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Abstract

We present a hierarchical generative model for object
recognition that is constructed by weakly-supervised learn-
ing. A key component is a novel, adaptive patch feature
whose width and height are automatically determined. The
optimality criterion is based on minimum-variance analy-
sis, which first computes the variance of the appearance
model for various patch deformations, and then selects the
patch dimensions that yield the minimum variance over the
training data. They are integrated into each level of our
hierarchical representation that is learned in an iterative,
bottom-up fashion. At each level of the hierarchy, pairs
of features are identified that tend to occur at stable po-
sitions relative to each other, by clustering the configura-
tional distributions of observed feature co-occurrences us-
ing Expectation-Maximization. For recognition, evidence is
propagated using Nonparametric Belief Propagation. Dis-
criminative models are learned on the basis of our feature
hierarchy by combining a SVM classifier with feature selec-
tion based on the Fisher score. Experiments on two very
different, challenging image databases demonstrate the ef-
fectiveness of this framework for object class recognition,
as well as the contribution of the adaptive patch features
towards attaining highly competitive results.

1. Introduction

Over the past years, part-based methods emerged as
a promising family of methods for recognizing object
classes [10]. Classically, these methods represent an object
class by a collection of local parts that are consistent in both
shape and appearance. However, the range of variations in
these spaces is often difficult to represent by a model that
consists of a single level of abstraction.

Recently, hierarchical approaches based on statistical
models [1, 2, 3, 4, 8, 11] have received increasing atten-
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tion. These are well suited to representing shape variability
at different scales and granularities. However, they often
tend to reduce the object to a sparse collection of local parts
and do not include large-scale appearance representations at
higher levels of the hierarchy.

The current paper addresses this problem by present-
ing a statistical method for learning a hierarchical model
(Section 2) that exploits a new type of adaptive patch fea-
tures. The hierarchical feature structure is naturally inte-
grated into a graphical model formalism. This allows the
formulation of detection (Section 4) as probabilistic infer-
ence that can be efficiently implemented e.g. by Nonpara-
metric Belief Propagation (NBP). The proposed learning
framework (Section 3) focuses on modeling spatial relations
and high-level appearance between correlated features. Un-
like many existing frameworks, the topology of the model
itself is initially unknown; the graph is automatically and
incrementally constructed by combining correlated features
into higher-level abstractions. Discriminative models (Sec-
tion 5) are learned on the basis of our feature hierarchy by
combining a SVM classifier with feature selection based on
the Fisher score. We present an empirical performance eval-
uation on two standard object recognition tasks in Section 6.

2. A Hierarchy of Visual Features
Our object model takes the form of a compositional hi-

erarchy of visual feature classes [8, 11]. Climbing up this
hierarchy, features correspond to increasingly complex ob-
ject parts defined in terms of constellations of lower-level
parts. At some level, parts become representative and spe-
cific enough to abstract the whole object class. The partic-
ularity of this scheme lies in the fact that each feature class
f = {A,S,X} is described by an appearance modelA and
spatial relations S with respect to higher- and/or lower-level
features. No relations occur between features within the
same level. Pairwise spatial relations are defined in terms of
relative positions between two feature classes. To compute
the appearance model, the spatial extent of each visual class
is normalized into a specific canonical shape X . This shape
is estimated using a novel, adaptive method (Section 3.2).



During detection, a visual feature class can be instanti-
ated several times in the image. An instance of the visual
feature f is defined as a triple If = {l, p, w}, where l stands
for a location in the image, p is the local affine pose of the
feature instance, and w is the weight corresponding to the
confidence of observing this particular instance. In the fol-
lowing, we will often refer to visual feature classes and their
instances in a given image by using the terms “feature” and
“instance”, respectively.

The proposed recognition system employs an undirected
graphical model G = (V, E), a Pairwise Markov Random
Field, to implement an object model. Nodes in V corre-
spond to feature classes characterized by their specific ap-
pearance, and edges in E represent spatial relations by pair-
wise potentials (Fig. 1). Both are learned from training data
(Sec. 3). Together, they represent the structure of a given
object class.

2.1. The Vertex Set

Our model distinguishes between hidden nodes x and
observable nodes y, V = x∪ y. An observable node yi ∈ y
corresponds to image measurements extracted by feature
detectors at local image regions. Each hidden node xi ∈ x
represents a feature class fi. The instantiation of the feature
class in a given image is defined by a spatial probability
density represented by the hidden node.

A hidden node xi ∈ x represents a feature class of the
model and is associated with an appearance model Ai, rep-
resented by a mean appearance vector µAi ∈ Rn and corre-
sponding covariance matrix ΣAi .

The belief associated with a hidden node is a spatial
probability density that represents the plausible presence of
instances of the corresponding feature class in a given im-
age. During detection, these beliefs are inferred from image
observations (Sec. 4).

A weighted kernel density estimation (KDE) is used to
model the spatial density at each hidden node xi ∈ x.
The multivariate kernel estimator is defined as f̂(x; Θ) =
1
n

∑n
i=1 wiG(x;µi,Σi), where µi is a point in R2, wi is a

weight and Σi is a smoothing matrix. Since an instance de-
scription includes feature pose, a parameter corresponding
to the local affine deformation ϑi is associated separately to
each kernel component,

∀i ∈ n, Θ← {µi, wi,Σi} ∪ {ϑi} (1)

An observable node yi ∈ y represents a set of local
affine regions extracted by feature detectors. A local region
is defined as a triple (α, ϑ,D), where α ∈ R2 stands for
an image location, ϑ is an affine deformation matrix, and
D ∈ RNd is a local descriptor that represents the appearance
around the point α. To each node yi ∈ y is associated a
set of region detectors Fl=1...L ∈ F (Section 4.1). The
use of different detectors generally offers more robustness.
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Figure 1. In our representation each feature is associated with an
observable node y and a hidden node x linked through a local ob-
servation potential φ(x, y). Each pairwise potential ψ(xi, xj) en-
codes the spatial relation between two feature classes i, j.

The union Oi(I) of the local affine regions obtained from
each detector Fl associated to the current node yi defines its
instantiation for a given image I , where

Oi(I)←
⋃

Fl=1...L∈Fyi

{α, ϑ,D}Fl(I) (2)

2.2. The Edge Set

We distinguish two types of edges e ∈ E in the graphical
model that stand for pairwise and observation potentials.

A pairwise potential ψ(xi, xj) represents the spatial
relation between two neighboring hidden nodes (xi, xj).
Intuitively, such a potential can be seen as a mapping
function that encodes the relative positions of one fea-
ture with respect to another feature. Similarly to other
work [13, 11], in practice we use two conditional functions
ψ(xi|xj), ψ(xj |xi) instead of a joint potential ψ(xi, xj).
The conditional density is approximated by a Gaussian mix-
ture

ψ(xj |xi) =
Nij∑
k=1

wk
i G(xj ; γijk(xi),Σk

i ) (3)

where wk
i is the relative weight of an individual component

and γijk is a mapping function that computes the feature
positions for the k-th component. Specifically, it displaces
the feature instances of xi using the k-th relative position
µijk ∈ Sij estimated between xi and xj (Section 3.1).

The observation potentials φ(xi, yi) correspond to the
likelihood functions in the standard Bayesian formulation
of an inference problem. This allows to represent the com-
patibility between a hidden node xi and its corresponding
image evidence yi. Given a set of observed local regions
Ok(I) = (αk, ϑk,Dk) at node yi, the likelihood that a cer-
tain observed descriptor Dk detected at location αk is an
instance of the feature appearance model Ai can be formu-
lated by creating a spatial Gaussian Fk at αk weighted by a



similarity measure w. The likelihood L for a given point p
in the image corresponds to the maximum response among
all weighted Gaussian Fk (Eq. 4) at point p, that is

Fk = w G(αk,Σ) where w = exp(−λ(Dk,Ai))
L(p) = argmaxkFk(p) (4)

where λ(Dk,Ai) is the Mahalanobis distance between an
observation Dk and the appearance model Ai.

3. Learning a Hierarchy of Feature Classes
The basic concept behind the learning algorithm is to

accumulate statistics of the relative positions of observed
features in order to find frequently-occurring feature co-
occurrences. The structure of the model is built incremen-
tally by combining spatially correlated feature classes into
new feature abstractions.

First, a clustering algorithm (K-means) is applied to the
set of descriptors D of local regions previously extracted
from the training set. The number of classes is selected
according to the BIC criterion [12]. This yields a visual
codebook that is used to create the first level of the graph
G. Each feature is associated to a visual word of the code-
book to create an appearance class Ap. Figure 2 shows the
94 descriptor classes learned from the color pixel intensity
patches for a given object class.

After clustering, the training procedure accumulates in-
formation on the relative positions Λ of features and their
image locations Φ, and extracts those feature pairs C ←
[fi, fj ] that tend to be located in the same neighborhood.
Then it estimates the parameters of their geometric rela-
tions Sij using Expectation-Maximization (Section 3.1). It
selects the closest relations and estimates their shape X and
their appearance model A using a new adaptive method
(Section 3.2). Finally, it generates new feature nodes in the
graph (Section 3.3). The process is applied iteratively to
each new level in the graph. In the following sections, we
describe the main steps of this weakly supervised learning
procedure, whose outline is given in Algorithm 1.

Figure 2. A visual codebook obtained from 27 training examples
from one object class (Admiral Butterfly). The feature classes are
sorted in descending order according to the number of assigned
members.

Algorithm 1 Learning: learn()
1: {α, ϑ,D} ← regions extracted from the training set
2: {fp,Ap} ← K-means(D) // cluster the descriptors
3: G ← create(fp,Ap) // first level of the graph
4: for each level < nLevels do
5: // extract co-occurrence statistics: correlated fea-

tures, their relative positions and image locations
6: C,Λ,Φ← extract(G, level)
7: for each correlated feature class pair [fi, fj ] ∈ C do
8: Sij ← EM(Λi,j) // estimate spatial relational

model
9: S ← S ∪ Sij

10: end for
11: S ′ ← closest(S) // keep the closest spatial relations
12: [X ,A]← adaptivePatch(S ′,Φ)
13: G ← generate(X ,A,S ′,G) // connect new nodes
14: end for

3.1. Spatial Relations

Spatial relations are defined in terms of the relative po-
sition between two features. This is represented by a Gaus-
sian mixture where each component represents a cluster of
relative positions µk of one of the two features fj with re-
spect to the other, the reference feature fi.

Expectation-Maximization (EM) is used to estimate the
mixture parameters between each correlated feature pair
[fi, fj ] ∈ C. EM maximizes the likelihood of the ob-
served spatial relations over the model parameters Θ =
(w1...K ;µ1...K ; Σ1...K). They are stored in a table S at the
corresponding entry Sij of the feature pair [fi, fj ].

3.2. Adaptive Patch Features

The feature combination from which a new feature will
be created is not only defined by a spatial configuration Sij

of lower features, but also by an appearance Aij over a re-
gion of shape Xij . We now propose an efficient method
for estimating these parameters from a set of previously ex-
tracted positions Φij ∈ Φ of the feature pair [fi, fj ].

The scale at which the appearance should be extracted is
a priori unknown. A naive approach would be to derive it
from the distance between its parts. We consider this as an
initial reference scale sinit; however, the optimal size of this
region critically depends on the class and on the type of its
neighborhood (region, edge, corner, . . . ). Too small or too
large regions may result in information loss and inaccurate
models. Therefore, it is desirable to estimate a specific spa-
tial extent for each novel feature to compute its appearance.
In this work, we use two scale factors sx, sy relative to the
initial scale sinit, one for each dimension of the neighbor-
hood, normalized with respect to the gradient orientation.

The optimal relative region size Xij ← [sx, sy] is se-



lected by applying a minimum-variance analysis method.
It starts by extracting appearance vectors at the detected
locations Φij of the combination in the training im-
ages for a set of Ns different pairs of scale factors
[sx, sy]Ns

where sx, sy ∈ [0.2, 2.0[×sinit.
For each scale pair [sx, sy]j , a trimmed meanM ∈ RN

is computed from the extracted appearance vectors (Eq. 5).
It is used to compute an N -dimensional vector of variances
δ ∈ RN . Then we select the scale factor pair [sx, sy]min
that minimizes the sum of variances over all N dimensions
(Eq. 6).

∀Mi ∈M,Mi =

∑
(th1<ai<th2)

ai∑
(th1<ai<th2)

1
(5)

[sx, sy]min = argmin[sx,sy]j∈Ns

N∑
i=0

δ
[sx,sy]j
i (6)

Here, δ[sx,sy]j is the variance vector corresponding to a rel-
ative window size of [sx, sy]j . This optimal scale selec-
tion procedure is illustrated in Figure 3. The shape model
of the newly created compound feature class is then set to
Xij = [sx, sy]min, and the appearance model Aij to the
mean appearance vector µA = M[sx,sy]min and its corre-
sponding variance ΣA = δ[sx,sy]min . For our experiments,
appearance vectors are represented as color pixel values
in the HSV colorspace. Note that any other description
method (such as SIFT) can be used to represent them.

3.3. Feature generation

During the preceding steps, the learning process has
identified reliable spatial relations S ′ between features, and
has estimated the shape X and appearance model A that
best characterize their neighborhood.

To incorporate these relations into the graphical model,
the system generates a new pair of hidden and observable
nodes (xn, yn) in the vertex set V for each pair of spatially
related features (xi, xj) that appears in S ′. The new hidden
node xn corresponds to a higher-level feature and is linked
to its subfeature nodes (xi, xj) by four conditional density
functions ψ(xi|xn), ψ(xn|xi), ψ(xj |xn), and ψ(xn|xj).

A conditional ψ(xn|xi) (Eq. 3) between two nodes is
computed by means of a mapping function γink (Eq. 7) that
moves each component of xi with the relative position µink

from xi to xn. To ensure symmetry, we set the position of
the new feature xn to the midpoint between its subfeatures,
thus to half the distance of the relative position µijk ∈ S′ij
of feature xj from xi and vice versa. The other conditionals
ψ(xi|xn), ψ(xj |xn), ψ(xn|xj) are defined similarly.

γink(xi) = xi + µink = xi + (µijk/2) (7)

Each newly created hidden node xn is associated to the
shape Xij and appearance Aij of the feature combination.
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Figure 3. Illustration of the adaptive scale selection procedure. The
gray value at each bin is proportional to the sum of dimension-wise
variances for a pair of scale factors [sx, sy]. During the extraction
process, each local patch is normalized to the local gradient di-
rection computed at scale s = (sy + sx)/2 and resampled into a
patch of 13× 13 pixels. The trimmed-mean appearance and vari-
ance vectors corresponding to the optimal relative scale pair are
shown on the bottom right.

Finally, the hidden node is linked to the observation by
adding an observation potential φ(xn, yn).

4. Inferring High-Level Features
Computing the presence of features of an object repre-

sentation in an image amounts to estimating p(x|y), the pos-
terior belief associated with the hidden nodes given all ob-
servations. Thus, detection of hierarchical features amounts
to inference in our graphical model. One way to do this is to
use Nonparametric Belief Propagation (NBP) [14]. NBP is
an inference algorithm for graphical models that generalizes
particle filtering and propagates information by a series of
local message-passing operations. Following the notation
of BP, a message mij from node i to j is written

mi,j(xj)←
∫
ψi,j(xi, xj) φi(xi, yi)

∏
k∈Ni\j

mk,i(xi) dxi

whereNi is the set of neighbors of node i, ψi,j(xi, xj) is the
pairwise potential between nodes i, j, and φi(xi, yi) is the
local observation potential. After any iteration, each node
can compute an approximation p̂(xi|y) to the marginal dis-
tribution p(xi|y) by combining the incoming messages with
the local observation:

p̂(xi|y)← φi(xi, yi)
∏

k∈Ni

mk,i(xi)



In NBP, each message as well as each node distribution is
represented through a kernel density estimate (Section 2.1).
To better reflect the local distribution, we use a different
bandwidth Σi for each sample point µi. A common way to
compute the covariance is to use the k nearest neighbors,
where an empirical choice for the integer k is k ≈ n1/2.

For tree-structured graphs, the beliefs will converge to
the true marginals p(xi|y). On graphs with cycles, be-
lief propagation is not guaranteed to converge. However,
in practice the algorithm often exhibits satisfactory perfor-
mance nevertheless.

4.1. Low-Level Feature Extraction

The purpose of feature extraction is to reduce the visual
input space to a set of local regions. These regions are de-
scribed by vectors of HSV color pixel values that are used
to incorporate information into observable nodes y at the
lowest level of the graph G.

Ideally, our recognition framework should be able to
learn different object classes without restrictions concern-
ing their shape, appearance or texture. A common problem
in object recognition is that different object classes might
be described by different visual properties. Most existing
approaches only use one type of detector. Opelt et al. [9]
recently combined multiple methods to capture the main
characteristics of various object categories. This improves
the generality of their approach and therefore motives us to
exploit a similar feature extraction scheme where MSER,
Hessian-Laplace, Hessian-Affine and Random Patches are
combined within the same framework.

5. Supervised Selection of Visual Features
Once a graphical model has been learned for each ob-

ject class, they can be used for detection in new images.
However, since each model has been constructed from co-
occurrence statistics and without using discriminant infor-
mation, some features in the graphical model and the prob-
abilities they produce are not useful for differentiating ob-
jects. Discriminant features might be spread over different
levels in the graph.

In this section, we aim at constructing a classifier from
the proposed feature hierarchies for the purpose of object
class recognition. The general idea is to construct a multi-
class SVM classifier from the maximum activation of fea-
tures obtained during detection (NBP).

The main issue is to convert our graphical models Gq ∈ G
to a single input vector Z for the classifier. To this end, we
consider each node xi ∈ Gq of the graphical model of an
object q as an element ei of the SVM input vector. The value
of the element ei will correspond to the maximum activation
of the node xi for the current image. The maximum value
is obtained by evaluating the kernel density at each location

in the image. This process is repeated for each object q.
Finally, we concatenate the vectors Zq = (e1, . . . , eN1)T

of each object class into a single vector

Z = (ZT
1 ,ZT

2 , . . . ,ZT
q )T , (8)

where the dimensionality of the vector Z is
∑q

j=1N
j and

each N j corresponds to the number of nodes in the graph-
ical model of object j. During recognition, the vectors
Zq are obtained by processing the input image in each
graphical model Gq, thus obtaining q activation vectors
(e1, . . . , eNq )T .

It has been shown that SVM performance can degrade in
high-dimensional spaces with many irrelevant features [16].
One way to bypass this problem is to perform feature selec-
tion to eliminate useless features. We employ a conven-
tional feature selection procedure (Algorithm 2) based on
the Fisher score. It computes the recognition rate (on the
training set) for a set of Fisher score thresholds Ti ∈ T .
Then it selects the threshold Ti with the best validation rate.

The Fisher score measures the discriminatory power be-
tween two sets of real numbers. Given training vectors
xk=1,...,m, if the number of positive and negative instances
are np and nn, respectively, then the F -score of the ith fea-
ture is defined as

F (i) =
∣∣∣∣µ+

i − µ
−
i

σ+
i + σ−i

∣∣∣∣ (9)

where µ±i is the mean value for the i-th feature in the posi-
tive and negative classes, and σ±i is the standard deviation.

Algorithm 2 Fisher score for feature selection
1: Calculate F -score of every feature Zi ∈ Z
2: T0 . . . TN ← thresholds on F -scores
3: for each threshold Tj ∈ T do
4: for each Zi ∈ Z do
5: if F -score(Zi) < Tj then
6: remove feature Zi

7: end if
8: end for
9: {Train,Test} ← randomly split(trainingSet)

10: Train a SVM classifier on Train
11: Rj ← Calculate the prediction rate on Test
12: end for
13: Ts ← Select threshold Tj ∈ T with best rateRj .
14: for each F -score(fi) < Ts do
15: remove features fi

16: end for



6. Experiments

In this section, we apply the proposed method to two
very different and challenging applications of object recog-
nition, the Soccer [15] and Butterfly [5] image databases.
The Soccer dataset contains 315 images, including 140 for
training; the task is to recognize the team membership of
soccer players. The Butterfly dataset is composed of 619
images, 182 of them for training, acquired from the Internet;
the objective is to identify the species. Both datasets com-
prise seven classes. A wide variety of artifacts (blur, lack
of focus, resampling, compression) is noticeably present in
both image sets. Moreover, clutter, multiple occurrences,
occlusions, large scale variations, viewpoint changes and
arbitrary rotations are common in these images (Fig. 4).

In our experiments, a graphical model is learned on the
training images of each object class. The hierarchical model
contains up to five levels of features and 200 samples are
used to approximate each marginal distribution. To specif-
ically evaluate our adaptive patch features (Fig. 5), we also
implemented a bag-of-features recognition system similar
to Nowak et al. [7]. For each image, we count the number of
occurrences of each visual word previously extracted with
K-Means. An optimal threshold is selected using the mutual
information criterion. The classical bag-of-feature frame-
work B− is improved by incorporating our adaptive patch
features (learned from our hierarchies) in the codebook B+.
To count the occurrences of a given adaptive patch feature,
we extract patches at random locations, scales and orienta-
tions but using the shape information of the adaptive patch
X .

The results obtained by our framework are compared to
three, published, state-of-the-art methods [5, 6, 15] in ad-
dition to the two bag-of-features systems. On the Soccer
database, our hierarchical system H+ clearly outperforms
existing approaches thanks to the use of adaptive patch fea-
tures (Table 1). On the Butterflies, our results (Table 2) are
comparable to the local affine frames [5].

7. Conclusions and Further work

We described a hierarchical object appearance represen-
tation that represents spatial relationships between features
by spatial, pairwise potentials in a graphical model (Pair-
wise Markov Random Field). At each level of the hierar-
chy, features have an associated appearance. Interestingly,
the graphical model formalism allows to pose feature de-
tection as probabilistic inference that we implemented effi-
ciently by NBP [14]. We also showed how to use the fea-
ture activations as input to a SVM classifier for object class
recognition.

In summary, this paper extends current hierarchical mod-
els [1, 2, 3, 4, 8, 11] in two ways;

Soccer Class H+ H− B+ B− [6] [15]
AC Milan 80% 80% 73% 67% 73% -
Barcelona 93% 93% 93% 87% 93% -
Chelsea 67% 67% 53% 73% 87% -
Juventus 93% 87% 93% 80% 67% -
Liverpool 87% 80% 87% 73% 87% -
Madrid 87% 87% 87% 80% 93% -

PSV 67% 60% 60% 60% 47% -
Total 82% 79% 78% 74% 78% 73%

Table 1. Classification results for the Soccer dataset. We report
the results for our feature hierarchy (H) and Bag-of-Features (B)
systems with (H+, B+) or without (H−, B−) adaptive patch fea-
tures. These are compared to methods based on random subwin-
dows [6] and efficient color features [15].

Butterfly Class H+ H− B+ B− [5]
Admiral 91% 81% 59% 73% 87%

Swallowtail 81% 75% 81% 94% 75%
Machaon 95% 84% 72% 67% 96%

Monarch 1 67% 65% 73% 65% 73%
Monarch 2 84% 79% 85% 69% 91%

Peacock 98% 94% 76% 68% 100%
Zebra 92% 83% 63% 55% 89%
Total 89.4% 83% 71% 68% 90.3%

Table 2. Classification results for the Butterflies dataset. Results
are compared to the Local Affine Frames [5].

• Typically, the learning of hierarchical object models
often has to deal with a high cost in complexity. A
key contribution of our approach is the combination of
unsupervised (based on the analysis of co-occurences)
and supervised learning methods (SVM). This strategy
allows the system to bridge the gap between low-level
visual features and object classes more easily.

• Another problem that commonly arises from visual
feature hierarchies is the learning of appearance mod-
els associated with high-level features. To tackle this
difficulty, we introduced adaptive patch features that
select feature neighborhood dimensions to minimize
variance over the training data. Such features present
interesting rotational and scale invariance properties
and are generic enough to be computed with most cur-
rent local descriptors.

Our experimental results are on par with or exceed the
best published results, and highlight the contribution of our
adaptive patch features. These offer rotation and scale-
invariance, but affine-invariance should also be possible (by
using relative affine shapes). This might enable more accu-
rate recognition from images with large viewpoint variation.



level 0 level 1 level 2 level 3

Figure 4. Detection using our hierarchical model (H+). The first column shows the local regions obtained from a feature detector and
available at an observable node yi of the first level. Each subsequent column to the right shows the final belief (marginal probability) of a
higher-level node as a kernel density estimate. Each of them depicts different visual aspects of the object class. The four features shown
were chosen such that there exists a path linking them in the hierarchy, i.e., each level-i feature is a child of the level-i+ 1 feature shown
in the column to its right.



Figure 4. Continued.
level 0 level 1 level 2 level 3

Figure 5. Adaptive Patch Features for different spatial relations.
A variance map (over the training set) is shown for each adaptive
patch as a function of its shape. The maximum is selected to pro-
duce means and variances that are shown on the bottom panels.
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