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Abstract— As human-robot collaboration methodologies de-
velop robots need to adapt fast learning methods in domestic
scenarios. The paper presents a novel approach to learn
associations between the human hand gestures and the robot’s
manipulation actions. The role of the robot is to operate as an
assistant to the user. In this context we propose a supervised
learning framework to explore the gesture-action space for
human-robot collaboration scenario. The framework enables
the robot to learn the gesture-action associations on the fly
while performing the task with the user; an example of zero-shot
learning. We discuss the effect of an accurate gesture detection
in performing the task. The accuracy of the gesture detection
system directly accounts for the amount of effort put by the
user and the number of actions performed by the robot.

I. INTRODUCTION

One of the major challenges for a robot in human-robot
interaction (HRI) scenarios is to explore the large state-space
of the environment. To perform a manipulation action a robot
should be aware of the three main states: the state of the
human, the state of the objects to manipulate, and the robot’s
own state. The state of the human is the command given by
the user which in this work is a static hand gesture. The state
of an object is whether it is in the robot’s hand or not.

In this paper we propose a novel framework to learn
associations between the hand gestures and the robot actions.
Although the user sees the associations between gestures and
actions the robot actually learns associations between the state
of the system (i.e. the state of the human, the state of the
object, and the robot’s own state) and the action performed.
Initially the associations are unknown which are learnt in a
supervised zero-shot learning fashion on the fly.

We demonstrate our framework in a domestic scenario to
assemble furniture e.g. a table, as illustrated in Fig. 1. The
robot assists the user in the assembly of the table. Its objective
is to handover the table legs to the user. We define 10 ways to
handover legs. In order to evaluate the proposed framework
extensively we assemble 5 tables 20 times. It would be tedious
and practically expensive to perform such a high number of
table assemblies in a real environment. Therefore experiments
are conducted in a simulated environment.

A. Motivation and Contribution

Numerous studies [1], [2] have reported methods for robots
to learn to complete tasks more efficiently i.e. completion
in the least number of actions. Our work is motivated by
the Joint Intention Theory by Cohen et al. [3] where authors
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Fig. 1: Robin (the robot) assists the user in the assembly of
a table. The user performs gestures like ‘pointing’ and ‘give
me’ to which the robot reacts as ‘grasp object’ and ‘hand
over’, respectively.

propose a formal approach to building artificial collaborative
agents. The authors describe collaboration not only as the
commitment of members to achieve the goal but also–if
necessary–having a mutual belief about the state of the goal.

The furniture assembly task takes place in a close proximity
hence it is irrelevant to observe full-body human pose. The
gestures are performed with hand and fingers, not with body
and arm [4]. Therefore, we choose to interact using the hand
gestures since they inherently provide spatial information
of the user’s hand. For example, gestures like pointing can
be used to localize objects [4]. Moreover, the hand gestures
are comparatively natural than a computer interface. We
use gestures from the Innsbruck Multi-view Hand Gestures
(IMHG) dataset [5]. The gestures in the IMHG dataset are
closely related to the semantic content of verbal language
and were designed based on the HRI study conducted by
Jensen et al. [6].

The approach is statistically driven, in other words, every
data point is an input-output pair where the input maps to an
output. This grants the flexibility to implement the Proactive
Incremental Learning (PIL) framework. The robot receives
a feedback (positive or negative) based on the action it has
performed with respect to the state of the system. The gesture-
action associations are recorded on receiving the feedback
consequently learning the mapping between the input i.e. the
state of the system and the output i.e. the robot action.



It is a supervised learning approach, however, the training
and the testing are not the two distinct phases of the process.
Since associations are learnt on the fly both phases are
active till the system reaches the goal. It records each data
point incrementally to develop the gesture-action model. This
incremental attribute of the PIL framework provides the
freedom to the user to establish the gesture-action associations
at will. The probabilities of the associations i.e. to perform
an action given the state, are learnt as the task advances.

Recent HRI study by Jenson et al. [7] shows that people
expect robot to act proactively with the same interactional
levels as that of humans. The proactive nature of the PIL
framework addresses this aspect. The robot is able to decide
the most likely action to perform given the state of the system
after learning the associations during the task. Additionally,
the robot based on the acquired knowledge can correct the
state of the detected hand gesture if it invokes an invalid state
of the system. For example, a robot trying to grasp another
object while an object is already in its hand.

The invalid state can occur due to two main reasons: (1) a
gesture is detected with a low confidence score irrespective of
the state of the system therefore it is discarded, (2) a gesture is
misclassified and it is incompatible with the state of the system
irrespective of the confidence score. The state of the human
as understood by the robot depends on the rate of detection
of the communicative signal. During an invalid state the robot
looks at the learnt probabilities to correct the detected gesture.
The number of interactions taking place during a human-robot
collaboration task is directly proportional to the accuracy of
the hand gesture detection system. We quantitatively study
and discuss the effect of the rate of detection of gesture in
section IV.

The main contributions of this study are summarized as
1) A supervised learning approach to design a framework–

Proactive Incremental Learning (PIL) framework– to
learn associations between the hand gestures and the
robot’s manipulation action on the fly,

2) Proactively correct the misclassified gesture,
3) Study the effect of the rate of detection of the hand

gestures.

B. Related work

The human-robot interaction studies with an active human-
in-loop involvement has been presented in many instances
such as learning by imitation [8], demonstration [9], and
feedback [10]. Interactive reinforcement learning (IRL) based
approaches [1], [11] have demonstrated that human-generated
reward can be powerful and is a fast learning technique over
classic reinforcement learning.

Thomaz et al. introduced IRL which enables the user
to provide positive and negative rewards using a computer
interface in response to the manipulation action of the robot.
These rewards are a guidance input which leads the robot to
perform the desired behaviour [1]. Human-Robot Interaction
Operating System (HRI/OS) designed by Fong et al. allow
humans and robots to collaborate in joint tasks in a peer-to-
peer fashion [12]. The key feature of their system is that the

coordination takes place through a dialogue only when the
help is asked.

Lutkebohle et al. proposed a bottom-up strategy where the
robot performs an action then engages in a dialogue with the
user [13]. Their framework focusses on two objectives: (1)
What the robot has to learn, and (2) Bring attention of the
user to provide feedback based on the action. Consequently,
the robot develops associations between the verbal commands
and actions during the training phase.

A commonality among the state of the art is there are
two distinct phases for the robot viz., a learning phase and a
testing phase. To learn new associations the system needs to
be retrained which is not the case for the proposed work; an
advantage of the PIL framework. An exception among the
previous works is the approach by Grizou et al. [14] where
the robot learns to interpret voice commands while learning
a task. Their framework is based on inverse reinforcement
learning where the user instructs the robot what to do.

The proposed PIL framework is guided by similar prin-
ciples particularly the idea of feedback from the user. Like
Grizou et al.’s framework the PIL also incorporates both the
training and the testing during the task. A pertinent difference
with the PIL framework is in our work the robot explores
manipulation actions and is not specifically guided by the user
regarding which action to perform. In addition to learning
the associations on the fly these associations can be shared,
modified, and updated with new associations while performing
a new task.

II. HUMAN-ROBOT COLLABORATION SCENARIO

A. Domestic Scenario

We designed the HRI setup with ‘Robin’ (the humanoid)
which has 2 KUKA light weight robot arms, 2 Schunk hands,
and a KIT robotic head [15] in a virtual environment. We
use the left arm of the robot to interact since gestures in the
IMHG dataset are commonly performed with the right hand.

We use 6 types of hand gestures from the IMHG
dataset. These gestures are categorized based on Quek’s
taxonomy [16] as shown in Fig. 2. Let G =
{pointing,give me,grasp,release} be the set of
4 instructional gestures shown as pointing, give me, grasp
close, and grasp open, respectively, from the dataset. The
pointing gesture is used to indicate an object or a location in
the workspace. The fist gesture is used to instruct the robot
to pause. Since the setup is simulated the fist gesture is not
included in this work. Let F = {OK,¬OK} be the set of
feedback signals given by the user by performing thumb up
and thumb down gestures, respectively. The feedback is in
the form of a binary approval signal which determines how
a gesture-action association is scored.

The 5 manipulation actions known to the robot are:
open robot’s hand (open), close robot’s hand (close),
go on the top of the pointed object (object), go
towards the human hand (human), and go to the
pointed location on the table (location). Let A =
{open,close,object,human,location} be the set of
those actions. Since the state of the object mainly depends on
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Fig. 2: Taxonomy of hand gestures.

the state of the robot’s hand we define 2 states of the robot
hand. The state of the robot’s hand is considered free when
the object is not in its hand (free) and it is considered as
occupied when the object is in its hand (occupied). Let
H = {free,occupied} be the set of these states of the
robot hand.

B. Task execution

The state s of the system at the time step t consists of
three attributes given as st = 〈gt, at, ht〉, where gt ∈ G is
the detected gesture, at ∈ A is the state of the robot i.e.
the action performed by the robot in the previous step, and
ht ∈ H is the state of the robot’s hand. At each step t of the
assembly three entities are recorded: the state of the system
st, the action robot will perform at+1 ∈ A, and the feedback
signal ηt+1 ∈ F given by the user after the action.

The gesture-action associations are mainly seen from the
user’s perspective while the state-action associations is what
the robot learns. Henceforth, the state-action association
and the gesture-action association are used interchangeably.
Consider the sequence of quintuples as shown in Table I to
handover legs of the table. Each block with the solid line is a
type of a handover. For explanation purposes let us consider
that gestures are detected accurately.

Initially, Robin is at a default position with its hand open
and the four legs of the table are kept within its reachability.
First, the user points at one of the leg. The vision system
detects the hand gesture as pointing. Robin then selects
one of the random actions from A, let’s say, close i.e. close
robot’s hand. Since close was not the desired action the
user gives a feedback signal ¬OK. Similarly, ¬OK is given
to the next random action open. Finally, at step 3 when the
robot performs the action object i.e. go on the top of the
pointed object, the user gives OK.

Next, the user performs a grasp gesture to instruct the
robot to grasp the object. Since Robin has never seen this
state previously it randomly executes action open and in
return the user gives feedback as ¬OK. It then performs action
close and grasps the object to which a OK is signalled. In

Step Detected Previous robot Robot’s Action Feedback
t gesture gt action at hand ht at+1 ηt+1

1 pointing open free close ¬OK
2 open free open ¬OK
3 open free object OK
4 grasp object free open ¬OK
5 object free close OK
6 give me close occupied location ¬OK
7 close occupied human OK
8 release human occupied object ¬OK
9 human occupied open OK

10 pointing open free object OK
11 grasp object free close OK
12 pointing close occupied close ¬OK
13 close occupied human ¬OK
14 close occupied location OK
15 release location occupied open OK
16 pointing open free object OK
17 pointing object free open ¬OK
18 object free object OK
19 grasp object free close OK
20 give me close occupied human OK
21 pointing human occupied object ¬OK
22 human occupied location OK
23 release location occupied open OK

TABLE I: An example to handover legs of the table to learn
the gesture-action associations.

due time Robin would have learnt that it has to perform
the action object given the state of the robot is open,
its hand is free, and the user makes pointing gesture .
Moreover, it also enables to design a intent prediction modal
to speed up the task. For example, the user is most likely
to perform grasp after pointing, therefore, the robot is
aware that the action followed by going on the top of the
object (object) will be most likely to grasp it (close).

III. PROACTIVE INCREMENTAL LEARNING

The Proactive Incremental Learning (PIL) framework is an
example of supervised zero-shot learning. It is designed to
reach to the final state while minimizing the number of actions
performed by the robot as well as the number of gestures
shown by the user. Let’s consider the table assembling task as
described in section II-B. Let N be the number of legs which
Robin has to handover to the user. The Proactive Incremental
Learning framework consists of two modules: 1) Feedback
based gesture-action associations, and 2) Proactive gesture
correction.

A. Feedback based gesture-action associations

The goal of the system is to learn the probability of an
action at+1 to be executed by the robot given the state of
the system st i.e. P (at+1|st). Initially, the probabilities are
distributed uniformly among all the robot actions. The robot
incrementally learns the probabilities at every step when the
user gives a feedback. The feedback is received as the binary
score for the state-action association (st, at+1) as

η =

{
1, feedback = OK

0, feedback = ¬OK.
(1)

Let T be the 4-D table which stores the state-action associa-
tions at each step t. The score of each state-action association



is recorded in cell T(st, at+1). It is incremented based on
the feedback η as

T(st, at+1) =

{
T(st, at+1) + η, η = 1

T(st, at+1), η = 0.
(2)

During the early steps of the task the robot performs random
actions since it has not acquired any knowledge. Though
in later steps it has updated the score for the state-action
association (st, at+1) and it can compute P (at+1|st). The
probability of the action a given the state s of the system is
computed as

P (a|s) = T(s, a)
|A|∑
i=1

T(s, ai)

. (3)

If the score values in T are normalized as per the joint
probabilities then eq. 3 represents Bayes’ rule. The best action
at+1 to perform given the state of the system is selected as

a∗ = argmax
at

P (at+1|st). (4)

In the human-robot interaction studies conducted by Jensen
et al. [6], the authors observed that there is no feedback or
rarely a positive feedback if the robot performs an expected
action. Although users strongly give a negative feedback ¬OK
for an unexpected action. Therefore, in the PIL framework
we consider no feedback too as OK.

Let us consider the example as described in Table I. It can
be seen at step t = 3 the robot learns the association between
the state of the system s3 = 〈pointing,open,free〉 with
the action a4 = 〈object〉. At step t = 10 the probability
P (object|s10) has the highest probability. Consequently
the robot chooses action object to perform instead of opting
for a random selection.

In other instance at t = 17 from user’s point of view it may
seem that the robot will perform object. However, for the
robot s17 = 〈pointing,object,free〉 which has never
occurred previously. The probability of an action to perform
given the state s17 is uniformly distributed among all the
possible actions. Therefore, the probability P (object|s17)
is same as that of other actions and the robot opts to perform
a random action.

B. Proactive gesture correction

The accurate detection of the gesture is vital in learning of
the gesture-action associations. However, the gesture detection
system may misclassify due to changes in the lighting
conditions of the environment, differences in the appearance
of a gesture among users, or a low confidence score in the
detection, etc. To overcome this problem we incorporate a
gesture correction module in the PIL framework.

The PIL framework enables the robot to correct the misclas-
sified gesture based on the learnt gesture-action associations.
The user is unaware if the system has misclassified the gesture.
Though in case of misclassification if the detected gesture
invokes a state which conflicts with the physical laws or
which is redundant then the system can judge whether a
gesture correction is needed or not.

A correction step can only be active after some associations
are recorded in T. If an invalid state occurs during the task
then the PIL framework looks at the sequence T to infer the
most probably valid gesture. Let st be the invalid state of
the system and therefore no action at+1 is selected. At this
point the system checks where has the state st−1 occurred
previously in T. The corrected state s′t is most likely to be
one of the states which occurs after one of the instances of
st−1 with feedback OK.

The robot chooses s′t with the most occurrences i.e. with
the highest probability, and corrects the state of the system
st. It performs a′t+1 and it is recorded as at+1. For example,
in Table I at t = 21 the user performs poining gesture.
If it was incorrectly detected as grasp this would trigger
an invalid state. The robot cannot grasp an object when
the state of the robot hand is occupied. The system then
decides that correcting the gesture is necessary and it looks
for the gesture with highest probability which can occur
after give me. The system corrects the gesture maximizing
the probability P (s′t|st−1). The detected gesture is corrected
from grasp to release and the robot performs action
open as the most likely action.

In the case of an invalid state it is possible that the
corrected action was not the one that the user had expected.
The user always has the freedom to give a ¬OK feedback.
The robot then selects the next best action. If none of
the previously learnt actions receive a OK feedback for the
given state then the robot explores the actions which had
received ¬OK feedback. A valid state-action association can be
miscategorized as ¬OK and an invalid state-action association
can be miscategorized as OK if the gesture detection system
has a poor accuracy. An advantage of the PIL framework is
that at first it proactively decides to perform an action and
if it is not the one user desires then it enables the user to
choose the action as described in section III-A.

C. Algorithm

We initialize the number of objects N which are to be
handed over to the user. The robot is set to a default position
with its hand open and the step counter is initialized at t = 1.
The pseudo-code of the PIL framework is as described in
Alg. 1. An object is consider to be delivered to the user only
if the robot had performed either human or location in
the last step while holding the object and it performs open
as the next action.

IV. RESULTS AND DISCUSSION

A. Simulation setup

We evaluate the PIL framework in a simulated environment.
There are 4 instruction gestures, 2 feedback gestures, and
5 robot actions as described in section II-A. In this test
scene we would like to assemble 10 four-legged tables i.e.
in total the robot has to handover 40 table legs to the user.
We define 10 ways of handover out of which 3 are as shown
in Table I (step 1-9, 10-15, 16-23). In Table I user performs
14 instruction gestures to receive 3 objects. The number of
command gestures g performed by the user in each handover



Algorithm 1: Proactive Incremental Learning framework

1 Initialize N , at = open, ht = free, T = ∅, t = 1
2 while N > 0 do
3 Detect gesture gt from the set of G
4 Update st = 〈gt, at, ht〉
5 if T 6= ∅ then
6 Compute a∗ using eq. 4
7 if (st, at+1) is valid then
8 if a∗ is unique then
9 Perform action a∗

10 Update T(st, at+1) as per eq. 2

11 else
12 Learn gesture-action associations as

described in section III-A

13 else
14 Correct the state as described in section III-B

15 else
16 Learn gesture-action associations as described in

section III-A
17 if (at = human ∨ at = location) ∧ (ht =

occupied) ∧ (at+1 = open) then
18 N = N − 1
19 t = t+ 1

ranges from 4-7. For the simulated environment we fed a pre-
defined sequence of the gestures to the system to assemble
10 tables.

An important aspect in human-robot collaboration is the
accurate detection of the command signal (here gestures). To
evaluate the effect of accuracy we simulate the detection rate
d of these gestures. For example, consider the sequence in
Table I, if the detection rate of the system is d = 60% then
only 8 randomly selected gestures will be detected correctly.
It is to be noted that in order to simulate the feedback the
correct state-action associations Tc are known to the system.
A positive feedback is given only if the state-action association
(st, at+1) ∈ Tc.

B. Simulation results

The goal of the framework is to reach the final state while
minimizing the number hand gestures and the number of
robot actions. In the PIL framework the robot is proactive
which means the robot learns the associations on the fly, uses
the knowledge to perform actions, and is able to correct
the misclassified gestures. We simulate 4 detection rates
d = {40%, 60%, 80%, 100%}.

The PIL framework is compared with a 2× 2 pre-trained
experimental setup at d detection rates. The two main axes
of the pre-trained conditions are: (1) Trained at either 100%
or d detection rate, and (2) System can or cannot perform
gesture correction. The four conditions are

1) Both the training and the testing is conducted at d
detection rate. It uses the learnt probabilities to correct

the misclassified gesture.
2) The training is conducted at 100% detection rate and the

testing at d detection rate. It uses the learnt probabilities
to correct the misclassified gesture.

3) Both the training and the testing is conducted at d
detection rate. In the case of incorrect gesture detection
the user has to correct it manually i.e. to perform gesture
repeatedly until it is correctly detected.

4) The training is conducted at 100% detection rate and
the testing at d detection rate. In the case of correct
gesture detection the user has to correct it manually
i.e. to perform gesture repeatedly until it is correctly
detected.

Since the training is on the fly in the PIL framework the
comparison is done at d detection rate of the testing phase
of the above conditions.

We assemble the set of 10 tables 20 times to obtain a
statistically significant data. The comparison results of the 4
conditions with the PIL framework regarding the number of
gestures and the number of robot actions required to complete
the task are shown in Fig 3 and Fig 4, respectively. At a low
gesture detection rate the number of gestures and the number
of robot actions required for the PIL are higher with respect
to condition 1 and condition 2. Due to a low detection rate
a correct gesture-action association do not achieve highest
probability as compared to the other possible gesture-action
associations.

It is to be noted that the results include the number
of robot actions and the number of hand gestures during
the training period for conditions 1, 2, 3, and 4. The pre-
defined sequence of gestures has 10 types of handovers. To
cover all types of handovers at least twice the training of
the aforementioned 4 conditions was done by assembling 5
tables. During the training it took 222, 203, 181, 144 robot
actions and 170, 148, 126, 111 hand gestures to complete the
task at 40%, 60%, 80%, 100% detection rate, respectively. An
advantage of the PIL framework is that the user has the
freedom to change gesture-action associations at any point
in time; not possible with trained conditions.

We performed t-test on the data recorded from 20 iterations
at each detection rate to check if the data points are
significantly different from each other. The t-test is performed
on the number of gestures and the number of robot actions
required by the PIL framework and the 4 conditions. The
p-values of our data indicate that the null hypothesis can be
rejected with 5% significance level. Our simulation data is
statistically significant with p < 0.05 having a maximum at
pmax = 0.048.

V. CONCLUSION AND FUTURE WORK

We propose a supervised proactive incremental learning
framework to learn the gesture-action associations on the fly.
The learning phase in the PIL framework is active until the
system reaches its final goal. Therefore, it is independent of an
explicit training phase in comparison to previous approaches.
In a real world human-robot collaboration scenario the
communication signal is prone to changes in the environment
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Fig. 3: Number of gestures performed by the user during the
assembly of 10 tables with 4 objects.
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Fig. 4: Number of actions executed by the robot during the
assembly of 10 tables with 4 objects.

or to the sensor noise. A poor signal-to-noise ratio can lead
to misclassification of the instruction signal. This in turn
can become tedious for the user. We studied the effect of
the detection rate of the communicative signal on a table
assembly task.

While the work proposed in this paper illustrates results
of a simulated environment our next step is to test it with
the real robot. We are working on techniques as discussed
in [17] to use multiple cameras and learn the appearance
of gestures on the fly in one-shot learning fashion. The PIL
framework provides the flexibility to integrate a module for
learning new associations. Additionally, the proactive nature
will enable to design a action prediction modal. The robot
will perform an action based on learnt probabilities instead
of waiting for an instruction from the user.
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