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Abstract. We present a novel way of performing pose estimation of
known objects in 2D images. We follow a probabilistic approach for
modeling objects and representing the observations. These object mod-
els are suited to various types of observable visual features, and are
demonstrated here with edge segments. Even imperfect models, learned
from single stereo views of objects, can be used to infer the maximum-
likelihood pose of the object in a novel scene, using a Metropolis-Hastings
MCMC algorithm, given a single, calibrated 2D view of the scene. The
probabilistic approach does not require explicit model-to-scene corre-
spondences, allowing the system to handle objects without individually-
identifiable features. We demonstrate the suitability of these object mod-
els to pose estimation in 2D images through qualitative and quantitative
evaluations, as we show that the pose of textureless objects can be re-
covered in scenes with clutter and occlusion.

1 Introduction

Estimating the 3D pose of a known object in a scene has many applications in
different domains, such as robotic interaction and grasping [1,6,13], augmented
reality [7,9,19] and the tracking of objects [11]. The observations of such a scene
can sometimes be provided as a 3D reconstruction of the scene [4], e.g. through
stereo vision [5]. However, in many scenarios, stereo reconstructions are unavail-
able or unreliable, due to resource limitations or to imaging conditions such as
a lack of scene texture.

This paper addresses the use of a single, monocular image as the source of
scene observations. Some methods in this context were proposed to make use of
the appearance of the object as a whole [6,13,15]. These so-called appearance-
based methods however suffer from the need of a large number of training views.
The state-of-the-art methods in the domain rather rely on matching characteris-
tic, local features between the observations of the scene and a stored, 3D model
of the object [1,7,17]. This approach, although efficient with textured objects or
otherwise matchable features, would fail when considering non-textured objects,
or visual features that cannot be as precisely located as the texture patches or
geometric features used in the classical methods. Hsiao et al.’s method [8] seeks
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to better handle multiple possible correspondences between the model and scene
features, but still requires a large fraction of exact matches to work efficiently.

The proposed method follows a similar approach to the aforementioned refer-
ences for modeling the object as a 3D set of observable features, but it is different
in the sense that few assumptions are made about the type of features used, and
in that it does not rely on establishing specific matches between features of the
model and features of the observed scene. For this purpose, we represent both
the object model and the 2D observations of a scene as probabilistic distributions
of visual features. The model is built from 3D observations that can be provided
by any external, independent system. One of the main interests of the proposed
method, in addition to the genericity of the underlying principles, is its ability
to effectively handle non-textured objects. The general method itself does not
make particular assumptions about the type of features used, except that they
must have a given, although not necessarily exact, position in space, and they
must be potentially observable in a 2D view of the object.

In order to demonstrate the capabilities of the proposed method at handling
textureless objects, we apply it to the use of local edge segments as observations.
Practically, such features cannot be precisely and reliably observed in 2D images,
e.g., due the ambiguity arising from multiple close edges, 3D geometry such as
rounded edges, or depth discontinuities that change with the point of view.
Such problems motivate the probabilistic approach used to represent the scene
observations.

The 3D observations used to build the model are provided by an external
system that performs stereopsis on a single pair of images. Such a model can
thus be quickly and automatically learned, at the expense of imprecision and
imperfections in the model. This again motivates the use of a probabilistic dis-
tribution of features as the object model. Other model-based methods proposed
in the literature have used rigid learned [7,17] or preprogrammed (CAD) models
[9,19], but such CAD models are, in general, not available. Our approach for
object modeling is more similar to the work of Detry et al. [5], where an object
is modeled as a set of parts, themselves defined as probability distribution of
smaller visual features. The main contribution of this paper is the extension of
those principles to the use of 2D observations.

The representations of the object model and of the scene observations that
we just introduced can then be used to perform pose estimation in monocular
images, using an inference mechanism. Algorithms such as belief propagation
[5] and Metropolis-Hastings MCMC methods [4] were proposed in the literature
to solve similar problems, and we adapt the algorithm presented in that last
reference to our specific type of model and observations.

Finally, our method provides a rigorous framework for integrating evidence
from multiple views, yielding increased accuracy with only a linear increase of
computation time with respect to the number of views. Using several views of
a scene is implicitly accomplished when using a stereo pair of images, together
with a method operating on 3D observations [5]. However, our approach does not
seek matches between the two images, as stereopsis does, and can thus handle
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arbitrarily wide baselines. Other methods for handling multiple views with a 2D
method have been proposed [2,14]. In these methods however, the underlying
process relies on the matching of characteristic features.

2 Object Model

Our object model is an extension of earlier work [4]. For completeness and clarity,
the upcoming sections include essential background following this source.

2.1 General form

We use a 3D model that allows us to represent a probabilistic distribution of
3D features that compose the model. These features must be characterized by a
localization in the 3D space, and can further be characterized by other observable
characteristics, such as an orientation or an appearance descriptor. The model
of an object is built using a set

M =
{(
λ`, α`

)}
`∈[1,n] (1)

of features, where λ` ∈ R3 represents the location of a feature, and α` ∈ A is
a (possibly zero-element) vector of its other characteristics from a predefined
appearance space A. When learning an object model, the set of features M is
decomposed into q distinct subsets Mi, with i ∈ [1, q], which correspond ideally
to the different parts of the object. This step allows the pose estimation algorithm
presented below to give equal importance to each of the parts, therefore avoiding
distinctive but small parts being overwhelmed by larger sections of the object.
The procedure used to identify such parts is detailed in [4].

Our method relies on a continuous probability distribution of 3D features
to represent the model. Such a distribution can be built using Kernel Density
Estimation (KDE), directly using the features of Mi as supporting particles
[5,18]. To each feature of Mi is assigned a kernel function, the normalized sum of
which yields a probability density function ψi(x) defined on R3×A. The kernels
assigned to the features of Mi will depend on the type of these features.

Reusing the distribution of 3D features of part i, ψi, and considering an
intrinsically calibrated camera, we now define ψ′i,w as the 2D projection onto
the image plane of that distribution set into pose w, with w ∈ SE(3), the group
of 3D poses. Such a distribution is defined on the 2D appearance space, which
corresponds to R2 × B, where B is the projected equivalent of A. For example,
if A is the space of 3D orientations, B would be the space of 2D orientations
observable on an image. Similarly, if A is a projection-independent appearance
space of 3D features, B would be the simple appearance space of direct 2D
observations of such features.

Practically, ψ′i,w can be obtained by setting the features of Mi into pose w,
and projecting them onto the image plane (Fig. 1c). The resulting 2D features
∈ R2×B can, similarly to the 3D points, be used as particles to support a KDE
on that space, using an equivalent projection of the kernels used in 3D.
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2.2 Use of edge segments

This paper presents the particular application of the object model presented
above to the use of local edge segments as visual features. Those features basically
correspond to 3D oriented points, which are characterized, in addition to their
localization in 3D, by an orientation along a line in 3D. Therefore, reusing the
notations introduced above, the space A, on which the elements α` are defined,
corresponds to the half 2-sphere S2

+, i.e. half of the space of 3D unit vectors. The
kernels used to compose a 3D probability distribution ψi can then be decomposed
into a position and an orientation part [5,18]. The first is chosen to be a Gaussian
trivariate isotropic distribution, and the latter a von Mises-Fisher distribution
on S2

+. The bandwidth of the position kernel is then set to a fraction of the
size of the object, whereas the bandwidth of the orientation kernel is set to a
constant. The 2D equivalent of those distributions are obtained using classical
projection equations. Fig. 2 depicts the correspondence between the 2D and 3D
forms of a particle corresponding to an edge segment and its associated kernel.

The visual features used in our implementation are provided by the external
Early Cognitive Vision (ECV) system of Krüger et al. [12,16]. This system ex-
tracts, from a given image, oriented edge features in 2D, but can also process a
stereo pair of images to give 3D oriented edge features we use to build object
models (Fig. 1b).

3 Scene observations

The observations we can make of a scene are modeled as a probability distribu-
tion in a similar way to the model. The observations are given as a set

O =
{(
δ`, β`

)}
`∈[1,m]

(2)

of features, where δ` ∈ R2 is the position of the feature on the image plane, and
β` ∈ B are its observable characteristics. These characteristics must obviously
be a projected equivalent to those composing the object model. Here again, the
features contained in O can directly be used as particles to support a continuous
probability density, using KDE.

In the particular case of edge segments, the observations correspond to 2D
oriented points (Fig. 1e). They are thus defined on R2 × B with B = [0, π[.
As mentioned before, the uncertainty on the position and orientation of visual
features like edge segments can arise from different sources, and no particular
assumptions can thus be made on the shape of their probability distribution. The
kernels used here are thus simple bivariate isotropic Gaussians for the position
part, and a mixture of two antipodal von Mises distributions for the orientation
part. The sum of those kernels, associated with each point of O, then yields a
continuous probability density function φ(x) defined on R2 × [0, π[ (Fig. 1f).
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Fig. 1: Proposed method applied to edge segments (orientation of segments not
represented). (a) Stereo images used to build object model; (b) 3D edge seg-
ments that compose the model; (c) probabilistic model (ψi) in pose w, spheres
representing the position kernel (their size is set to one standard deviation), and
its simulated projection in 2D (ψ′i,w; blue and red represent resp. lowest and
highest probability densities); (d) image of a scene; (e) 2D edge segments used
as observations; (f) probabilistic representation of observations (φ).

Fig. 2: Correspondence of 3D edge segment and associated kernel, with their 2D
projection on image plane. Orange boundaries represent one standard deviation.

(a) (b) (c) (d)

Fig. 3: Results of pose estimation; model features reprojected on input image. (a)
Good result (close to ground truth); (b) good result; (c) same frame as (b) with
incorrect result, orientation error of about 80◦, even though the reprojection
matches observations slightly better than (b); (d) incorrect result, insufficient
observations extracted from pan bottom, and orientation error of about 180◦.
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4 Pose estimation

The object and observation models presented above allow us to estimate the
pose of a known object in a cluttered scene. This process relies on the idea that
the 2D, projected probability distribution of the 3D model defined above can be
used as a “template” over the observations, so that one can easily measure the
likelihood of a given pose.

Let us consider a known object, for which we have a model composed of q
parts Mi (i ∈ [1, q]), which in turn define ψi and ψ′i,w. On the other hand,
we have a scene, defined by a set of observations O, leading to a probabilistic
representation φ of that scene. We model the pose of the object in the scene with
a random variable W ∈ SE(3). The distribution of object poses in the scene is
then given by

p(w) ∝
q∏

i=1

mi(w) , (3)

with mi(w) being the cross-correlation of the scene observations φ(x) with the
projection ψ′i,w of the ith part of the model transformed into pose w, that is,

mi(w) =

∫
R2×B

ψ′i,w(x)φ(x) dx . (4)

Computing the maximum-likelihood object pose arg maxw p(w), although an-
alytically intractable, can be approximated using Monte Carlo methods. We
extend the method proposed in [4], which computes the pose via simulated an-
nealing on a Markov chain. The chain is defined with a mixture of local- and
global-proposal Metropolis Hastings transition kernels. Simulated annealing does
not guarantee convergence to the global maximum of p(w), and we thus run sev-
eral chains in parallel, and eventually select the best estimate. In practice, a
strong prior is usually available concerning the distance between the camera and
the object, e.g., as information on the scale at which the object can appear in
an image. The global transition kernel can benefit from this prior to favor more
likely proposals, and therefore drive the inference process more quickly towards
the global optimum.

As mentioned above, the proposed method naturally extends to observations
from v multiple views. We define mi,j(w) similarly to Eq. 4 but relative to specific
views j, j = 1, . . . , v. Accounting for observations from all available views, Eq. 3
then becomes

p(w) ∝
v∏

j=1

q∏
i=1

mi,j(w) , (5)

which is handled by the inference process similarly to the single-view case.

5 Evaluation

This sections presents the applicability of the proposed method for estimating
the pose of objects on two publicly available datasets [3,10].
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5.1 Experimental setup

In this work, each model is built from one manually segmented stereo view of
the object (such as Fig. 1a). The models used here are typically composed of
between 1 and 4 parts, containing around 300 to 500 observations in total. Pose
estimation is performed on single 1280× 960 images taken with an intrinsically
calibrated camera. The number of parallel inference processes (see Section 4) is
set to 16. On a typical 8-core desktop computer, the pose estimation process on a
single view typically takes about 20 to 30 seconds. Also, as proposed in Section 4
and detailed below, a crude estimate of the distance between the camera and
the object is given as an input to the system.

The ECV observations we use (see Section 2.2) can be characterized with an
appearance descriptor composed of the two colors found on the sides of the edge.
This appearance information does not enter into the inference procedure. How-
ever, in the following experiments we use it to discard those scene observations
whose colors do not match any of the model features. This step, although not
mandatory, helps the pose estimation process to converge more quickly to the
globally best result by limiting the number of local optima.

5.2 Rotating object

We first evaluated our method on a sequence showing a plastic pan undergoing
a rotation of 360◦ in the gripper of a robotic arm [10]. The ground truth motion
of the object in the 36 frames of the sequence is thus known. The estimate of the
distance to the object, given as input to the system, is the same for the whole
sequence, and is a rough estimate of the distance between the gripper and the
camera (about 700 mm). Let us note that, for some images of the sequence, this
estimate is actually quite different from the exact object-camera distance, since
the object is not rotating exactly around its center.

This publicly available dataset is composed of stereo images, and we used
the frame corresponding to a rotation of 50◦ to learn the model, as it gives a
good overall view of the object. Four types of experiments were then performed
(Fig. 4). First, the pose of the object was estimated in each frame of the sequence,
using one single view. One can observe that correct pose estimates can mostly
be made close to the viewpoint used for learning the model (Fig. 4). A number
of results have an orientation error of almost 180◦, which correspond to a special
case (Fig. 3d) that can be explained by the flat and almost symmetrical object
we consider. Indeed, if very few observations are extracted from the bottom
of the pan, only the handle and the top rim of the object can be matched to
the image. Another large number of incorrect pose estimates have orientation
errors of 70–110◦; most of them correspond to ambiguities inherent to a 2D
projection, as illustrated on Fig. 3b–c. Similarly, most of the translation errors
occur along the camera-object axis, as an inherent limitation of 2D observations.
The percentage of correct pose estimates, defined by orientation and translation
errors of less than 10◦ and 30 mm resp., and evaluated over the whole sequence,
is only 20%. Second, the same experiment is performed using two views. Some
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of the ambiguities can then be resolved, and this percentage rises to 60%. This
result can be compared to the evaluation of Detry et al. [5] on a similar sequence,
which achieved a score of only 40–50%. We stress that the latter method relied
on 3D observations computed from stereo, whereas our method uses one or more
2D images directly, and is not limited to short-baseline stereo pairs.

Finally, we used our framework to track the pose of the object over the
whole sequence, using one and two views, respectively. The pose is initialized
with ground truth information for the first frame, and is then tracked from one
frame to the next, using the same process as outlined in Section 4, but without
the use of global proposals in the chain, and thus limiting the inference process
to a local search. These experiments yield very good results (see Fig. 4), the
remaining error being mostly due to the limitations of the model, learned from
a single view of the object.
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Fig. 4: Results of the“rotating object” sequence. For pose estimation, one marker
represents one run of the algorithm (the same number of runs are executed for
each frame). For pose tracking, the lines represent means over multiple runs.

5.3 Cluttered scenes

We evaluated the robustness of our method to clutter and occlusions by com-
puting the pose of various objects in several cluttered scenes [3], using a single
input image. The estimate of the distance to the objects, used as input, is the
same for all scenes and objects, and roughly corresponds to the distance between
the camera and the table on which the objects are placed (about 370 mm). Here
again, this is an only crude estimate, as the actual distance to the objects varies
from 200 to 600 mm.

Several of these scenes are presented in Fig. 5, with object models superim-
posed in the estimated pose. Sometimes, insufficient observations are extracted
from the image, and the pose cannot be recovered (e.g. second row, last image).
However, the reprojection error achieved by our algorithm is clearly low in most
cases; the models generally appear in close-to-correct poses. A perfect match be-
tween the reprojected model and the observations is not always possible, which
is a limitation of the sparse observations and object models we use. Small differ-
ences in the reprojection on the image plane may then correspond to large errors
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in the actual 3D pose recovered. Most of these errors can be greatly reduced by
using additional views of the scene, which is easily done with our method.

Fig. 5: Results of pose estimation (using a single view), with model features
reprojected onto the input image. Most remaining errors are a limitation of the
simple object models used, each learned from a single stereo pair.

6 Conclusions

We presented a generic method for 3D pose estimation of objects in 2D images,
using a probabilistic scheme for representing object models and observations.
This allows the method to handle various types of observations, including fea-
tures that cannot be matched individually; here we use local edge segments. Us-
ing these principles, we showed how to use Metropolis-Hastings MCMC to infer
the maximum-likelihood pose of a known object in a novel scene, using a sin-
gle 2D view of that scene. The probabilistic approach makes the pose estimation
process possible without establishing explicit model-to-scene correspondences, as
opposed to existing state-of-the-art methods. Together with the use of edge seg-
ments as observations, the method allows us to effectively handle non-textured
objects. Further, the method extends to the use of multiple views, providing a
rigorous framework for integrating evidence from multiple viewpoints of a scene,
yielding increased accuracy with only a linear increase of computation time with
respect to the number of views. We validated the proposed approach on two
publicly-available datasets. One dataset allowed quantitative evaluation; the re-
sult of an experiment was compared to the results of an existing method, and
showed an advantage in performance for our method. The pose estimation pro-
cess was also evaluated with success on scenes with clutter and occlusion. Future
work will extend the current implementation to the use of other visual features,
thereby extending the types of objects that can be handled.
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