levels (1 to 6) in the hier-
archy. Brightness indicates the total number of detections.
As we can observe, a single level of feature combinations
is weakly discriminant. Thanks to our hierarchy, selectivity
arises from spatial combination of high-level features.

The second object recognition experiment was con-
ducted on a database of real objects [6]. This image library
contains color images of eight different real objects. Each
image was captured at different arbitrary poses around the
object. For our experiments, we still used the same random
primitives but kept the best five spatial relations of each fea-
ture to construct a hierarchy. The models were evaluated on
51 test images of the object recognition database. These



images represent cluttered scenes containing previously-
learned objects along with distractors and various illumi-
nation conditions. The recognition results (Figure 5) are
comparable to the state-of-the-art methods using 2D mod-
els [3] or explicit 3D matching [6]. This is remarkable since
we use neither robust features nor any discriminative in-
formation to build our models. Ferrari’s method considers
all training images independently which essentially reduces
recognition to the matching of robust features. By using
statistical learning and a flexible representation, we obtain
good results with simple features.

6. Conclusion

We presented a generic framework for unsupervised
learning of visual feature hierarchies. Our experiments
show that the system works well for both isolated objects [5]
and real scenes [6] in the presence of clutter and occlusion.
They demonstrated the representational power of the hierar-
chy; recognition rates increase with the depth of the hierar-
chy. In comparison with previous approaches, the proposed
framework offers several improvements. First, it allows the
learning and the represention ofshape flexibilityat differ-
ent levels in the hierarchy by only considering the distance
between features. Second, it does not rely on complex fea-
tures such as SIFT features; simplerandom primitivescan
be used. Third, where previous methods were limited to a
few high-level features (typically, less than 10), our system
is able to deal withdense graphical modelscontaining more
than 500 nodes. Finally, the recognition of3D real objects
is successful even in the presence of arbitrary 3D rotations,
scale changes, lightning conditions and severe occlusions.

Figure 3. Graphical model learned from ran-
dom patches for an object of COIL-100 [5].
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Figure 4. Confusion matrices for one- to six-
level models (COIL-100 [5]).

Figure 5. ROC curve obtained by our hierar-
chical framework and two of the best state-
of-the-art methods.

Figure 6. Object Detection, the illustrations
correspond to the activation of the top level
feature that had the highest response rate.
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