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Abstract

Visually impaired people have a much higher chance of
head injuries in daily life because of obstacles that cannot
be reliably detected using conventional aids. We present
part of a solution to this problem, using only one head
mounted camera and optical flow techniques. As part of the
system, a novel method to estimate the focus of expansion
is presented, which also provides a metric for the quality of
the estimate. The final result is a real time capable software
system, which can detect obstacles at eye level.
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1. Introduction

Visually impaired people usually do very well in avoid-
ing general obstacles using a white cane or a guide dog,
but there are obstacles that are hard to detect using those
aids. Especially overhanging structures like tree branches,
signs, opened truck doors, etc. can not or only unreliably
be detected. Such obstacles might be a nuisance in gen-
eral, but can be a real danger at head level since even colli-
sions at walking speed can lead to severe injuries. A survey
by Manduchi & Kurniawan [18] shows that more than 50%
of blind people report head-level accidents happening more
often than once a year. We therefore wanted to research
possibilities to warn users of such obstacles.

Since we did not want to rely on any specialized hard-
ware, only one head-mounted camera is used. Wearing a
camera on the head is clearly advantageous for detecting
obstacles at head height, but since the head can be moved
independently of the walking direction, we cannot assume
that obstacles will be in the center of the image. Addition-
ally, a camera being carried by a walking person also cap-
tures large amounts of unstructured motion. The system
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Figure 1: Overview of the presented collision detection sys-
tem

therefore has to be resilient in high noise environments and
also detect the true heading direction of the user.

Our system is constructed as follows: A camera, carried
on the head, delivers a video stream. From this stream, a
dense optical flow field is calculated using off-the-shelve
methods. We then calculate the probability distribution of
the focus of expansion (FOE) from this flow field with a
novel method. Under some restrictions, the FOE coincides
with the heading direction of the camera. Least squares fit-
ting of an affine motion model is used to estimate the diver-
gence in the heading direction, which can be used to warn
the user of possible collisions. Figure 1 shows an overview
of the system. The proposed method is real time capable.
We tested our system in cooperation with a blind person.

2. Related Work

Starting with the influential work of Gibson [8] on the
perception of motion, there has been extensive work on
optical flow analysis from human subjects while walking
(Warren & Kurtz [40]; Bardy et al. [1]; Hanada & Ejima [9];
Li et al. [16]; to name a few). Of special interest is the
seminal paper from Warren [39] which presents research
studying visual locomotion over the past 40 years. Psy-
chophysics and Neurophysioloy have been the source for
some human motion models (e.g., Prazdny [27]; Lappe &
Rauschecker [15]; Hildreth et al. [11]; Langer & Mann [14];
Chessa et al. [6]). In Computer Vision most of the effort
has been invested in cameras mounted on a vehicle (e.g.
Souhila et al. [34]), or a robot (e.g. McQuirk et al. [21];



Sahin & Guadiano et al. [31]). Such methods cannot be
directly transferred to a camera carried by a human being,
since the motion in this case is much more irregular than on
a vehicle or robot.

A considerable amount of research has been going into
developing obstacle avoidance aids for the visually im-
paired, but only a small proportion of these systems is using
computer vision for this task. Most commonly used (e.g. by
Shin & Lim [33]) are ultrasound sensors. Such systems suf-
fer from interference of ambient noises and mirror effects,
and it is often necessary to wear quite bulky equipment. In
addition, cameras as sensors can be used for many addi-
tional tasks besides obstacle avoidance (e.g. navigation, text
recognition, . . . ). This would lower the amount of equip-
ment that has to be carried by a blind person.

The existing computer vision based systems for obsta-
cle avoidance can mainly be separated using two properties:
Whether a monocular or stereo camera was used, and how
the camera is worn. E.g. Alberto Rodrı́guez et al. presented
in [30] and [29] a system using a stereo camera worn on the
chest. Martı́nez & Ruiz [19] developed a system to explic-
itly warn from overhanging obstacles using a stereo camera
worn on the shoulder. Pradeep et al. [26] developed a sys-
tem using a head mounted stereo camera. The system by
Tapu et al. [35] uses a smartphone (i.e. monocular camera)
fixed to the chest. Peng et al. [25] also presented a smart-
phone based system which is hand–held and where the user
has to maintain a 45◦angle between the smartphone and the
floor. Chen et al. [5] also presented a system using a stereo
camera, but did not do actual experiments with the camera
worn by a person. Molton et al. [23] described a method
for obstacle avoidance using four cameras worn on the up-
per body for detecting obstacles on the ground. Of great
interest is the Kalman filter approach to predict camera mo-
tion about half a second into the future which was devel-
oped further by Molton and Brady [22]. Recently, Liyan-
age & Perera [17] proposed an optical-flow based obstacle
avoidance system for visually impaired people, though the
test scenario was a simulated environment that neglected the
self-motion of a human.

To our knowledge we are the first to investigate a head
mounted monocular camera for obstacle detection.

A lot of research has been done on extracting the focus
of expansion from image sequences. Thomasi & Shi [37]
solved the direction of heading through analyzing image
deformation, thus eliminating the effects of rotation at the
input. Prazdny [28] is optimizing over the variance of inter-
sections of multiple optical flow vectors. Burger & Bhanu
[4] is one of the few methods which, similar to the method
presented in this paper, delivers an error measure for the fo-
cus of expansion. Negahdaripour & Horn [24] presented
a very simple method based on counting vector directions.
The FOE can also be estimated using a least squares for-

Figure 2: Purely translational optical flow field, with its fo-
cus of expansion indicated, and triangulation of the FOE
from two vectors.

mulation as presented by Tistarelli et al. [36]. Hatsopoulos
& Warren [10] apply a linear two-layer neural network to
the problem. Sazbon et al. [32] are using matched filters to
detect the focus of expansion. Kuiaski et al. [13] are sam-
pling from intersections between vector pairs and estimate
the FOE using k-means.

3. Methods

We will now present the proposed system in detail. As
shown in Figure 1, we first approximate the motion field by
extracting the optical flow. From this, we can compute the
focus of expansion and divergence, which will be evaluated
to warn the user.

To calculate the dense optical flow we used the method
presented by Farnebäck [7] in the implementation provided
by the OpenCV library [3]. The optical flow is calculated
between two images which are separated by 5 frames in the
video stream to get a bigger amount of motion between the
two frames.

3.1. Determining the Focus Of Expansion

The focus of expansion (FOE) of an optical flow field is
defined as the point from which the majority of flow vectors
point away (left side of Figure 2). The FOE coincides, under
some restrictions, with the heading direction of the camera.
With an ideal optical flow field, the FOE can be obtained
by simple triangulation (right side of Figure 2). In practice
we cannot obtain a noise free optical flow. Therefore, the
triangulation method is too simple for practical situations.

Still, in some sense such a point of intersection increases
the likelihood of the FOE being in that position. It could
therefore be assumed that calculating the intersection points
of many pairs of vectors and selecting the point with the
highest density of intersections would give a reasonable es-
timate of the FOE. Using this assumption we propose Algo-
rithm 1 to estimate the focus of expansion.



Algorithm 1 The proposed algorithm for estimating the focus of expansion
procedure SAMPLEFOE(F) . get the focus of expansion from a flow field F

intersections← nil . Initialize list of intersections
for i← 1, samples do

p,q←SELECTPOSITIONS(F.width,F.height) . Select two positions
r, s← F(p),F(q) . Get flow vectors at positions p and q
rayr ← RAY(p,−r) . Get rays in opposite direction of flow vectors
rays ← RAY(q,−s)
i← INTERSECT(rayr, rays) . Get point of ray intersection
if i 6= nil then . i = point of intersection or nil if no intersection

intersections← APPEND(intersections, i)
end if

end for
FOE← select point with highest density of intersections
return FOE

end procedure

(a) Low noise (b) High noise

Figure 3: Visualization of intersection histograms to deter-
mine the focus of expansion at different noise levels.

3.1.1 FOE Probability Distribution

A big advantage of our proposed method is the fact that
we not only obtain a single estimate for the focus of expan-
sion, but a full probability distribution over the whole image
by interpreting a higher density of intersections as a higher
probability for the FOE to be at this position. This can be
seen by visualizing the density of intersections using a heat
map (Figure 3).

Using the method from Algorithm 1 it is easy to deter-
mine the reliability of the FOE estimate. If the votes are
spread over a large area the estimate will probably be un-
reliable. If the votes are tightly clustered the estimate is
probably reliable. In practice we calculate a measure which
we call inlier proportion which is the amount of intersec-
tions in a region around the FOE in relation to all calculated
intersections.

3.2. Relation between Divergence and Time to Con-
tact

After the FOE has been determined, we know at which
position in the image collisions should be detected. Now,
the time to contact has to be calculated in that direction. We
use the inverse of the divergence as a measure for the time

to contact. The mathematical reasoning behind this will be
discussed in this section. We will also empirically evaluate
this relationship in Section 4.2.

Let x, y be a system of Cartesian coordinates in a two
dimensional euclidean space and i, j the two basis vectors.
A two dimensional vector field is then defined as F = U i+
V j. The divergence of F is then defined as follows:

divF =
∂U

∂x
+
∂V

∂y
(1)

Translated to the discrete case of an optical flow field,
this can be approximated for a certain position (x1, y1) by

divF =
ux2
− ux1

∆x
+
vy2
− vy1

∆y
(2)

where x2 = x1 + ∆x and y2 = y1 + ∆y and ux1
, ux2

are
the horizontal components of the flow field at the horizontal
positions x1 and x2 and vy1

, vy2
are the vertical components

of the flow field at vertical positions y1 and y2.
Since the FOE is the point towards which we are mov-

ing we will not see any optical flow component at the
FOE. Assuming we are choosing x1, y1 to be the FOE, then
ux1

= vy1
= 0. So Equation 2 transforms to:

divF =
ux2

∆x
+
vy2

∆y
(3)

The time to contact τ can be calculated (as presented by
Tresilian [38]) using the optical flow components along the
x-axis, where dx is the distance of position x from the focus
of expansion by:

τx =
dx
ux

(4)

By setting dx = ∆x we get:

τx =
∆x

ux2

(5)



Calculating the time to contact using the flow along the y-
axis can be done analogously to Equation 4 and Equation 5.

We know that the time to contact has to be a value that is
independent of the axis of the flow field we are using in the
calculation and therefore:

τ = τx = τy =
∆x

ux2

=
∆y

vy2

(6)

Using Equation 5 and Equation 6, we can reformulate Equa-
tion 3 as follows:

divF =
1

τ
+

1

τ
=

2

τ
(7)

and therefore
1

divF
∝ τ (8)

So the inverse of the divergence, at the focus of expan-
sion, is proportional to the time to contact in direction of
the FOE. This formal result will be empirically validated in
Section 4.2.

3.3. Estimating Divergence Using an Affine Motion
Model

If we assume a smooth optical flow field that can be lo-
cally approximated by a first-order Taylor expansion, it can
be described by a so called affine optical flow field (Equa-
tion 9) as explained by Jähne et al. [12][p 383]. As long as
the patch of optical flow that we want to describe is small
enough, the smoothness constraint is usually fulfilled.[

uxy
vxy

]
=

[
c1
c4

]
+

[
c2 c3
c5 c6

] [
x
y

]
(9)

uxy and vxy are the two components of the flow vector at
position x and y. An affine optical flow field is completely
defined by the six parameters c1 to c6. c1 and c4 correspond
to the two translation components. c3 − c5 corresponds to
the rotation of the flow field. c3 +c5 and c2−c6 correspond
to deformations in the two axis. The divergence of an affine
optical flow is given by c2 + c6. We again refer to the work
of Jähne et al. [12][p 383ff.] for further information.

If a vector field is given, as it is in our case, the parame-
ters uxy , vxy , x, and y from Equation 9 are known. Since we
have two equations, but search for six unknowns we have
an underconstrained system. Fortunately, we know that the
same affine model is valid (i.e. has the same parameters c1
to c6 for Equation 9) for the whole patch used to calculate
the divergence. We can therefore use multiple instances of
Equation 9 at different positions x and y of the patch to con-
struct an overdetermined system. We then solve this system
using least squares, and get an estimate of the divergence
using c2 + c6.

3.4. Warning the User

After the divergence has been calculated, a threshold can
be used to inform the user about a possible collision.

Unfortunately, the time series of the divergences is noisy.
Especially since rapid motions of the camera can produce
very high or low divergence peaks which are counterpro-
ductive for a reliable and stable system.

As a solution, we discard divergence measures for
frames for which the sampling density of the FOE estima-
tion is below a certain threshold. This generally indicates
a frame with too much unstructured motion to be used re-
liably for calculating the divergence. We empirically deter-
mined a threshold of 0.02 on the inlier proportion which we
use as a measure for the sampling density. As an additional
precaution we only accept frames as good if more than
three consecutive frames have an inlier proportion above the
threshold. As will be shown in the evaluation, the possibil-
ity to filter properties using the inlier proportion is one of the
most interesting consequences of the approach presented in
Algorithm 1.

4. Results
The system was tested on synthetic as well as real life

image sequences. Figure 4 shows a single frame from all
the sequences that were used.

The synthetic sequences (S1 to S5) were created using
Blender by the Blender Online Community [2]. In addition
to the videos, we also generated the ground truth heading di-
rection of the camera. The scenes contain different amounts
of textures in an attempt to simulate circumstances in which
the calculation of the optical flow is more or less difficult.

The real world sequences (R1 to R4) were created us-
ing a GoPro Hero Black 3 which was strapped to the head.
The sequences were recorded with 60 frames per second
and were used without any pre processing (i.e. no image
stabilization was done).

The sequences B1 and B2 were recorded by a blind per-
son to have recordings with head movements representa-
tive for the target users of the system. We used the same
setup as for sequences R1 to R4. The videos including
the FOE ground truth (where available) can be found at
https://goo.gl/5kUAzX.

4.1. Estimating Heading Direction

Heading direction estimation was first evaluated on syn-
thetic image sequences. This allowed us to use the ground
truth heading direction for comparison. We compared our
method to the widely used counting method which is a
method used to estimate the focus of expansion. The count-
ing method was presented by Negahdaripour & Horn [24]
and used for example by Souhila et al. [34], Liyanage &
Perera [17], and McCarthy & Barnes [20]. The counting
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Figure 4: Single frames from image sequences used for test-
ing.
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Figure 5: The Root-Mean-Square distance and the number
of discarded frames in relation to the the inlier proportion
threshold used to filter frames for sequence S1.

method is based on the fact that a majority of the vectors
point away from the FOE.

To compare the accuracy of the different methods, we
are using the Root-Mean-Square distance (Equation 10) as
an error measure, where dist(H,Fi) is the euclidean dis-
tance in pixels between the true heading direction H and
the estimated focus of expansion for frame i, Fi. N is the
total number of frames.

E =

√∑N
i=0 dist(H,Fi)2

N
(10)

Additionally we are comparing against a filtered version
of the sampling algorithm. The filtering is done by discard-
ing frames for which the inlier proportion is below 0.02.

The influence of the threshold on the Root-Mean-Square
distance and the number of discarded frames can be seen in
Figure 5 for sequence S1.

Our sampling method has big advantages compared to
the counting method, and filtering improves the reliability
even further (Table 1). Heading direction estimation was
also indirectly tested for real image sequences during the
evaluation of the whole system in Section 4.3.

4.2. Collision detection

We first tested whether the proportionality between time
to collision and the inverse of the divergence actually holds

Table 1: Root-Mean-Square distance for different image se-
quences and estimation methods for the focus of expansion

Sequence Counting Sampling filtered Sampling
(discarded frames)

S1 26.36 8.57 2.07 (9.25%)
S2 14.58 6.81 2.27 (9.25%)
S3 85.33 31.14 7.20 (35.19%)
S4 104.84 20.04 18.46 (8.6%)
S5 6.74 2.62 2.10 (9.6%)
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(a) Synthetic sequence S1
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Figure 6: Inverse of the divergence of a 60×60 pixel patch
in the center of the image for a synthetic and real image se-
quence. Divergence measurements for low sample density
frames were discarded.

in practice. To test this assumption we used image se-
quences in which the camera moves towards an obstacle
with a constant speed and tried to observe a linear decrease
of the inverse of the divergence over time. The method from
Section 3.3 was used to calculate the divergence.

Figure 6a shows that the inverse of the divergence could
be approximated quite well by a linear slope. As previously
stated, the camera is moving towards the obstacle with con-
stant speed. Therefore the time to contact will also decrease
in a linear fashion. This indicates a linear relationship be-
tween the inverse of the divergence and the time to collision
as theoretically derived in Section 3.2. Figure 6b, calculated
for a real sequence, indicates that the person started slow-
ing down before colliding with the obstacle since the slope
gets flatter at the end. This can also be observed by looking
at the video. In addition, as would be expected, the rela-
tionship is not as clear as for the synthetic image sequence
because of unstructured motion during walking, but it still
suggests that the proportionality of the time to contact and
the inverse of the divergence also holds in practice.

We also analyzed the effect of filtering on the divergence.
This was done by discarding frames for which the inlier pro-
portion was above an empirically determined threshold of
0.02. Figure 7 shows the influence of filtering, which elim-
inates a lot of the noise in the divergence measurement and
only leaves the measurements that correspond to a possible
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Figure 7: Influence of filtering using the sampling density
of the FOE estimate on the measured divergence for video
R2.
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Figure 8: Visualization of the importance of estimating the
heading direction.

collision.

4.3. Evaluating FOE and divergence together

The complete system, combining heading direction es-
timation and calculating the time to collision, was tested
on synthetic and real image sequences. The ultimate test
is how well the divergence, in the estimated heading direc-
tion, corresponds to the true time to collision. We also com-
pare against a system which calculates the divergence for
the center of the image, as well as against the focus of ex-
pansion estimated by the counting method.

Figure 8 shows a comparison between the divergence in
the image center (Figure 8a) and the one calculated at the
focus of expansion (Figure 8b) for image sequence S5. In
sequence S5 the camera moves towards a point on the left
margin of the image. The divergence at the FOE reliably
corresponds to the time to contact, while the divergence in
the center does not, so it is clear that the heading direction
is important in accurately detecting possible collisions.

Image sequence R2 has a person walking towards a bush,
while looking to the left, with a camera fixed to the head.
This results in a heading direction to the right side of the
image. In addition, the sequence contains a lot of unstruc-
tured motion, which interferes heavily with the calculation
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Figure 9: Comparing results of different methods on image
sequence R2.

of the divergence. If the sampling density of the FOE esti-
mation is used as a quality measure for the current optical
flow field, we get a relatively noise free divergence (Fig-
ure 7).

Figure 9 shows a comparison between three different
methods. Figure 9a shows the inverse of the divergence
at the focus of expansion, calculated using the novel sam-
pling approach presented in Algorithm 1 and filtered us-
ing the sampling density of the FOE estimation. Figure 9b
shows the inverse divergence at the FOE, calculated using
the counting method. Since the counting method does not
give any measure of reliability we cannot use it to filter the
divergences. Figure 9c shows the inverse of the divergence
in the center of the image. Filtering is also not possible in
this case.

The sampling approach with filtering only returns diver-
gence measures for the region where a collision is actually
imminent. Looking at the same frames using the counting
method, the falling of the inverse of the divergence can be
observed, but the data contains much more noise. Look-
ing at all the frames it would be difficult to find the frames
corresponding to the collision. Calculating the divergence
in the image center introduces even more noise and the ap-
proaching obstacle can only be detected very briefly before
the collision actually happens, since it is only detected once
the obstacle is big enough to get into the center of the image.

We also tested our system on two video sequences
recorded together with a blind person. The first one (B1)
was recorded to test the system on a sequence with no ob-
stacles and check whether the system would erroneously
warn the user. The blind person was taking a short walk
for this with a camera mounted on the head. Our sampling
method ignored the whole sequence (except for five frames)
since there was no danger of a collision during the whole se-
quence. The five frames which were considered reliable all
had a high inverse of the divergence and therefore did not
warn of a collision. The other two methods produce very
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Figure 10: Comparing results of different methods on image
sequence B1.
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Figure 11: Comparing results of different methods on image
sequence B2.

noisy divergence measures (Figure 10).
We also recorded a sequence together with the blind per-

son simulating a collision using the same setup and param-
eters (B2). Figure 11 shows that the system is able to de-
tect the obstacle. In this special case the methods using
the counting method or simply the center of the image also
give good results, since the image sequence only consists
of walking straight towards an obstacle, but as previously
observed, the other two methods also report highly variable
divergences in times where no obstacle is present.

4.4. Performance

We evaluated the performance of the system on an In-
tel i7-3770K 3.5GHz Quad Core with Hyper Threading us-
ing SIMD instructions and a parallel implementation. Us-
ing the OpenCV implementation of the optical flow method
presented by Farnebäck [7], the whole system needs a lit-
tle under 40 ms to process one 320×280 frame, using a
divergence patch size of 30×30, and 20,000 samples for
the FOE sampling method. This leads to about 25 frames
processed per second. Excluding the optical flow calcula-
tion the whole method takes on average 1.82 ms per frame
which shows that the optical flow calculation need most of
the computational resources.

Using the counting method (not including calculating the
optical flow) takes about 7.2 ms per frame. It should be
noted though that we did not optimize the counting method.

5. Discussion
As the results show, the presented method for estimating

the FOE generally gives better results than the widely used
counting method. The biggest advantage is in our opinion
the possibility to quantify the quality of the FOE estimate.
We used this property to filter other measurements taken
from the optical flow field (i.e. the measures of the diver-
gence). In an obstacle avoidance system, such a quality
measure can be used to not warn the user in cases the sys-
tem cannot detect obstacles reliably. Alternatively, the sys-
tem could inform the person that it is currently not working
reliably so the user can be especially careful. In essence
this leads to less false warnings for the user. We can think
of other uses this quality measure could have:

6. Conclusion
We presented a novel method of estimating the focus of

expansion in a probabilistic way. We further showed that
the metric, determining the reliability of the FOE estimate,
can be interpreted as a general measure of the quality of an
optical flow field. We used this insight to eliminate frames
with a low confidence on the FOE estimate from further
processing. We were able to greatly improve on the noise
level of the measured divergence and through this the time
to collision. This noise reduction is especially important
for systems where the camera is carried by a person since
it generally introduces a lot of unstructured motion into the
image sequences.

7. Appendix — Implementation
Algorithm 1 can be implemented in a very efficient man-

ner which we will present here.
We are only interested in the heading direction with pixel

accuracy. In addition we can discard points of intersection
which are outside the image. Thus we can use a 2D his-
togram to tally up the number of intersections per pixel di-
rectly instead of managing a list of intersection points. This
gives us a memory requirement independent of the num-
ber of samples and ensures constant time execution of all
following computations. This histogram can be computed
concurrently since all intersection points are independent of
each other. Figure 3 shows two visualizations of such his-
tograms under low and high noise conditions.

The region of highest density of intersections and there-
fore the most probable position of the FOE is determined by
summing up all bins of the histogram within a small win-
dow which slides over all positions. The window position
that gives the highest sum is assumed as being the highest
density region and therefore the location of the FOE.

We are using the so called inlier proportion as a metric
for the quality of our measure. The inlier proportion is the
proportion of the number of intersections within the highest



density window determined in the previous paragraph and
the number of all generated samples. If the inlier proportion
gets bigger, more of the samples are concentrated in a small
area of the histogram (i.e. the variance is smaller).
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