
Knowledge Propagation and Relation Learning for Predicting Action

Effects

Sandor Szedmak, Emre Ugur and Justus Piater

Intelligent and Interactive Systems, Institute of Computer Science,

University of Innsbruck

Abstract— Learning to predict the effects of actions applied
to pairs of objects is a difficult task. Such a task requires
learning complex relations with sparse, incomplete and noisy
information. Knowledge Propagation approach, can deal with
such relations where affordance predictions can be propagated
through exploiting the similarities among object properties,
action parameters and generated effects. The high complexity
of affordance representation can be addressed through use of
Maximum Margin Multi Valued Regression (MMMVR) which
is a large scale approach to complex problems of several layers.
With increased variety and size of object database and addition
of other parametric combinatory actions, we expect to achieve
complex systems which truly uses ‘structural’ bootstrapping in
its lifelong learning and development.

In this paper, we extended MMMVR for learning of paired-
object affordances, i.e. for predicting the effects of the actions
that are applied object pairs. In the experiments, we evaluated
this method with a dataset composed of 83 objects and 83×83
interactions. We compared the prediction performance with
standard classifiers that predict the effect category given object
pair’s low-level features or single-object affordances. The ex-
periments showed that proposed method achieves significantly
higher prediction performance especially when supported with
Active Learning.

I. INTRODUCTION

Learning object-object relations is a difficult task. The

difficulty comes from two main sources. First, the structure

of descriptions of particular objects is very complex, while

those descriptions are generally incomplete. The descriptions

are derived from several sources, and the corresponding

feature spaces are high-, even infite-dimensional. Some fea-

tures possess intriguing internal structure, e.g. graphs, which

require computationally intensive preprocessing. The second

source of difficulties is the small number of experiments

which can conform our hypotheses about the relationships

between paired objects and the corresponding action. The

experiments might even provide contradicting outcomes; thus

the reliability of our knowledge is limited.

A general framework to learn sparse incomplete relations

between several data sources is introduced by Szedmak

et al. [1]. That general framework has been applied for

recommender systems in [2] and [3]. The recommender

systems connect users to objects, e.g. books, movies etc., and

have to tackle problems of very high level of sparsity, since

most of the user-object pairs are missing. Very frequently

less than one percent of pairs can be observed; therefore the

other ones need to be predicted. We face similar problem

in learning the object-object relations, where actions can

only be tried on a very small number object pairs in real

experiments. Therefore, predicting the outcome of an action

executed on a pair of objects can borrow the approach applied

for the recommender systems. We will call this approach

Knowledge Propagation in the rest of the paper.

The learning task in this paper is to predict the effect

of an action that is applied on a pair of objects. In object-

object relation learning we consider the case where large

numbers of objects are available but the tried actions on

pairs of these objects is small. In this case, if the structure

of the space spanned by the objects is sufficiently rich and

the feature specific properties between any two objects can

be transformed into each other by exploiting the similarity

among those objects, then this similarity can be used to

propagate information in a network of object pairs to other

interaction instances. In other words, object information can

be propagated over the object-pair space.

In our paper, we will compare three different approaches

with the aim of to predicting the effect of stack action. The

first approach is a standard one where low level features

such as shape and dimensions of the object pairs are used

as input attributes for state-of-the-art classifiers to predict

the effect categories. The second approach utilizes the same

classification method[4], but instead of using low-level fea-

tures, it uses pre-learned single-object affordance features

that already include some invariance related to object-robot-

environment dynamics. The third method uses Knowledge

Propagation that assumes the existence and knowledge of

object identifiers. This is indeed a strong assumption, but

we discuss that object identifiers can be derived from object

features and affordances, which is a challenge not in the

scope of this paper.

In the context of robot affordance learning research, multi-

object affordance learning has not been studied extensively

with exceptions of [5] where ‘tool objects’ are interacting

with other objects, and [6] where two-object relational inter-

action models were directly learned. However none of these

studies attempted to bootstrap their multi-object affordance

learning system through knowledge propagation.

A. Knowledge Propagation

The learning problem we are facing can be summarized

in the following way. There is given a matrix whose rows



and columns indexed by labels of objects. The elements of

the matrix expresses the outcome of the interactions between

the object pairs. The matrix elements might contain not only

simple numbers but complex, structured elements, categories

of multi-class system, graphs, vectors. In the concrete case

applied in this paper, these elements are categories. The

elements of the matrix are only partially given. For example

if we are given 1000 objects then collecting the interactions

between all possible object pairs could be infeasible in a

real robot environment. Therefore the matrix is incomplete

and even very sparse hence the learning task is to learn

a function which can be predict all the missing elements

based on the available ones. Additionally we might be given

feature vectors describing the objects as well, e.g. shape

descriptors, which can be other kind of sources of exploitable

information.

In learning the outcome of unknown interactions we can

exploit the geometric structure of the feature space spanned

by the known elements. Based on that structure the objects

can be connected by a certain similarity measures, and along

these connections the knowledge can be transferred from the

outcome of the small number known object pairs to those that

have not been tried so far. One can imagine the underlying

geometry as a graph with objects represented by nodes which

are connected by edges, and the edges equipped with weights

expressing the similarity of the incident objects. One can

refer to a similar, semi-supervised learning based, model

presented for example in [7].

The base learning method, described in the Section II,

can predict the missing elements of the matrix, and can

provide confidences to prediction of each missing elements.

The method used has been grown out of a combination

of different maximum margin based structured learning ap-

proaches. One group of those models build up on Markov

Random Fields, see for example [8], [9], [10] and [11].

These models can provide highly accurate predictions but at

a very high cost of computation. The other group is derived

directly from the Support Vector Machine, by preserving the

same computational complexity but those models can predict

complex output structures as well, see in [12] and [13].

In [13] the performance of models of both groups directly

compared in predicting hierarchical structures. The approach

used in this paper based on a synthesis of those mentioned

above, and developed to tackle very large data set, millions

of potential interactions, see details in the Appendix, ??, and

in the following papers, [1], [2] and [3].

II. METHOD

In this section, we will explain the methods used to learn

paired-object affordances and how we can increase the speed

through Active Learning. In order to learn the mapping

from objects’ features to the paired-object affordances, we

will use SVM like classifiers as summarized in Section II-

B. On the other hand, in order to learn predicting paired-

affordances given object identifiers, we will use KnowPropC

that is detailed in Section II-C. The last subsection provides

the algorithmic details of applying Active Learning in our

framework.

A. Problem Description

The aim is to learn predicting effect of actions that are

applied to pair of objects. In other words, given objects the

classifier learns to predict the effect category of an action.

Objects are represented in three different ways:

• Basic-features correspond to standard manually coded

features computed mostly from visual perception with

no explicit link to robot’s actions.

• Affordance-features encodes the list of affordances of-

fered by single objects considering robot actions. For

example, (pinch-graspable, not-power-graspable, front-

rollable, side-pushable) is an affordance feature vector

composed of categorical values. Affordance features are

assumed to be learned and can be computed from basic

features of the object.

• Object-ids corresponds to label of the objects. Known

object-ids’ can be computed based on object feature

similarity or can be given by the human expert.

In a standard learning approach where object features are

input and effects are predicted, as object-ids have no gener-

alization power, they do not yield high-accuracy. Knowledge

Propagation method detailed below can propagate the effect

information through different object-ids’.

B. Maximum Margin Classifier (MMC)

This classifier is used to predict the effect of stack action

given object features or given object affordances. For this

purpose we use Maximum Margin Regression (MMR) as

we showed that MMR can improve classification accuracy

in multi-class learning problems[4]. MMR is realized by the

same optimization problem of SVM but but it can deal with

vectorial output. Fig. 1 shows the main differences between

SVM’s and MMR’s. For more details, please refer to [1],

[13].

C. Knowledge Propagation based relational Classifier

(KnowPropC)

This classifier is used to learn the effect category of

interactions given the two object identifiers.

1) Description of the relational learner: The details of

an earlier version of the learning model can be found for

example in [1], [2] and [3]. Here we provide a summary of

the model applied.

Given two sets B and U , we can assume that they are

finite ones. Let R be an arbitrary relation between B and U
given by a subset D of the ordered pairs of the elements of U
and B. Assume that to any pair of (b, u) ∈ D there is given

a certain collection of information which describe how the

items in that pair relate to each other. This information can

be obtained by some experiments and for a pair (b, u) it is

described by zbu taken out of a set of possible descriptions

Z .

The information characterizing the relation between the

pairs might be given by a binary variable, e.g. (b, u) relate



Binary class learning Vector label learning

Support Vector Machine Maximum Margin Regression

min 1

2
w′w
︸ ︷︷ ︸

‖w‖22

+C1′ξ 1

2
tr(W′W)
︸ ︷︷ ︸

‖W‖2
F

+C1′ξ

w.r.t. w : Hφ → R, normal vec. W : Hφ → Hψ , linear op.,

b ∈ R, bias, b ∈ Hψ , translation(bias),

ξ ∈ R
m, error vector, ξ ∈ R

m, error vector,

s.t. yi(w
′φ(xi) + b)

〈
ψ(yi),Wφ(xi) + b

〉

Hψ

≥ 1− ξi, ≥ 1− ξi,
ξ ≥ 0, i = 1, . . . ,m, ξ ≥ 0, i = 1, . . . ,m.

(1)

Fig. 1. Primal problems for maximum margin learning: Support Vector
Machine for binary classification, and Maximum Margin Regression for
general feature represented outputs. Hφ and Hψ denote the input and output
feature spaces.

or not to each other, or by a real number, e.g. what is the

probability of observing b given u. If the sets B and U
consist of complex objects, e.g. B contains objects and U is a

collection of action identifiers, then the relationship between

a pair (b, u) can be described by the affordances where action

u is applied on object b. In the current work where effects of

paired-objects are learned for the stack action, both B and

U will correspond objects, the one being dropped and the

other one on the table. zbu on the other hand will refer to

the effect of the stack action being applied on these objects.

The available sample of observation that can be used to

capture the structure of the relation can be given by a set of

tuples of three elements (b, u, zbu), a pair of objects and the

description of the available information.

An application of the learning framework in developing

recommender systems can be found in [2] and [3].

The formal model is summarized in the following points

• Given two finite sets B and U .

• There is given a function f : B×U → Z, where Z is a

set whose elements are the descriptions of the available

information connecting a pair (b, u) ∈ B × U and it is

denoted by zbu.

• Let the subset D ⊆ B × U express a relations between

B and U . Let f(b, u) = ∅ if (b, u) /∈ D; the function f
is only partially given on its domain.

• For all b Db = {u|(b, u) ∈ D} is a cover of the set U ,

and for all u Du = {b|(b, u) ∈ D} is a cover of the set

B.

Cover means a set of subsets {U|U ⊆ X} of a given

set X whose union contains the original set, namely

X =
⋃

U∈S
U .

• φZ : Z → Hz a feature mapping into the Hilbert space

HZ .

• Feature vectors of the elements of B and U can be

defined by the mappings

φB : ×card(U)HZ → HB

and by

φU : ×card(B)HZ → HU ,

where HB and HU are Hilbert spaces.

2) Learning task: The learning task is given by a sample

set of tuples consisting of three elements (b, u, zbu). The

sample might not contain references to all elements of the

sets B and U , and consequently the set D describing the

relation is also partially given. Let B(o) ⊆ B and U (o) ⊆ U
be the sets whose references observed in the sample, and let

D(o) ⊆ (B(0) × U (o)) ∩ D be the set of ordered pairs (b, u)
to which the corresponding information zbu is available.

Furthermore we have the projections D
(o)
b = {u|(b, u) ∈

D(o)} and D
(o)
b = {u|(b, u) ∈ D(o)} into the observed sets

U (o) and B(o).

Now the task is to find the function f : B×U → Z based

on the knowledge given by {zbu|zbu ∈ D(o)}.

3) Optimization problem, first approach: The aim of the

learning problem can be rephrased as finding a multilinear

function F : HF ×HB ×HU → R, which has higher value

if the feature vectors of two items b and u can predict better

the feature vector of zbu

φZ(zbu) ∼ W(φB(b)⊗ φU (u)). (2)

The function F as a multilinear function therefore can be

expressed as

F (φZ(zbu), φB(b), φU (u)) = 〈W, φZ(zbu)⊗ φB(b)⊗ φU (u)〉 ,
(3)

where W as a tensor describing the function itself and the

variables are connected by tensor product, see details for

example in [14].

We can rewrite function F as

F (φZ(zbu), φB(b), φU (u))
= 〈W, φZ(zbu)⊗ φB(b)⊗ φU (u)〉
= 〈φZ(zbu),W(φB(b)⊗ φU (u))〉 ,

(4)

where W plays a role of a linear operator mapping the tensor

product (φB(b) ⊗ φU (u)) into the space of HZ and then

the inner product is computed between image of that map

W(φB(b) ⊗ φU (u)) and φZ(zbu). Now this inner product

can have higher value if correlation between the image vector

W(φB(b)⊗ φU (u)) and the outcome of the match φZ(zbu)
is higher.

4) Poly-learning - learning via an assemble of weakly

coupled learners: We can reformulate the optimization prob-

lem by bearing in mind two problems that can occur in a real

application

• To solve the problem when the cardinality of the ob-

served tuples, i.e. card(D(o)), is high can require too

much resources measured in memory and also in time.

For example in a recommender system, where books

are offered to users, the number of users can grow up to

millions or even more, and the number of books can be



several ten thousands as well, an the possible observed

pairs of users and books can be more than a billion.

• In a large data set built upon several sources the

distribution of the items could be a highly multimodal

one, a mixture of plenty of different distributions.

To overcome on these potential difficulties we can intro-

duce a learning model which decomposes the entire problem

into weakly coupled subproblems. To this end consider a

cover of the one of the sets B(o) and U (o) say B(o), obviously

the role of B(o) and U (o) in what follows can be exchanged.

Let I be a finite index set, then the cover is given by sets

{B
(o)
i }, B

(o)
i ⊆ B(o), B(o) =

⋃

i B
(o)
i , i ∈ I. There is

learner Li defined on each of the sets B
(o)
i , given by the

multilinear function Fi : B
(o)
i ×{zbu|b ∈ B

(o)
i , u ∈ D

(o)
b } →

R. Each of the multilinear function is given by the linear

operator Wi. We might say the domain of learner Li is

B
(o)
i since if B

(o)
i and D(o) are given then the entire domain

of the multilinear function Fi is determinated.

We define the conditions connecting the learners into one

assemble. Let Li be a learner dependent loss function, and

it is defined by using a version of the hinge loss

Li(b, zbu) =

{

0 if Fi(b, zbu) ≥ 1,
maxu(1− Fi(b, zbu)) otherwise,

b ∈ B
(o)
i , u ∈ D

(o)
b .

(5)

As a consequence of the definition Li does not depend

directly on u, obviously the implicit dependency via the

function Fi remained valid, thus it depends on b and Fi.

Now we then require for any subset of the learners indexed

by J ⊆ I, and satisfying that
⋂

i∈J
B
(o)
i 6= ∅

Li(b, Fi) = Lj(b, Fj), ∀b ∈
⋂

B
(o)
i , and ∀i, j ∈ J , (6)

hence the loss on a b has to be the same for all learners which

domain contains that b. We might rephrase this condition by

saying that there is an nonnegative additive loss measure

define on B(o).

The optimization problem expressing the ideas introduced

above can be stated as

min 1
2‖W‖2i + C

∑

b∈B(o) ξb
w.r.t. Wi ∈ (HZ ⊗HB ⊗HB)

∗

s.t. 〈φZ(zbu),Wi(φB(b)〉 ≥ 1− ξb, b ∈ B
(o)
i , u ∈ D

(o)
b ,

ξb ≥ 0, , b ∈ B
(o)
i ,

(7)

There is an obvious simple way to define the index set I
by saying it is equal to U (o). It means in our example, thus

every object has its own learner and every action identifier

has its own loss function.

D. Active Learning

To implement the knowledge propagation an active leaning

based algorithm is applied. The main steps of this algorithm

are summarized here.

1) Start on a small subset of all object pairs as training

of the learner.

2) Train the learner on the available outcomes.

3) Predict all untried elements of the matrix, and compute

confidences to those predictions.

4) Choose that untried pair of objects for which the con-

fidence is the smallest one, and check the interaction

between this pair, and then include that into the training

set.

5) Repeat the procedure from Step 2.

The confidences relate to information that we can gain

if the predicted elements included into the training set. If

the confidence is high then that element provides not much

useful information since that element highly similar to those

ones appearing in the training set. The low confidence marks

the least similar elements, thus they can yield sufficient new

information about the general structure of the interactions.

Technically, the learner yields a distribution on the possible

outcome categories, if the entropy of this distribution is high,

the categories are predicted by closely the same probabilities,

then the confidence of the prediction is low.

III. EXPERIMENTS

In this section, we report our bootstrapping results ob-

tained from a database of 83 objects and their pairwise

stacking interactions.

A. Experiment Setup

The robot system is composed of a 7 DOF Kuka Light

Weight Robot (LWR) arm placed on a vertical bar similar to

human arm, a A 7 DOF 3 fingered Schunk gripper mounted

to the robot arm, and a Kinect sensor placed over the ‘torso’

with a view of the table in front of the robot. The robot

is equipped with a number of manually coded actions that

enable single and multi object manipulation. The robot can

‘poke’ a single object from its side, front and top with s-poke,

f-poke, and t-poke actions, respectively. It can also stack one

object on the other using stack behavior, where it grasps the

first object, move it on top of the other one and release it.

1) Interaction Dataset: We collected data from 83 objects

(Fig. 2) by placing them on the table in front of our robot.

In order to analyze our learning algorithms, we aimed to

create an interaction database composed of (object, action,

effect) tuples with the action repertoire mentioned above.

In order to collect this database, the robot was required to

make 3×83+1×(83×83) = 7138 interactions which is not

feasible in the real world. Thus, we used a human expert who

observed robot action executions on different sample objects

and to fill-up the complete table through his observations.

In cases where the effect is difficult to assess, the human

‘simulated’ robot’s actions physically.

2) Action effects: The effect of stacking objects on top of

each other depends on their relative size. For example, while

‘inserted-in’ effect is generated when a small box is stacked

on a hollow cylinder, ‘piled-up’ effect is observed when the

box is larger than the opening on top of the cylinder. Using

the objects, we marked the interaction results for each object

pair for stack action. Different poke actions also generate

different effects even on the same objects. For example, when

poked from side, lying cylinders will roll away, boxes will



Fig. 2. Objects used in the experiments. Any object-orientation pair is assigned to a new object index in the experiments.

be pushed, objects with holes in poke direction will not be

affected as finger would go through the hole without any

interaction, and tall objects will topple down. The set of

manually encoded actions and their effects are as follows1:

• Actions: {side-poke, top-poke, front-poke, stack}
• Poke-effects: {pushed, rolled, toppled, resisted, noth-

ing}
• Stack-effects: {piled-up, inserted-in, covered, tumbled-

over}

3) Object representation: The objects are segmented

based on depth information of Kinect sensor that is place

over the torso of the robot. In these experiments an object

can represented by object-id (assigned index), basic-features

or affordance-features.

• Object-id (object-ido) is the index of the object.

• Basic-features (basic-feato) are encoded in a continu-

ous feature vector composed of shape, size and local

distance related features for object o:

basic-feato = (shapeo, dimo, disto)

Shape features are encoded as the distribution of local

surface normal vectors from object surface2. Specifi-

cally histograms of normal vectors along each axis, 8

bins each, are computed to form 3 × 18 = 54 sized

feature vector. dim encodes the object size in different

axes. dist features encode the distribution of the local

distance of all pixels to the neighboring pixels. For

this purpose, for each pixel we computed distances

to the neighboring pixels along each 4 direction on

Kinect’s 2D depth image. For each direction, we created

a histogram of 20 bins with bin size of 0.5cm, obtaining

a 4× 20 = 100 sized vector for the dist.

1Although in this paper the actions and their effect categories are
manually coded, we showed that a robot can self-discover action primitives
and effect categories through exploration in [15] and [16], respectively.
Thus, we can safely assume that these skills were learned in previous stages.

2Point Cloud Library normal estimation software is used to compute
normal vectors.

• Affordance-features (afford-feato) are encoded as the list

of single-object action effects:

afford-feato = (εos-poke, ε
o
p-poke, ε

o
t-poke)

where εo refers to the effect categories

(∈ {pushed,rolled,resisted,no-change}) of the

corresponding poke action on object o. Although

εo is manually coded for each object category by the

human expert, we previously showed that this can be

learned in previous stages of development and can be

computed from basic-features (basic-feat) in [15].

4) Paired affordance learning: Our system learns to pre-

dict the effect of stack action given the descriptors of the

two objects. This learning refers to building classifiers that

predict multi-class value of the stack effect:

εstack ∈ {piled, inserted-in, covered, tumbled-over}

Depending on the object description, different learning meth-

ods that are detailed in Section II will be used:

• When basic-features or affordance features are used,

learning corresponds to finding a mapping from these

features to the effect class using Maximum Margin

Classification (MMC):

εo1,o2stack = MMC(basic-feato1 , basic-feato2)

εo1,o2stack = MMC(afford-feato1 , afford-feato2)

• When object-ids are used, then Knowledge Propagation

based relational Classifier (KnowPropC) will be em-

ployed. Note that this classifier learns and propagates

the effects of the underlying graph in the object-object

interaction table. We will add the additional meta-term

learned-pairwise-relations to denote this characteristics:

εo1,o2stack = KnowPropC learned-pairwise-relations(ido1 , ido2)



B. Action propagation results

In this section, we will compare the performance of the

classifiers that are trained with different object descriptors:

basic-features based MMC, affordance-features based MMC

and object-id based KnowPropC. We evaluated the perfor-

mance of each classifier type by systematically changing

the number of training samples. Using the stack interaction

dataset, that is composed of 83 × 83 samples of (object,

effect) tuples, we created training datasets of increasing sizes.

We trained a classifier with each training set, and tested the

performance of the classifier using the remaining samples.

The prediction results obtained from different classifier types

using different training sets are provided in Fig. 3. Mean and

variance of the prediction performance with 10-fold cross-

validation are provided with the corresponding bars.

1 2 3 4 5 10 15 20 30 40 50 60 70 80 90
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Percentage of the interactions used in training

P
re

d
ic

ti
o
n
 p

e
rf

o
rm

a
n
c
e
 w

it
h
 c

ro
s
s
−

v
a
lid

a
ti
o
n

 

 

Classifier based on basic features

Classifier based on affordances

Action propagation based on object−id

Fig. 3. The prediction performance of the classifiers based on basic features
and affordances, and action propagation system based on object id. All
predictors predict the effect of stack action in a database composed of 83
objects and 83× 83 interactions in total.

As shown in the figure, even with very small training

datasets (1% of the complete data), object-id based and

afford-feat based classifiers perform significantly better than

basic-feat based classifier. While afford-feat based classifiers

performance convergence with a training set of around

15%, basicf based classifiers performance smoothly in-

creases with increasing training size and becomes similar

to afford-feat performance at the end. On the other hand

object-id based classifiers performance increases continu-

ously and it outperforms afford-feat performance at the end.

We can interpret the results as follows:

• basic-feat and afford-feat based classifiers use the same

classification method. Thus, their performance differ-

ence with small training sets should be related to the

representation of these features. As afford-feat include

the effects of single-object actions, they already include

some properties related to object-robot-environment dy-

namics. As a result, this feature bootstraps the learning

in the beginning. On the other hand, basic-feat is

a high-dimensional continuous valued vector with no

link to interaction properties of the objects. However,

afford-feat can be computed based on basic-feat as we

discussed before, so information encoded in basic-feat

should be compatible with afford-feat. Therefore, as

expected, with increased size of training data, basic-feat

and afford-feat based classifier performances become

similar.

• object-id based classifier also has high performance with

small datasets and its performance gets significantly

higher compared to the feature based classifiers. This

result demonstrates the success of knowledge propaga-

tion based approach where instead of object properties

alone, the classifier uses the connected nodes in the

underlying graph of interactions to transfer knowledge

from one object pair to another one.

• It is difficult to compare afford-feat based and object-id

based classifiers as they use different structures in train-

ing and predictions. We can assume that the similarity

in their initial performance might be mere coincidence

but the significantly higher performance of object-id

based classifiers is a result of the powerful knowledge

propagation mechanism.

C. Bootstrapping through active learning results

In this section, we evaluated the effect of active learning

in prediction performance of id based classifier. Starting

with a random set of few elements (1%), we increased the

training sample set set by selecting the next sample based

on the criteria described in Section II-D. The prediction

performances of the classifiers with active learning and with

random sampling of training data are provided in Fig. 4. As

shown, the performance of the classifier remains same until

the underlying interaction network that is used for knowledge

propagation is established. We suggest Then, after around

6% of the dataset, the performance boosts up and quickly

surpasses the one without active learning. The initial phase of

slow learning is related to exploration-exploitation dillema,

i.e. it can be viewed as preparing the underlying structure of

KnowPropC for the active learner for bootstrapping in the

latter phases.

IV. CONCLUSION

In this study, we introduced a method that was success-

fully used in recommender systems to robotics community

and proposed to use this method in learning paired object

affordances in robots with large datasets. We evaluated

the results of such learning, which is based on knowledge

propagation of the relations on the underlying (object-pair,

effect) graph nodes. We compared the results with ‘more

standard’ approaches, state-of-the-art classifiers that use low-

level object features or previously learned object affordances

as input attributes. We already studied the bootstrapping

effect of affordance features in detail in [17] where effects

were obtained from real robot interactions. With a focus on

Knowledge Propagation in the current paper, we showed

that the prediction performance of the proposed method

is significantly higher compared to the standard classifiers

especially when active learning is applied.



1 6 11 16 21 26 31
0.65

0.7

0.75

0.8

0.85

0.9

Percentage of the interactions used in training

P
re

d
ic

ti
o

n
 p

e
rf

o
rm

a
n

c
e

 

 

Random sampling of training data

Active learning

Fig. 4. The prediction performance of predictors that are trained with
increasing number of training samples that is either randomly sampled from
the dataset or selected according to active learning criteria. Both classifiers
use randomly sampled initial training sets to achieve a connected underlying
graph. As shown, the active learning speed and performance is superior
compared to random sample selection.

The disadvantage of the proposed knowledge propagation

method is the requirement of using object id’s for learning.

We discussed that this id can be provided by an expert or

found by the robot by comparing its features against the

objects in its database. The incorporation of novel objects

into the object id dataset and prediction of action effects

using the knowledge propagation algorithm is a challenging

problem. In our future work, we will study creating object

id’s on the fly based on the feature and effect similarities

and based on the prediction failures.

Collecting the interaction dataset by experts is very time

consuming and probably introduce bias to the system. On

the other hand, executing thousands of action to create this

dataset is not realistic with real robots as well. In this paper,

we showed that using object affordance instead of low-level

features, or knowledge propagation based classification with

active learning significantly speeds up learning. Yet, we need

datasets to test and analyses our algorithms. In future, we

plan to use physics based simulators for this purpose with

the condition of transferring the results to the real world.

Finally, we provide the object perception and interaction

dataset used in this paper along with the open-source code

of the learning method in

https://iis.uibk.ac.at/public/szedmak/

IROS2014-KnowProb/

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] S. Szedmak, Y. Ni, and S. R. Gunn, “Maximum margin learning
with incomplete data: Learning networks instead of tables,”
Journal of Machine Learning Research, Proceedings, vol. 11,
Workshop on Applications of Pattern Analysis, pp. 96–102, 2010,
jmlr.csail.mit.edu/proceedings/papers/v11/szedmak10a/szedmak10a.pdf.

[2] M. Ghazanfar, S. Szedmak, and A. Prugel-Bennett, “Incremental
kernel mapping algorithms for scalable recommender systems,” in
IEEE International Conference on Tools with Artificial Intelligence

(ICTAI), Special Session on Recommender Systems in e-Commerce

(RSEC), 2011.
[3] M. Ghazanfar, A. Prugel-Bennett, and S. Szedmak, “Kernel mapping

recommender system algorithms,” Information Sciences, 2012.
[4] S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez, “Learning via

linear operators: Maximum margin regression,” PASCAL Southamp-
ton, UK, Southampton, Tech. Rep., 2006, technical Report.

[5] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development

and Learning. IEEE, Aug. 2008, pp. 91–96.
[6] M. B., P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt,

“Learning relational affordance models for robots in multi-object
manipulation tasks,” in Prof. of IEEE Int. Conf. on Robotics and

Automation (ICRA), 2012, pp. 4373–4378.
[7] O. Chapelle, B. Schölkopf, and A. Z. Editors, Semi-Supervised Learn-

ing. MIT Press, Cambridge, MA, 2010.
[8] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,”

in NIPS 2003, 2003.
[9] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large

margin methods for structured and interdependent output variables,”
Journal of Machine Learning Research (JMLR), vol. 6(Sep), pp. 1453–
1484, 2005.

[10] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Kernel-
based learning of hierarchical multilabel classification models,” Jour-

nal of Machine Learning Research, vol. Special issue on Machine
Learning and Large Scale Optimization, 2006.

[11] J. Rousu, C. Saunders, S. Szedmak, and J. ShaweTaylor, “Efficient
algorithms for maxmargin structured classification,” in Predicting

Structured Data. MIT Press, 2007, pp. 105–129.
[12] S. Szedmak and Z. Hussain, “A universal machine learning opti-

mization framework for arbitrary outputs,” 2009, http://eprints.pascal-
network.org.

[13] K. Astikainen, L. Holm, E. Pitkänen, S. Szedmak, and J. Rousu,
“Towards structured output prediction of enzyme function,” in BMC

Proceedings, 2(Suppl 4):S2, 2008.
[14] J. Lee, Introduction to Smooth Manifolds, ser. Graduate Texts in

Mathematics. Springer, 2003, vol. 218.
[15] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[16] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives

and learning grasp affordances,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012, pp. 3260–3267.
[17] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object affor-

dance learning with learned single-affordance features,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2014, submitted.


