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Abstract— Understanding semantic meaning from hand ges-
tures is a challenging but essential task in human-robot inter-
action scenarios. In this paper we present a baseline evaluation
of the Innsbruck Multi-View Hand Gesture (IMHG) dataset [1]
recorded with two RGB-D cameras (Kinect). As a baseline, we
adopt a probabilistic appearance-based framework [2] to detect
a hand gesture and estimate its pose using two cameras. The
dataset consists of two types of deictic gestures with the ground
truth location of the target, two symbolic gestures, two manip-
ulative gestures, and two interactional gestures. We discuss the
effect of parallax due to the offset between head and hand
while performing deictic gestures. Furthermore, we evaluate
the proposed framework to estimate the potential referents on
the Innsbruck Pointing at Objects (IPO) dataset [2].

I. INTRODUCTION

For human-robot interactions to take place naturally robots
need to recognize intuitive hand gestures performed by
the user. Burger et al. [3] suggested that robots in such
scenarios need to be equipped with transactional intelligence
which means being able to communicate meaningfully with
a human user. Amongst different forms of communications,
hand gestures are a highly effective and universal tool for
interaction, thanks to the flexibility of the hands. They can
be used to delegate tasks from a human to a robot.

In this work we focus on evaluating the IMHG dataset [1]
to recognize hand gestures. We extend our probabilistic,
appearance-based, deictic gesture detection framework [2],
which uses only single camera, to multiple hand gesture
detection and pose estimation using multiple cameras. Based
on Quek’s taxonomy [4], the different types of hand gestures
in the IMHG dataset can be categorized as shown in Fig. 1.
Modalizing gestures in the taxonomy tree are associated
with speech; we deliberately exclude them from the IMHG
dataset. Figure 2 illustrates the IMHG data acquisition setup.
Quek suggested his taxonomy of hand gestures for human-
computer interaction (HCI), but it is equally suitable for HRI
scenarios.

A. Motivation and Contribution

Previous studies [5], [6] have demonstrated that gesture
recognition and pose estimation can be improved by using
multiple cameras. However, these gesture recognition sys-
tems require full-body or upper-body human pose. They are
mainly targeted towards robot guidance. The gestures are not
conceived as commands for the robot to manipulate objects
in the environment.
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Fig. 2: Illustration of the IMHG dataset acquisition setup

If robots are supposed to collaborate with humans in
close proximity, for example, furniture assembly [7], socially
assistive robots [8], etc., it is likely that a robot (with a
limited field of view) can only see user’s hand and not the
whole body. In such scenarios it is irrelevant to observe
full-body human pose since people perform gestures with
hand and fingers, not with body and arm [9]. To detect hand
gesture some methods either define a bounding box [10]
or use information from hand tracker [11]. The proposed
hand gesture detection and pose estimation framework is



independent of any prior information regarding human body
pose.

Bangerter et al. [12] conducted human (pointer) – human
(guesser) studies to examine the perceptual accuracy of
deictic gestures. Their study demonstrates that people point
by aligning the tip of their pointing finger with the eye-
object line. In other words, rather than the finger axis
intersecting with the target, people tend to raise the fingertip
from the finger-object line towards the eye-object line. The
authors call this pointer bias, i.e., the intended target is
predictably different from the estimated target. It is plausible
that guessers may also be subject to dominant eye bias which
may be induced automatically [13].

Similarly, we examine the accuracy of pointing gestures
in human-robot interactions. One important difference is that
in our study the guesser is the robot vision system which is
free from dominant eye bias. Our results were found to be in
accordance with the findings of Bangerter et al. In section III-
A.1 we discuss the effect of parallax and experimentally
quantify pointer bias whilst pointing with the index finger
and pointing with the tool in hand.

The main contributions of this work are:
– A probabilistic appearance-based framework to detect

hand gestures and estimate their pose using the infor-
mation from multiple RGB-D cameras.

– A baseline evaluation of the IMHG dataset consisting of
836 test sample pairs (one from each camera) captured
with 22 participants (704 deictic gestures with the
ground truth, and 132 other gestures).

– Insights into the effect of parallax in performing deictic
gestures.

– Quantitative analysis of the publicly-available Innsbruck
Pointing at Objects (IPO) dataset [2]1 in estimating
potential referents from deictic gestures.

B. Related work

Several prominent studies [14], [15], [16], [17] in HCI
have addressed the topic of creating a hand gesture dataset.
Other datasets [18], [19] capture the full body or the upper
body of the participant. These notwithstanding, the field
of HRI needs to develop its own methods for interaction
between a human and a robot. For example, in pointing
gestures, a robot has to recognize the gesture as well as
to estimate the pointing direction, i.e. the pose of the hand.
Moreover, it is difficult to perform quantitative evaluation for
such deictic gestures because of a lack of ground truth.

A recent and comprehensive survey by Ruffieux et al. [20]
reviews publicly-available, vision-based hand, upper-body,
and full-body gesture datasets. One of the initial efforts
by Kim et al. [14], the Cambridge Hand Gesture Dataset
(CHGD), is an RGB dataset with 9 classes of hand gestures.
The dataset was conceived for classification of hand shapes
and hand motions. With the availability of RGB-D sensors,
Liu et al. [16] released the Sheffield Kinect Gesture (SKIG)
dataset, which consists of 10 categories of hand gestures

1https://iis.uibk.ac.at/datasets/ipo

representing shapes like circle, triangle, ‘Z’, etc. Another
notable RGB-D dataset, the Microsoft Research Gesture
dataset (MSR) proposed by Kurakin et al. [21], consists of 12
dynamic American sign language (ASL) gestures performed
by 10 participants. More recently, Molina et al. [17] released
a hand gesture dataset composed of the Spanish sign lan-
guage alphabet and several miscellaneous annotated gestures
captured by 11 participants and also generated synthetically.

The hand gesture dataset by Ren et al. [15] is somewhat
related to the IMHG dataset. Similar to previous work it also
addresses hand shape detection. A pertinent difference with
the former is that in the IMHG dataset the hand gestures are
closely related to the semantic content of verbal language.
A robot interprets these gestures as the command to be
executed to interact with the environment. Additionally, the
test scenes are captured using multiple Kinect cameras. We
briefly summarize the aforementioned datasets in Table I
reviewing various characteristics.

There have also been several studies to estimate the
direction of pointing gestures. Here we briefly summarize
some previous studies comparable to our method. Contrary
to our method, the pose of the user’s body is an essential
requirement for all these studies. These state-of-the-art meth-
ods can be categorized into three main types of pointing
strategies:

1) Elbow-Hand line – only the forearm is used to point.
Großmann et al. [22] used the open-source, Kinect-
based OpenNI NITE skeletal tracking library to esti-
mate the pose of the elbow and the hand. They then
trace a 3D line along the forearm to estimate the
location of the target.

2) Shoulder-Hand line – user is supposed to stretch
the whole arm to point. Huber et al. [23] tracked
body features in proximity spaces and computed the
shoulder-hand line. Droeschel et al. [24] proposed an
approach based on Gaussian Process Regression (GPR)
to estimate the target location. They segmented body
parts from depth data to extract the pose of the whole
arm. They also investigated the accuracy of elbow-
hand line strategy.

3) Head-Hand line – the fingertip is aligned between the
eye and the target. The approach proposed by Nicket et
al. [25] combines skin color information with 3D depth
skin color clusters. They train Hidden Markov Models
(HMM) on different phases of pointing gestures and
estimate the location of the target using the head-hand
line.

A qualitative comparison of the proposed work with state-
of-the-art methods is discussed in section III-B.

II. HAND GESTURE DETECTION AND POSE ESTIMATION

Libhand [26], a synthetic hand model proposed by Romero
et al. [27], was used to generate the training data for the
proposed gesture detection framework. An illustration of a
set of training viewpoints on the viewing sphere with some
of the training images is shown in Fig. 3. The hand gesture
detection and pose estimation framework used is based on



Methods #Classes Views RGB Depth Resolution Pose of finger joints Available Application to HRI
Kim et al. [14] 9 TV X 5 320× 240 5 X 5
Ren et al. [15] 10 FV X X 640× 480 5 X X
Kurakin et al. [21]> 12 FV X X 130× 130 5 X 5
Liu et al. [16] 10 TV X X 320× 240 5 X 5
Molina et al. [17]> 55 FV 5 X 176× 144 X X 5
IMHG dataset [1]2 8 FV, SV X X 640× 480 5 X X

TABLE I: Summary of hand gesture datasets based on the following characteristics: number of hand gesture classes; number
of views (TV - top view, FV - Front view, SV - Side view); RGB data; depth data; resolution of images; pose of finger
joints; availability of the dataset; application to HRI. >Sign language gestures.

Fig. 3: Training images captured from different viewpoints
for pointing gesture. The viewpoints marked in red-green are
a subset of the training data used to learn the model of the
pointing gesture. Similarly, training images are captured for
non-deictic gestures.

probabilistic representations of both the training and the test
data [28]. An advantage of this framework is that the method
can be trained with a generic hand model to detect gestures
performed by users with different shapes and sizes of the
hand.

To detect hand gestures and their pose (location, azimuth
angle and elevation angle) we adopt the same methodology
as described in our previous work of detecting pointing
gestures [2]. Here, we describe the method to combine in-
formation from multiple cameras to overcome the ambiguity
in pose angles that may occur in individual cameras.

Pose Estimation with Multiple Cameras

The multi-view integration process is illustrated in Fig. 4.
The process is carried out in two steps. First, we obtain
the pose estimates from two cameras. Each pose estimate
is transformed from camera frame to world frame. Second,
the pose estimates from both cameras are integrated prob-
abilistically in the world frame. The pose with the highest
score is considered the correct estimate (in Fig. 4, the first
element of the diagonal). The details of the process are as
follows.

We have two sets of estimated poses S1 and S2 from
camera 1 and camera 2, respectively. First, we consider all
possible pose estimation combinations from both cameras.

2https://iis.uibk.ac.at/datasets/imhg
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Fig. 4: Hand pose estimation using two cameras. Pose
estimates are integrated from both views in 6D pose space.
The pose with the highest score is retained as the best
estimated pose.

Let N be the set of all possible pose estimation combi-
nations. Each element nj ∈ N contains a set of pose
estimations consisting of one estimate from each camera.
We obtain a 6D distribution for each pose estimation in the
ith camera as

Φ(Si) = N (Si,Σ) (1)

which is a Gaussian approximation of the estimate in the ith

camera with a covariance of Σ. We use this distribution to
define a function of the combined pose estimates nj ,

ϕ(nj) =
∏
Si∈nj

Φ(Si). (2)

The final estimated pose of the hand can be obtained by
finding the maximum of scores among ϕ(nj),

s∗ = argmax
j

ϕ(nj). (3)

III. RESULTS AND DISCUSSION

The IMHG dataset consists of 8 types of gestures; namely:
finger pointing, tool pointing, receive (give me), thumb
up (approve), thumb down (disapprove), grasp open, grasp



close, and fist (stop) [1]. To evaluate our method, we compare
the estimated hand pose with the manually labelled ground
truth computed using depth data. For deictic gestures the
ground truth is the target location (red dot) on the table as
shown in Fig. 2. We compute error as the distance between
the estimated target location and the ground truth location
in the world frame. The estimated target location is the
intersection of the line of direction of pointing gesture (pose
of the pointing gesture) and the planar surface (table). For
the non-deictic gestures the estimated pose is compared only
with the ground truth location of the hand.

A multiple-camera setup is prone to calibration errors. The
average calibration error in the IMHG dataset acquisition
system was estimated to be around 1.8 cm which is in
accordance with other multiple-camera setups. For instance,
Macknojia et al. [29] estimated the extrinsic camera calibra-
tion error to be around 2.5 cm in a network of 5 Kinect
sensors.

To speed up the estimation process we mask out the
edge points of the background using depth information. The
gestures in the dataset are performed with either of the
hands. We therefore search for two hands and accept the
pose estimate closer to the camera as the dominant hand.
Additionally, the method can be used to detect a novel
gesture performed by both hands as long as they are spatially
distinct in the image.

We performed two sets of experiments. The first is aimed
at a quantitative analysis of the parallax effect in pointing at
the true target location. We evaluated our framework on the
IPO dataset [2] to estimate the potential target objects. Then,
we perform baseline evaluations of the IMHG dataset. Here,
we compute the accuracy and the standard deviation of the
highest-scoring pose estimate. We also compare our method
with state-of-the-art methods.

A. Experiment 1: Effect of parallax in deictic gestures

A deictic gesture can only be used in the cases of what
Clark et al. [30] refer to as physical copresence – both
participants are able to view the referent in the situation
in which the gesture occurs. Furthermore, Clark et al. [31]
asserted in their study that the precise target point indicated
by the user is in most cases spatially distant from the object
the user intends to indicate. This is due to two main factors.
One is a simple geometric error on the part of the human
due to parallax. Secondly, deictic gestures in 3D contain no
inherent information regarding the distance. Instead, a deictic
gesture is typically constrained to a set of spatially spaced
potential referents. We quantitatively examine the above two
factors as follows.

1) Parallax error: In the IMHG dataset each participant
was asked to point at different target locations on a polar
coordinate system as shown in Fig. 2. To study the effect of
parallax we first calculate the line of the pointing direction
with manually labelled points along the index finger or the
pointing tool using depth data. Next, we find the targeted
location as the intersection between the line along the
pointing object (index finger or pointing tool) and the planar
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Fig. 5: Pointer bias observed (top) while pointing with the
index finger, (bottom) while pointing with the tool in hand.
The pointer bias is represented by vectors from the intended
target (black circle) to the targeted location. The magnitude
of the vector i.e. error in distance, is color coded.

surface (table). Finally, we compute the distance between the
intended target, i.e. the ground-truth target location, and the
targeted location, i.e. the point of intersection.

Evidently, the intended target and the targeted location are
typically found to be significantly apart. The pointer bias
as described in section I-A was found to be systematically
outward i.e., away from the participant. It can be seen from
the polar chart as shown in Fig. 5. The vectors represent the
error between the intended target and the targeted location.

Table II shows the mean errors in the horizontal dimension
(X-axis) µX, in the vertical dimension (Y-axis) µY, and the
absolute error µa with corresponding standard deviations
while pointing with the index finger and the tool in hand. The
mean errors, µX and µY, are computed as targeted location
minus intended location. Their values indicate that the line
of pointing direction overshoots the intended target. In the
horizontal dimension the bias was found to be stronger for
the ipsilateral (on the side of participant’s dominant hand)
target points as compared to the contralateral target points.
For example, the bias for a right-handed participant pointing
at the target on the right is stronger than for a target on
the left. We speculate that this is because, while pointing at
contralateral targets, the hand crosses below the eye, reducing
the parallax effect. In the vertical dimension the effect of
parallax was observed to be much larger. Overall it can be
seen from the absolute error µa and standard deviation σa
that pointing with the tool induces a greater parallax effect
compared to pointing with the index finger.



Finger pointing µX σX µY σY µa σa
Ipsilateral targets 2.38 2.95 1.78 3.81 4.37 4.83
Contralateral targets 0.35 1.43 2.56 1.85 3.47 2.21

Tool pointing µX σX µY σY µa σa
Ipsilateral targets 3.79 5.29 5.36 6.13 8.59 8.74
Contralateral targets −0.08 2.53 5.27 4.32 6.78 5.82

TABLE II: Pointer bias comparison (top) while pointing with
the index finger, (bottom) while pointing with the tool in
hand. µX, µY, µa are mean errors along X-axis, Y-axis and
absolute error and σX, σY, σa, are corresponding standard
deviations, respectively, in cm.

The estimated error due to parallax varies among different
users. It depends on various factors, including the way the
pointing tool is held, the shape of the index finger, or the
pointing style itself. For example, a very tense or flimsy index
finger leads to large errors.

2) Potential referents: A deictic gesture essentially in-
dicates a targeted object. The probability of the object to
be selected as the estimated target depends on its distance
to the estimated direction. The nearer the object is to the
estimated direction more likely it is to be considered as the
target. In human-robot interaction it is feasible to associate
the direction of the pointing gesture with potential referents.
Such a framework enables a robot to interact with the human
in case of ambiguity between the intended target and the
estimated target.

We test our method on the IPO Dataset. A sample test
scene from the dataset is shown in Fig. 6a. The objects are
placed 5◦ to 20◦ apart. We compute a confidence matrix
which indicates the potential referents associated with the
highest-scoring estimation of the pointing gesture. The con-
fidence matrix shown in Fig. 6b illustrates the probability
of an object to be selected as the estimated target while it
is an intended target. The rows of the matrix represent the
object intended by the user, and the columns represent the
estimated object.

For example, when the user is pointing at the orange,
the potential referents based on confidence are orange and
strawberry. Since the confidence of orange is higher than
that of strawberry, it is selected as the targeted object. But
in the case where the user points at the strawberry, orange
is selected over strawberry because of the ambiguity in one
of the pose angles and orange being closer to the line of
the direction of pointing. In such situations, the robot can
interact with the user to verify which is the intended target
among the estimated potential referents.

B. Experiment 2: Baseline evaluations of the IMHG dataset

The pose/appearance space to learn a hand gesture is
created from a set of training images on the training sphere.
Training images are spaced at 10◦ intervals in pose angles
(azimuth and elevation). The kernel parameters described
in [2] are maintained constant for each gesture across all
participants.
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Fig. 6: (a) Sample scene from the IPO dataset. (b) Confidence
matrix showing the probability of an object to be selected as
the target object. Rows: ground-truth objects pointed at by
the user; columns: objects at estimated target locations.

Based on the variability in shape and size of the hand, a
pose estimate is accepted only if the location of the estimated
pose (i.e. centroid of the hand model) is within a radius of
7 cm of the ground location of the hand. There are 704
test sample pairs of deictic gestures and 22 test sample
pairs of the 6 non-deictic gestures in the IMHG dataset.
We compare pose estimation results using a single camera
(i.e. frontal view), and multiple cameras (frontal and side
views). Table III shows that our method exhibits a mean
error of 8.33 cm and a standard deviation of around 5.48 cm
in estimating the target location for deictic gestures with a
detection rate of 76.42% when two cameras are used; this is
substantially stronger than single-camera performance.

In the case of non-deictic gestures the standard deviation
in estimating the location of the hand ranges from 1.45 cm
to 2.21 cm, with an average detection rate of 86.36% using
2 cameras. When only a single camera is considered the
method achieves an average gesture detection rate of 78.01%.
It can be seen that using multiple cameras improves the
performance of the system except in the case of the Fist
(stop) gesture where the detection rate is comparable. The
fist gesture shows high similarities with the forearm for
some participants. The pose estimates from two views are
therefore not in agreement, which results in a comparatively
low detection rate in a multi-camera setup.

Figure 7 shows examples of true detections within the
error range. The ground truth target locations (only for
deictic gestures) are marked with a green circle, and the
estimated locations are marked with a blue circle. The



Fig. 7: Examples of true detections on the IMHG dataset. For deictic gestures the ground truth location is marked with a
green circle, and the estimated location is marked with a blue circle. The learned gesture model is overlaid on the image
at the detected hand location. Top to bottom columnwise: Finger pointing, Tool pointing, Give me, Fist (stop), Thumb up
(approve), Thumb down (disapprove), Grasp close, Grasp open.

Fig. 8: Examples of false detectins on the IMHG dataset. For deictic gestures the ground truth location is marked with a
green circle, and the estimated location is marked with a blue circle. The learned gesture model is overlaid on the image at
the detected hand location. Top to bottom columnwise: Finger pointing, Give me, Fist (stop), Grasp open.



Single camera Two cameras
d% µ σ d% µ σ

Deictic 64.20 8.87 7.52 76.42 8.33 5.48
Give me 86.36 3.13 1.89 95.45 3.65 1.49
Fist (stop) 90.91 2.47 1.14 86.36 3.34 1.82
Approve 77.17 4.23 2.04 86.36 3.57 2.21
Disapprove 68.18 4.73 1.60 81.82 3.34 1.45
Grasp close 81.82 3.28 1.12 86.36 3.57 1.45
Grasp open 63.64 3.82 1.95 81.82 3.92 1.96
Average 76.04 4.36 2.46 84.94 4.24 2.26

TABLE III: Mean error (µ) and standard deviation (σ) in cm
at d% detection rate.

Methods µ σ
Elbow-hand [24] 49.0 28.0
Elbow-hand [22] 24.0 -
Shoulder-hand [23] 41.0 17.0
Shoulder-hand with GPR [24] 17.0 12.0
Head-hand [25] 39.0 17.0
Our method (hand only) 8.33 5.48

TABLE IV: Qualitative comparison with state-of-the-art
methods. Mean error (µ) and standard deviation (σ) in cm.

learned gesture model is overlaid on the test scenes at the
detected hand location. Results shown are 2D illustrations of
the 3D estimations. Some false detection results can be seen
in Fig. 8. Our method fails in the cases of high but spurious
similarities between the appearance of a training model and
other body parts such as the forearm.

An overall comparison of the proposed pointing gesture
detection framework with the state of the art is summarized
in Table IV. The test scenarios presented in the compared
works are similar to that of the IMHG dataset. For example,
participants are standing at a distance of approximately 1-2 m
from the camera, test scenes captured under natural lighting
conditions, presence of the clutter in the background, and
users do not use any props like hand gloves. Qualitatively,
we achieve a higher accuracy in estimating the location of
the target as compared to other methods. Please note that no
prior information of the object or the body pose is provided
to our framework – an advantage in human-robot interactions
taking place in close proximity. Moreover, the spatial area
covered by target locations (red dots) in the IMHG dataset is
comparatively smaller which further enhances the challenge
of target estimation.

IV. CONCLUSIONS

We propose a probabilistic framework to detect static hand
gestures and estimate their pose for human-robot interaction
scenarios. The focus of this paper is to evaluate the proposed
framework on the IMHG dataset as a baseline. We found that
the effect of parallax can lead to false estimation of the target
by the guesser. Furthermore, we evaluate the ability of our
method to estimate potential referents to overcome the issue
of pose ambiguities in deictic gestures. A robot can interact
with the user in such situations and can react according to
the next gesture like approval or disapproval. The robot can
be stationary or mobile and equipped with one or multiple

vision sensors.
Our framework can accommodate variability in size, shape

and color of hand gestures. This enables a robot to detect
gestures performed by various participants with a single hand
model for each gesture. Therefore, we are independent of
acquiring new training data for each participant.
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