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Abstract—This paper introduces a novel method for feature-
based 3D reconstruction using multiple calibrated 2D views.
We use a probabilistic formulation of the problem in the 3D,
reconstructed space that allows using features that cannot be
matched one-to-one, or which cannot be precisely located, such
as points along edges. The reconstructed scene, modelled as a
probability distribution in the 3D space, is defined as the in-
tersection of all reconstructions compatible with each available
view. We introduce a method based on importance sampling
to retrieve individual samples from that distribution, as well
as an iterative method to identify contiguous regions of high
density. This allows the reconstruction of continuous 3D curves
compatible with all the given input views, without establishing
specific correspondences and without relying on connectivity
in the input images, while accounting for uncertainty in
the input observations, due e.g. to noisy images and poorly
calibrated cameras. The technical formulation is attractive in
its flexibility and genericity. The implemented system, evaluated
on several very different publicly-available datasets, shows
results competitive with existing methods, effectively dealing
with arbitrary numbers of views, wide baselines and imprecise
camera calibrations.
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I. INTRODUCTION AND RELATED WORK

The problem of 3D scene reconstruction using multiple
2D images from different viewpoints is fundamental in
computer vision. The variety of applications, from robotic
interaction to phototourism or reverse engineering, has led to
the development of numerous methods over the years. These
can be broadly classified into two categories: (i) intensity-
based multiview stereo methods, which produce dense sur-
face reconstructions, and (ii) feature-based methods, which
recover sparse 3D models of geometric features. Although
many of these methods have proven successful in select
fields of application, their typical requirements and limita-
tions in operating conditions motivated the development a
novel, feature-based method, particularly suited to the use of
hard-to-match features. This method, which we successfully
applied to the particular problem of 3D curve reconstruction,
will be introduced after reviewing related literature.

Methods of the first category mentioned above typically
aim at producing detailed 3D reconstructions of objects,
enforcing photometric consistency and surface continuity
constraints to recover a dense shape description. However,

those methods can typically only operate in precisely con-
trolled settings, usually only with Lambertian surfaces, and
with large numbers of precisely calibrated cameras. Those
typical requirements for controlled acquisition conditions
often prove impractical for general applications (see [1] for
a review). While dense reconstructions can offer visually
striking results, there are many applications where sparse
reconstructions are sufficient, as argued below.

Methods of the second category aim at reconstructing
sparse 3D models, made up of isolated geometric features,
such as points or edges. Such methods are particularly
interesting as they provide more expressive and efficient
representations than dense surfaces, typically at a fraction
of the computational cost. The classical methods rely on the
detection of interest points in the individual 2D views, and
then use their local appearance (e.g. using SIFT descriptors
[2]) to propose likely matches between observations from
different views. The geometric consistency between pairs
or triples of points can then be enforced using the well-
known epipolar or trifocal constraints [3], effectively leading
to the reconstruction of a 3D point cloud compatible with
the observations. The first limitations of this approach are
obviously those of the extraction and matching of image
features, which works best on texture-rich images, but can
perform poorly on scenes with mostly homogeneous surfaces
or little detail [4]. Moreover, the matching of local appear-
ance descriptors is made harder as the baseline between the
considered viewpoints increases [5], practically limiting this
approach to the consideration of close pairs of views at a
time.

Other methods of the second category make use of image
curves, or edges, extracted in the available 2D views [4], [6]–
[9]. Reconstructions made up of edge segments convey more
geometric information than point clouds [6] and offer greater
invariance to changes in illumination and viewpoint. Edge-
based reconstructions have moreover proved directly useful
for practical applications like pose estimation [10], [11], or
the prediction of grasping points of objects [12]. The clas-
sical approach, described above, of matching observations
between different views (now lines or cuves) is however a
non-trivial problem [6], exacerbated by the variability in the
extraction of said edges from the 2D images. Li et al. [4]



reviewed various schemes, e.g. using extended projective
geometry [13] or differential geometry [4], or restricting
the problem to closed curves [14]. Common drawbacks are
strong requirements for precisely calibrated camera [4], [9],
[13] and limitations to pairs or triples of views at a time
[13]. In [15], Kaess et al.focuses on the subproblem of
fitting parametric curves to contours identified in several
images, using a Monte Carlo-type search as we do. They
do not however consider the reconstruction of entire scenes
with several objects and the inevitable uncertainty in the
input observations. Kahl et al. [7] present an approach that
also avoids establishing correspondences between views, but
delivers results only on simple scenes, reconstructing only
small numbers of short curve fragments. We present results
on arguably more challenging datasets and in much more
varied conditions (see Section IV).

Multiview reconstruction is part of the larger problem of
simultaneous localization and mapping (SLAM). In contrast
to SLAM, this paper assumes calibrated views and does
not make use of core assumptions made by most SLAM
methods, most importantly the abundance of input views
and feature tracking across views. Some SLAM methods
are nevertheless relevant to the current discussion. Klein
et al. [16] use edges as image features and show how
complementary they are to interest points. They focus on the
localization problem, and do not deliver convincing results
for reconstruction of said edges. Civera et al. [17] propose,
as we will do, an alternative probabilistic formulation to
the classical Gaussian measurement uncertainty, but also
focus on localization. [18] goes beyond precisely localiz-
able features by tracking surface patches under photometric
constraints to provide a dense reconstruction, but is based
on frame-to-frame tracking.

The method proposed in this paper aims at reconstructing
a sparse 3D model of geometric features. The key princi-
ple is the definition, using each available 2D view, of a
probability density in the 3D reconstructed space, which is
compatible with the view considered. This distribution thus
encompasses all backprojected 3D features that could have
produced the considered image. Considering all available
views, the intersection, or product, of those distributions is
then proposed as the distribution of 3D features of the re-
constructed scene. We present in Section II an efficient algo-
rithm for obtaining individual samples from that distribution,
effectively yielding a set of 3D features (edge fragments
in our implementation) describing the reconstructed scene.
A second algorithm is proposed that iteratively identifies
contiguous regions of high density in the 3D space, which
links such samples together, forming continuous 3D curves.

The strength of the proposed approach is to handle non-
precisely localizable features, which cannot be matched one-
to-one, or which present uncertainty in some dimension of
the observation (like a point along an edge). The resulting
curve reconstruction method therefore does not rely on
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Figure 1. The proposed method uses the observations of each input view,
Ok , to define probability distributions φk in the 3D, reconstructed space;
the reconstructed model lies at the intersection of those distributions.

connectivity in input images, effectively accounting for the
variability in the extraction of edges from the images.
Other reconstruction methods have been designed to handle
uncertainty in the input data, often by relaxing the matching
and geometry constraints. For example, Fabbri et al. [6]
implemented a two stage process, where an initial robust
reconstruction is used to optimize the calibration of the
cameras, to then obtain a finer reconstruction in the second
stage. That approach, which can be traced back to the
classical RANSAC algorithm, proved robust, but, in addi-
tion to being arguably computationally inefficient, lacks the
genericity and flexibility of the formulation presented below.
Note finally that similar probabilistic models of objects and
image observations have been used in the past [10], [11],
and this work can be seen as their extension to the problem
of 3D reconstruction.

We must finally remark that reconstruction without corre-
spondences is not new. A basic formulation of the prob-
lem was presented in [19]. In [20], Dellaert et al.used
expectation-maximation to recover the structure of a scene,
handling however only precisely localized features, and only
presented results on toy examples under several unrealistic
assumptions. More recently, [21] showed how to recover
the camera transformation between pairs of views using the
radon transform, but without considering the 3D structure
of the scene at all.

II. PROBABILISTIC RECONSTRUCTION FROM 2D VIEWS

We now present the proposed method, first in a general
formulation, then applied to the use of edge segments. Those
features correspond, in the input images, to points extracted
along lines of maximum gradient, and characterized by
their position and orientation on the image plane (see
Section III-A). In the reconstructed model, they correspond
to oriented 3D points, that we typically represent by short,
fixed length, 3D line segments (see Fig. 4b for example);
they can be connected together to form continuous curves
(e.g. 4c).



A. Probability distributions from image observations

The key idea of the method is to define, from each avail-
able 2D view, a probability density over the reconstructed 3D
space, which is compatible with the observations in that view
(1). In other words, it describes the distribution of backpro-
jected 3D features that could have produced the considered
image, given the uncertainty present in that image, and in
the available estimation of the camera parameters. Formally,
each view k ∈ [1, N ] is described by a set of image features,
or observations

Ok = {yi} i ∈ [1,Mk]
, (1)

where yi ∈ R2×A are the image features, characterized by
their position in the image, and some descriptor in an ap-
pearance space A. In the case of edge segments, which have
an orientation but no direction, the appearance descriptor is
an element on the semicircle (i.e. an angle in [0, π[), and
A = S+

1 . Considering instead more classical interest points,
described by their position in the image and their local
appearance, the space A would then contain normalized
texture descriptors. The 3D, reconstructed model, is to be
defined on a corresponding space R3 × A′. With edge
segments, then characterized by a 3D orientation, we have
A′ = S+

2 .
We will now define, for a view k, a probability distri-

bution φk on the reconstructed space, using kernel density
estimation (KDE). Each element yi of the considered view
is associated with an element of the reconstructed 3D space,
y′i ∈ R3×A′. This element can simply be obtained by setting
a normalized value for the extra dimensions; e.g., the depth
and 3D orientation of our edge segments can be fixed to lie
on the image plane in the 3D world (see Fig. 2). This now
allows us, using KDE, to define the distribution φk by its
probability density function

φk(x) =
1

Mk

Mk∑
i=1

Ki(y
′
i, x) , (2)

where Ki are kernel functions on R3 ×A′. Intuitively, one
kernel Ki(y

′
i, x) models the distribution of all reconstructed

features that could have produced the observation yi. The
details, which will depend on the type of features used,
are straightforward in the case of edge segments. Looking
at the position only, it represents a constant probability
density along the backprojected ray (see Fig. 2). Formally,
we measure the distance between a given y′i and x by 3
scalars:

i. d1, the closest distance in position between x and the
line defined by y′i (the backprojected ray),

ii. d2, the depth of x, relative to the camera center,
iii. d3, the difference in orientation between x, and the

plane corresponding to the backprojection of the ori-
entation of y′i.

min depth

max depthy′i

d2 x

d1

Figure 2. Illustration of an observation y′i (an oriented point on the
image plane) and its associated kernel Ki(y

′
i, ·) in the reconstructed, 3D

space, both for the position and the orientation (surfaces of equidensity in
transparent orange). The kernel, evaluated at a point x, uses the distances
d1 and d2, resp. to the axis of the backprojected cone and to the camera
center (see text for details); d3 is not represented.

We then define our kernel function Ki(y
′
i, x) as the product

of 3 independent kernels that make use of those distance
measures: a Gaussian kernel on (d1/d2) (inducing a conical
surface of equidensity for the position, see Fig. 2), a box
kernel on d2, and a von Mises-Fisher kernel on d3 (which is
a Gaussian-like distribution on orientations [22]). Note that
the effect of the box kernel on the depth only corresponds to
fixing a hard threshold on the distance to the reconstruction.
Indeed, the only assumption that can generally be made here
is that a reconstructed point must lie in front of the camera,
and within a realistic depth range.

The geometric meaning of our definition of a kernel is
quite intuitive, and is illustrated in Fig. 2. For example,
the surfaces of equidensity for the position in the 3D space
correspond to truncated cones, extending along the camera’s
projection rays. The selection of the bandwidth of the kernels
is discussed in Section III-B.

The definition of the kernels could be extended to other
types of image features, or to include edge curvature for
example. We propose another minor extension that takes into
account the uncertainty along the orientation of an edge,
thereby “flattening” the cone of Fig. 2. For this purpose,
the distance d1 is separated in 2 components d′1 and d′′1 ,
respectively aligned and orthogonal to the orientation of the
edge; they are then simply evaluated as (d′1/d2) and (d′′1/d2)
in Gaussian kernels of respectively large and small variance,
thus allowing more slack along the orientation of the edge
(see specific results in Section IV-A).

Finally, as a side note, let us remark that defining a prob-
ability distribution over the reconstructed space, as we did,
differs from the classical formulation of the problem, where
the reconstructed model is compared, once reprojected in
the image space, against the 2D input observations. We
will remark that, under certain parameterizations, the two
approaches can be rendered equivalent. Our formulation was
however chosen in this presentation, as it offers a more
intuitive formulation of the sampling-based reconstruction
methods that we will propose below.



B. 3D Reconstruction of individual points

The probability distributions φk we have defined make
each use of one single view. We now combine them to
produce another distribution ψ in the reconstructed space
that is globally consistent with all available views. It is given
by its probability density function

ψ(x) =
1

C

N∏
k=1

(
φk(x) + ε

)
, (3)

where C is a normalization constant, and ε is a fudge
constant, small relative to the scale of φk(x). This definition
practically uses the intersection of the φk, relaxed by the
constant ε. This allows observations that appear in some but
not all input images to produce a nonzero density region in
the reconstructed space. This proves necessary in practice,
to handle e.g. self-occlusions and missing observations.

Equation (3) gives a formal definition of the 3D recon-
struction of the scene. The main goal however is to obtain an
explicit and practical representation of this model. Sampling
directly from ψ is generally not feasible, but we propose
an approximate method based on importance sampling (see
for example [10], [23]). Importance sampling (IS) allows
one to sample a target distribution p(x), assuming one can
evaluate p(x) = p̄(x)/Z up to some normalization constant
Z, by using samples x` from a proposal distribution p′,
ideally similar to p. IS accounts for the difference between
the target and proposal distributions by assigning to each
sample x` a weight given by

w` = p̄(x`) / p′(x`) . (4)

The collection of weighted samples
{

(x`, w`)
}L
`=1

is then,
under mild assumptions, asymptotically consistent with the
target distribution. This procedure is obviously most efficient
as the proposal distribution is close to the target distribution.
In practice, the collection of weighted samples is then
generally resampled, to a smaller set of L′ (< L) unweighted
samples.

The proposal function used here is given by

ψ′(x) =
1

C ′

∑
(k1,k2)
∈ pairs(1,N)

φ′k1(x) φ′k2(x) , (5)

where C ′ is a normalization constant, and pairs(1, N) de-
notes the list of all unique pairs of indices between 1 and
N . Each density function φ′k is a variation of the φk defined
above, in which the kernels used are all box functions.
Intuitively, ψ′ simply corresponds to all the intersections
of pairs of views. Sampling from ψ′(x) is easily done by
choosing two arbitrary views k1 and k2, and triangulating
two random observations y1 and y2 from each, the kernels
of which intersect at least by a small amount (i.e. the 3D
projections of which intersect each other within a small
threshold). The bandwidth of the box kernels of φ′ will

be chosen so that they extend up to a reasonable cutoff
threshold of the exact kernels of φ. This ensures that the
proposal distribution ψ′ will generate samples in all of the
most interesting regions of the target distribution ψ. The
weights assigned to the proposal samples of ψ′ are then
simply computed using (4). They can then be resampled to
obtain a set of non-weighted points.

C. 3D Reconstruction of continuous curves

The method presented above reconstructs individual
points as samples from a probability distribution in the 3D
space. Some interesting parts of the scene may however
correspond to regions of lower density (e.g. due to missing
observations in one or several views), but which can however
still be identified as local maxima. Moreover, in the partic-
ular case of curve reconstruction, one wants to reconstruct
continuous curves, and not individual points. Those two ob-
jectives can be met through the iterative procedure described
below, which uses the individual samples as starting points
for a stochastic exploration of the reconstructed space.

For each reconstructed curve, the procedure starts with a
sample x0 ∈ R3 × S+

2 . It then iterates, searching at each
step for a point xi+1 along a ridge of locally maximum
probability density. Formally, local proposals are generated
from a point x = (p, θ) of position p ∈ R3 and orientation
θ ∈ S+

2 (a unit 3-vector), as a set of L samples:

proposals(x) =
{

( p+ Θκ(θ) ∗ Γ(α,β),Θκ(θ) )j
}
j ∈ [1,L]

,

(6)
where Γ is a gamma distribution that generates the distance
in position to a proposal, and Θ is a Von Mises-Fisher
distribution used to randomize the orientation. This uses the
assumption that the next point of the curve is most likely
in the direction of the current point. The parameters κ, α, β
define how “spread out” the proposals are from an exactly
straight line. The likelihood of each proposal is evaluated
(Eq. 3), and the best one is selected as the new point xi+1

of the curve. The procedure is repeated, unless the likelihood
of all L proposals fall below a threshold, indicating the
probable end of the curve. That threshold is fixed beforehand
as fraction of the mean density of a batch of samples
of the whole scene. The procedure is comparable to the
classical Canny algorithm, which, likewise, follows ridges
of local optima until falling below a predefined threshold.
Note that the use of a purely random walk scheme for
selecting the neighbours in our method — as opposed to
estimating local derivatives of a likelihood function (as could
be done using differential geometry) — is motivated by
the genericity of the procedure, which we plan to apply to
other types of image features as future work. Finally, as the
scene is being reconstructed, we “prune” ψ, removing the
kernels that have significant overlap with the curves already
reconstructed. This helps reconstructing parts of the scene
of low probability density, initially masked out by regions of



higher density, and also avoids reconstructing several times
the same portions of a scene.

III. IMPLEMENTATION

A. Edge detection in input images

The image features we use are oriented 2D points, identi-
fied along the edges in the images. We selected the method
of [24], which is a simple method based on image gradients
that extracts the orientation of the edges significantly better
than the traditional method, which simply uses the direction
orthogonal to the gradient. That method was chosen instead
of more sophisticated ones which take texture or global
segmentation into account, as they can be extremely slow
and are thus not an option for many applications of 3D
reconstruction. This also ensured a fair comparison with
other published methods which used basic gradient-based
edges as well.

B. Choice of parameters of the reconstruction

The kernels associated with the observations are
parametrized by their bandwidth in position and orientation.
This size should reflect the estimated uncertainty in the
input data, and can be set according to a small fraction to
the estimated scale of the scene. Our experiments showed
however that the method was not particularly sensitive to the
choice of those parameters. For example, in the experiments
(with both small and large camera calibration errors) of
Section IV-D, with 640× 480 pixel images, the size of the
kernels was set to allow a corresponding maximum deviation
in the images of about 12 pixels and 20◦.

The parameters used for local proposals (Eq. 6) are also
to be set relatively to the scale of the scene. For example,
the scene of Section IV-D, measuring about 1000 mm in
diameter, used local proposals corresponding to a spacing
of 5 mm and a deviation in orientation of 15◦ on average,
with L = 50.

Finally, the running time of the iterative procedure grows
linearly with the number of reconstructed points. The cost
associated with the reconstruction of a point mostly corre-
sponds to the evaluation of ψ (Equation 3) for the proposals.
One evaluation involves the processing of every kernel of ev-
ery input view, and is thus O(NM̄), where N is the number
of views, and M̄ the average number of observations per
view. We currently use this basic implementation. However,
a cleverer implementation could efficiently preselect the few
kernels likely to be relevant to the evaluation of a given
point, using an ordered data structure. Since the influence
of a kernel in its distribution drops below insignificant values
past some distance, one could, in this way, restrict the
evaluation of the kernels to a small fraction of them.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated on 4 very different
datasets. It is notoriously hard to produce ground truth

reconstructions for evaluating feature-based methods, due
to the ambiguous selection of the features to reconstruct.
Datasets for benchmarking dense reconstruction methods
have been produced; however, the ground truth model is not
necessarily made public [1], and the selection of actual edges
from continuous surfaces [25] or 2.5D models makes it hard
to design a meaningful quantitative evaluation of a method
like ours. Competing methods for curve reconstruction faced
a similar situation, which explains why no extensive qual-
itative evaluations were published. [6] made an exception,
but they only evalute their ability to match correct curve
fragments between views, using a set of manually labelled
ground truth correspondences — which was unfortunately
not made public.

Practically, our prototype software was implemented in
Matlab. Running times of such an implementation (espe-
cially of an iterative method) have little meaning, as the only
switch to a compiled language offers potentially enormous
room for improvement. Bearing this in mind, we report, as a
base point, that a reconstruction as shown in Fig. 4 or Fig. 6a
currently takes about 2 to 5 minutes on a standard laptop
without multithreading. Most recent competing methods do
not discuss the issue of efficiency; Fabbri et al. [6] report
running times in the order of minutes on scenes like the
dinosaur (see below). Let us note moreover that most parts
of our algorithm are straightforward to parallelize.

A. Synthetic toy example

The lack of datasets with proper ground truth motivated
the use of a synthetic toy example, in order to evaluate and
demonstrate basic properties of the proposed method. The
scene, pictured in Fig. 3a, contains curves of various lengths
and shapes. Their exact 3D shape is used to directly generate
the 2D edge maps used as input to the reconstruction
method. This bypasses the stage of edge extraction from
2D images, focusing this evaluation on the reconstruction
process alone. To simulate realistic conditions and missing
observations, random parts of the curves are masked when
generating those edge maps. The scene itself measures
about 500 mm in diameter; we use 7 views from different
viewpoints around the scene, at a distance of approximately
900 mm.

We compare reconstructions and ground truth using the
accuracy/completeness metrics proposed in [1]. To obtain
accuracy, we measure the Euclidean distance from each
reconstructed point to the closest ground truth curve. The
accuracy is then defined as the distance so that 90% of the
points fall below that threshold. To obtain the completeness,
we consider a number of points sampled uniformly along
the ground truth curves, and count the ratio of them that
have a part of the reconstruction within a reasonable distance
(15◦ in orientation, and 5/8 mm in position for scenes
without/with noise). The exact choice of those thresholds
is not relevant here, since we use them to compare different



methods and not to obtain absolute performance values. We
report accuracy/completeness scores for 4 different recon-
struction methods: (i) a baseline method where we perform
random triangulations (Eq. 5), and keep a fixed number
(1000) of points with a probability density (computed as
in Eq. 3, but without orientation) above a threshold; this
corresponds approximately to the basic approach where one
simply imposes a maximum 2D distance between the re-
projected reconstruction and the input observations; (ii) our
sampling method (Section II-B) used to recover the same
number (1000) of points; (iii) our iterative method for
curve reconstruction (Section II-C); (iv) the same method
accounting for uncertainty specifically along the orientation
of edges (Section II-A).

Each method is run with different lower thresholds on
the probability density of reconstructed points, setting the
tradeoff to be made between accuracy and completeness. We
report results in Fig. 3b, with and without noise on camera
calibrations (in the form of added Gaussian perturbations
of σ = 4 mm on the camera positions). We also plot,
in Fig. 3c, the accuracy and the local probability density
(Eq. 3) of a number of random samples (Eq. 5). This allows
verifying that there is indeed a correlation between the
probability density obtained through our definition, and the
actual correctness of a reconstructed point. Reconstructions
showing good accuracy can however sometimes correspond
to low probability densities, which explains why our sam-
pling method alone cannot recover the entire scenes, as
opposed to the iterative method. Moreover, we also verify
that the correlation between accuracy and probability density
still holds when adding noise (as above) to the camera
calibrations.

B. Dinosaur

The “dinosaur” dataset is standard for the evaluation of
dense reconstruction methods [1]; we use the version made
of 16 views from a circle around the object. We show in
Fig. 4b a reconstruction made of individual points, obtained
using our sampling method. These samples are drawn mostly
in the regions of high probability density of the reconstructed
space, with more samples in the regions the most precisely
defined, e.g. along the crest on the back of the animal (such
sharp edges correspond to well-defined edges in the 2D
images). In Fig. IV-Bc, we show a reconstruction of con-
tinuous curves of the same scene; those curves are correctly
identified along ridges of local maxima of the probability
density function, yielding a high quality reconstruction of
the object. Those results, directly comparable with those
presented in [6], show a clear advantage, particularly in the
level of noise in the reconstruction.

C. High-resolution building

Strecha et al. [25] produced a dataset of high resolution
pictures of buildings for evaluating dense reconstruction

methods. We chose to evaluate our method on one of those
scenes (“Herz-Jesu-P8”) as it represents a very different type
of input data than our other evaluations. The images are of
high resolution, but the nature of the scene (very textured
surfaces and lots of fine details) renders the extraction of
stable edges from the 2D images a difficult problem already.
The reconstructed 3D model (Fig. 5a-b) exhibits missing
parts, which are a direct consequence of this problem (cor-
responding to missing observations in the input data). The 8
viewpoints span only a small arc, roughly in the same plane,
leaving a great deal of uncertainty in the depth dimension,
in particular for the edges parallel to that plane. This can be
observed when viewing the reconstructed model from the
top (Fig. 5b), as some supposedly straight edges meander
in this dimension. The same curves however, when repro-
jected on an input image, always closely match the input
images (Fig. 5c). [25] uses a particular distance measure to
evaluate dense reconstruction methods, requiring non-public
information (calibration uncertainty), which prevented direct
performance comparisons.

D. Office desk

We finally consider an indoor scene, containing typical
household items with little texture (see Fig. 6a), shot from 12
different viewpoints around them. This represents the type of
scenes that motivated our approach, in the context of robotic
applications, where a robot would take the pictures using an
arm-mounted camera. The extrinsic calibration of the camera
would thus be known with a precision corresponding to the
accuracy of the robotic arm. In this evaluation however,
and for purely practical reasons, we used a checkerboard
pattern in the scene with standard calibration software.
We obtained visually excellent reconstructions (Fig. 6). A
challenging part of the scene is the checkerboard, as it
contains many lines close together, in both similar and
different orientations. We then intentionally added noise to
the positions of the 12 cameras, to verify the influence on the
reconstruction (see Fig. 6b-e for details). The highest tested
level of additional noise, drawn from a Gaussian distribution
of σ = 8 mm, introduces corresponding translation errors as
large as 10 pixels on the 640×480 pixel images. Experiments
show that a reconstruction is still possible; some regions of
the reconstructed space now receive a probability density
lower than the allowed threshold, explaining missing parts
in the reconstruction. Those results are representative of the
performance we obtained on many experiments of similar
nature.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel method for feature-based 3D recon-
struction from multiple calibrated views. We introduced a
probabilistic formulation that admits hard-to-match features
particularly suited to edge segments. The reconstructed
scene is modelled as a probability density in the 3D space,
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Figure 3. Evaluation on synthetic scene: (a) example input edge map, note missing observations; (b) accuracy/completeness scores for (light to dark)
random sampling based on position only, our sampling method using orientation, our iterative method with conical kernels, then with “flattened” kernels
(accounting for uncertainty along the edge orientations); (c) density/accuracy of random samples (density evaluated up to a multiplicative constant).
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Figure 4. (a) Example images of the dinosaur dataset; (b) individual reconstructed 3D points obtained through our sampling method; (c) reconstruction
of continuous curves.

(a) (b) (c)

Figure 5. (a) Reconstruction of the building dataset, missing parts are mostly due to missing observations, difficult to extract from the input images; (b)
other view of the reconstruction, showing the imprecisions in depth, as the input viewpoints span only a small arc in front of the building; (c) reconstructed
edges, reprojected on an input image, match however closely.

(a) (b) σ = 0mm (c) σ = 2mm (d) σ = 4mm (e) σ = 8mm

Figure 6. Reconstruction of scene with error in camera calibration; one input image (a); 3D reconstructions (rendered from a novel viewpoint) with
original estimated camera calibration (b) and with added perturbation on camera position from Gaussian noise of variance σ (c-e); significant levels of
error still allow reconstruction, at the price of some imprecisions (plate, checker board) and missing edges (book, lower edge of the table).



from which we can draw individual samples. Those are
then used as starting points to reconstruct continuous 3D
curves. The effectiveness of the approach was demonstrated
on existing and new datasets, and showed competitive results
with an existing method, while exhibiting more technical
flexibility and genericity in its formulation. An important
direction for future work is the evaluation of this method on
features other than edges.
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