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Abstract—This paper addresses the problem of full pose esti-
mation of objects in 2D images, using registered 2D examples as
training data. We present a general formulation of the problem,
which departs from traditional approaches by not focusing on one
specific type of image features. The proposed algorithm avoids
relying on specific model-to-scene correspondences, allowing
using similar-looking and generally unmatchable features. We
effectively demonstrate this capability by applying the method
to edge segments. Our algorithm uses successive histogram-
based and probabilistic evaluations, which ultimately recover
a complete description of the probability distribution of the
pose of the object, in the 6 degree-of-freedom 3D pose space,
thereby accounting for the inherent ambiguities in the 2D input
data. Furthermore, we propose, in a rigorous framework, an
efficient procedure for fusing multiple sources of evidence, such
as multiple registered 2D views of the same scene. The proposed
method is evaluated qualitatively and quantitatively on synthetic
and real test images. It shows promising results under challenging
conditions, including occlusions and heavy clutter, while being
capable of handling objects with little texture and detail.

I. INTRODUCTION AND RELATED WORK

Estimating the pose of a known object in a single 2D image
is a fundamental problem in computer vision that has attracted
a lot of attention over the years. The task is closely related
to the problem of object recognition. However, state-of-the-
art object recognition methods usually aims at identifying
object classes, allowing small variability in appearance among
different objects of the same class. We rather focus here
on specific instances of objects, where such small changes
in appearance are actually used as cues for determining the
precise pose (3D position and orientation) of the object in a
new scene.

The pose estimation task has many direct applications,
such as robotic interaction and grasping, augmented reality, or
the visual tracking of objects. Methods have been developed
that make use of a 3D, explicit geometric model of the
object of interest [1], [2], [3]. Those thus require precise
a-priori knowledge of the 3D shape of the object, to be
provided by external methods such as stereo vision or range
sensors. In this paper, we rather present a 2D view-based, or
exemplar-based method, which simply uses 2D views of the
object as training data, in which the object appears in known
poses. Those methods present the advantage of being easily
trainable, directly using 2D visual data. Further motivation
for the exemplar-based approach is brought by the human
visual system, which was shown to exhibit properties of a
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Fig. 1. Pose estimation in a single image, using 2D training examples; (a) test
image; (b) edge map used as input; (c) sample training views; (d) rendering
of a model of the object in the best pose found by the algorithm, note that
the correct pose is recovered despite heavy clutter and missing observations.

view-based lookup function when recognizing objects, being
robust to changes of about 20◦ around trained viewpoints [4].
Unfortunately, current, state-of-the-art methods following this
approach present serious limitations, often relying on specific
types of images features, or being suited to only particular
types of objects, and are thus able to operate only under
limited ranges of conditions. This led us to the reformulation
of the problem in more general, probabilistic terms, and to the
development of a novel method, that we will introduce after
reviewing related work.

Early work in the field of exemplar-based methods used
the appearance of the object as a whole. These so-called
appearance-based methods [5], [6], [7] generally assumed a
successful prior detection of the object in the test image and
generally offered poor resistance to clutter and occlusions,
or did not handle the full 6 degree-of-freedom pose space
as needed in practical applications. More recent work, by
contrast, focused on the use of individual, precisely located
observations (such as SIFT features [8]) extracted in the 2D
views of the object. These feature-based methods [9], [10]
then rely on establishing matches, using their appearance,
between observations in the test view and in the stored training
examples. The limitations of this approach are obviously those
of the extraction and matching of image features, which
practically works best on texture-rich images, but can perform



poorly on scenes with mostly homogeneous surfaces or little
detail.

The method proposed in this paper bridges a gap between
the two approaches mentioned in the previous paragraph. It
makes use of individual features extracted from the images,
thereby offering the potential robustness of feature-based
methods, e.g. against lighting changes, but does not rely on
the matching of specific observations between the test and
training views. Practically, this allows using similar-looking
types of features. Although the method is generally applicable
to different types of observations, we chose to demonstrate
this key ability through the use of local edge segments. These
correspond to points extracted in the images along the lines
of maximum gradient, and they thus carry little appearance
information individually. The result of our implementation is
a pose estimation method readily trainable with 2D visual data,
intrinsically robust to clutter and occlusions, and able to handle
previously-problematic objects with little texture and detail.

The identification of the object of interest in a new image
ressembles the traditional problem of object recognition and
localization. A number of successful methods have been de-
veloped that specifically make use of edges as image features.
The classical measures of chamfer distance [11] and Hausdorff
distance [12] evaluate the fit of a template over a test image;
their initial formulations were refined in different ways to
provide practical algorithms capable of finding such a template
(a training image of the object of interest) in a cluttered
scene [13], [14]. One key addition proved to be the use of
the orientation of the edges, as we also do in the proposed
method. Other state-of-the-art methods include the work of
Ferrari et al. In [15], they use descriptors of simple edge
groupings to train an SVM classifier, capable of recognizing
object classes, then using a traditionnal sliding window over
the test image. In [16], they focus on the learning of shape
models from unsegmented training views, and then use a soft-
matching procedure of those shapes to recognize objects in
new images. The purpose of those two methods is however
to specifically handle intra-class variations of appearance. The
work presented in this paper differs from the cited methods in
3 important ways: (i) we present a generally-applicable method
not bound to one specific type of image features; it offers the
flexiblity to use additional characteristics (e.g. edge curvature)
or other features (e.g. interest points); (ii) we do not seek to
identify objects or object classes, but rather to determine their
pose, using the small changes of appearance as clues to this
end; (iii) we go beyond a simple localization in the image
(e.g. as 2D bounding box), as we directly consider the full
6-degree-of-freedom pose of the object in the 3D space, of
which we recover a probability distribution, and not a single
maximum.

The method proposed in this paper is based on a probabilis-
tic representation of both the test and the training data. Such a
representation has been used in the slightly different context of
pose estimation using 3D models and observations [17], [3],
and this work can be seen as their extension to the case of 2D
data. In addition to modelling the uncertainty inherent in the

input data, the probabilistic approach leads to the definition of
the pose of the observed object as a probability distribution in
the 3D pose space, of which we want to identify the peaks.
This is justified by the uncertainty in the pose estimation
problem arising from the 3D-to-2D projection ambiguities.
Intuitively, a given 2D view may often be explained by several
3D poses of the object of interest, and we are generally
interested in recovering all these potentially correct results.
Our probabilistic approach, as will be demonstrated, is able
to address this objective. Another contribution of this paper
is the introduction of successive histogram- and probabilistic-
based evaluations that seek to identify all significant modes
in the distribution of interest. The aforementioned references,
which had to deal with less complex distributions, employed
approximations such as Monte Carlo methods [18], which
generally recovered only a unique solution. This would have
been insufficient in the present case, due to the particular
ambiguities mentioned above.

Finally, we propose an efficient method for fusing multiple
sources of evidence in the same probabilistic framework. This
information may be available e.g. through multiple 2D views
of the scene, observed under different viewpoints, but the
same principle can also serve to jointly handle multiple types
of features extracted from a same image. Viksten et al. [10]
proposed another method for combining such multiple sources
of information through a simple clustering step on top of
several instances of existing methods. This however lacks the
genericity offered by the rigorous approach proposed here.
We make full use of the probabilistic nature of the problem,
combining the different sources of information in a Markov
random field, on which inference is performed using non-
parametric belief propagation. The power of the technique is
demonstrated through the use of two 2D views of the same
scene, thereby increasing the accuracy of the pose estimation
process. A comparable approach was used by Toshev et al.
[19] for tracking of the pose of an object over time in a video.
Other methods for handling multiple views with a 2D pose
estimation method have been proposed [1], [20], but with the
underlying process based on feature matching, as opposed to
the more generic approach proposed here.

II. PROBABILISTIC REPRESENTATION
OF POSE AND APPEARANCE

In this section, we introduce a rigorous formulation of the
pose estimation problem, using a probabilistic representation
of the input data. As mentioned above, the proposed method
is not specific to one particular type of image features, but the
general formulation is illustrated with local edge segments.
Those correspond to points extracted from the images along
the lines of maximum gradient (see Section V).

A. Representation of test data

Let us first consider the test data, which consists of a single
2D image, from which we extract features xi. They form the
set of observations O = {xi}Ni=1, where xi ∈ A, the space
on which is defined the appearance of our observations. In the



case of local edge segments, an observation is characterized by
its 2D position in the image, and by its orientation (without
direction, i.e. an element on the semicircle). Therefore, we
have A = R2 × S+

1 . Considering another case where each
observation would be a texture patch extracted around an
interest point, the appearance space A would then encompass
the position of that point, and a description of the texture itself.

As proposed in [3], such a set of observations can be
used to define a continuous probability density ϕ on A.
This distribution is defined in a non-parametric fashion, using
Kernel Density Estimation (KDE), directly using the elements
of O as supporting particles. The probability density function
of ϕ is then given by

ϕ(x) =
1

N

∑
xi∈O

K1(xi, x) , (1)

where x ∈ A, and K1(·, ·) a kernel function on A. This for-
mulation allows modelling the uncertainty that may be present
in the observations, e.g. due to image noise or to other artifacts
occurring during image formation and processing. The kernels
used will depend on the appearance space considered [3]. In
our application, using edge segments, we found that using
kernels allowing only a small deviation on the position and on
the orientation was sufficient, as our edge detection algorithm
could provide results of good accuracy (see Section V). In
practice, the narrow bandwidth of the chosen kernels implies
that sampling from ϕ(x) amounts to selecting random points
xi from O, with only small variations (see Fig. 2b).

B. Representation of training data

The training data is composed of a number of pre-segmented
2D images, in which the object of interest appears in known
poses. Each of those images is processed, in a similar way
as the test image, to extract image features. Each observation
xi is then associated with the pose wi of the image it was
extracted from, thereby forming a set of pose/appearance
pairs T = {(wi, xi)}Mi=1, where xi ∈ A, the appearance
space of our observations, and wi ∈ SE(3), the space of 3D
poses. Similarly to the observations, these points are used to
support a KDE, therefore defining a probability distribution
on the joint pose/appearance space. This distribution, called
ψ, represents the probability of observing an image feature
of a given appearance when the object is in a given pose.
Formally, ψ is defined by its density function

ψ(w, x) =
1

N

∑
(wi,xi)∈T

K2

(
(wi, xi), (w, x)

)
, (2)

where w ∈ SE(3), x ∈ A and K2(·, ·) is a kernel function
on SE(3)×A. The use of kernels on the training data can be
seen here as a smoothing over the available training points,
effectively yielding a continuous distribution and allowing us
to interpolate, to some extent, the value of ψ over regions not
covered by the training data. Practical details on the use of
kernels in SE(3) are discussed e.g. by Detry and Piater [18].

In addition to the training data, a number of possible trans-
formations in the pose/appearance space are usually known.

For example, under orthographic projection1, the camera in-
trinsic parameters dictate how a translation (in pose space)
parallel to the camera image plane relates to a translation
of the observations in the image (in appearance space). In
our case, with edge segments, we chose to hard-code three
such transformations, namely the translation and rotation in
the image plane, and the change of depth along the camera
projection rays which give identical projections on the image
plane. Formally, we represent these transformations via a
single function f , parameterized by a vector of parameters
p ∈ P , such that

f
(
(w, x), p

)
= (w′, x′) (3)

with (w, x) and (w′, x′) being pose/appearance pairs, equiva-
lent through the hard-coded transformations under the parame-
ters p. Those transformations allow us to extend our definition
of ψ to larger regions of the pose/appearance space than with
the training points alone. To that effect, we substitute T ′ for
T in Eq. 2, where

T ′ = T ∪ { (w′, x′) : ∃ (w, x) ∈ T , p ∈ P :

f
(
(w, x), p

)
= (w′, x′) }. (4)

This augmented training set T ′ complements T with all
transformations of its elements that can be obtained using f .
As we will see in Section III however, our implementation
does not require an explicit representation of T ′, and, in
practice, only a small subset of its elements will have to be
identified.

For practical purposes, we remark that the definition of ψ
(Eq. 2) presents the problem of making its value dependent on
the density of training examples in the corresponding region.
For example, including two identical views of the object in
the training data, in the same pose, would simply double
the density of ψ in the corresponding regions, which is not
desirable. This effect is alleviated by using the maximum
value of the neighbouring kernels (see Fig. 2c) instead of
a summation over their values. This leads to the alternative
definition

ψ(w, x) =
1

C
max

(wi,xi)∈T ′
K2

(
(wi, xi), (w, x)

)
, (5)

where C is a normalization constant.

C. Probability distribution of 3D pose

The probabilistic representations of the test and the training
data, given respectively as ϕ and ψ, are now used together to
model the pose of the object in the test image. The pose is
modelled as a random variable W ∈ SE(3), and its distribution
is simply given by

p(w) =

∫
A
ψ(w, x) ϕ(x) dx . (6)

1Our implementation of the method assumes an orthographic or near-
orthographic projection, which in practice is easily satisfied with a camera
of sufficient focal length relative to the scene depth (see Section V).



This expression, in effect, measures the compatibility of a
pose w with the whole distribution of features observed in
the image. Another interpretation is to see it as the cross-
correlation of the distribution ϕ of observations in the test
image with the distribution ψ(w, ·) of training points at a
given pose. Note that this formulation of p(w) is similar
to that proposed in [18], [3] for the use of 3D models and
observations.

III. POSE INFERENCE

This section presents a practical method for solving the pose
estimation problem as formulated in Section II. The method is
based on two key observations, presented below, which allow
an approximate evaluation of p(w).

First, the value of the integral in Eq. 6 can be approximated
using Monte Carlo integration [21], [18]. This method, which
involves a random exploration of the integration domain, gives

p(w) ≈ 1

n

n∑
i

ψ(w, xi) where xi ∼ ϕ(x) . (7)

The evaluation of p(w) (see Fig. 2a–d) thus amounts to
successive evaluations of ψ(w, xi) for different values of xi,
drawn from the distribution of observations in the test image
(ϕ).

Importantly, and this is our second key observation, each
of these evaluations of ψ(w, xi) only requires a small number
of elements of the augmented training set T ′. For a fixed xi,
using the hard-coded transformations (in-plane rotation and
translation), any original training pair (w, x) ∈ T can be
transformed into a pair (w′, xi) ∈ T ′ of appearance xi. Those
pairs will have the strongest influence on the value of ψ(w, xi)
(Eq. 5), and its evaluation can therefore be limited in practice
to the use of those pairs, which formally correspond to the
following subset of T ′:

{ (w′, xi) : ∃ (w, x) ∈ T , p ∈ P :

f
(
(w, x), p

)
= (w′, xi) } ⊂ T ′ (8)

The practical consequence of this property is that an explicit
and complete representation of T ′ is not required, and that
only a fraction of its elements have to be identified.

A. Exhaustive search algorithm

The two properties we just presented make the evaluation
of p(w) possible for any pose w. Various methods can then
in principle be used to identify the main modes of this
distribution, such as a Monte Carlo-type search as proposed in
[18], [3]. However, the purpose of such methods is generally
to identify the global maximum of the density. As argued
above, the particular ambiguities in the 2D input data are likely
to induce a very complex distribution, potentially presenting
multiple weak modes that we wish to identify. We therefore
devised an algorithm to exhaustively explore the relevant parts
of the 3D pose space. This task is particularly challenging
[22] due to the high dimensionality of SE(3). We propose
a two-stage process that first relies on a histogram-based
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Fig. 2. Proposed method for pose estimation, using edge segments as image
features. (a) Test image; (b) distribution of edges in test image, denoted ϕ(x)
in the text, and three samples x1−3 (blue oriented points) of that distribution;
(c) distribution (red curve) of poses compatible with each observation xi

(Eq. 5), made up of individual kernels (gray curves) supported by a small
subset of poses w′ ∈ T ′ (Eq. 8, red dots); (d) distribution of poses compatible
with all observations xi (Eq. 7) and local maxima w∗i , as recovered by our
method.

approximation, in order to pre-select regions of interest in
SE(3). This serves to discard those bins of the histogram that
correspond to areas of low density, dramatically reducing the
amount of data used at the second stage. It is then possible
to perform a full-scale kernel-based evaluation of the density
(Eq. 5,7), limited to the pre-selected regions of the pose space.
The algorithm returns a set of poses R where the density
exceeds a certain threshold.

The computational complexity of this algorithm is propor-
tional to the number of training points (M , Section II-B), mul-
tiplied by the number of samples used from the observations
(n, in Eq. 7), itself chosen as a fraction of the total number
of observations (N , Section II-A). Note also that it is not
mandatory to process all possible combinations of observation
samples and training points, but a stochastic approach can
rather make use of the probabilistic representation of the
training data ϕ, and use a limited number of random samples
thereof. This scheme was previously used in the related
problem of 3D models and observations [17], [3].

B. Post processing of pose estimates

As a post-processing step, one may want to identify the
actual peaks of each mode. This could be accomplished
by a traditional gradient-ascent method, such as mean shift
[23]. In our case, this procedure would be costly due to
the complexity of the pose space. Fortunately, in practice,
the proposed algorithm usually returns poses in the close
neighbourhood of the actual peaks. A simple non-maximum
suppression step therefore proves sufficient. In this method,
an element is discarded if it lies in the close neighbourhood
of an element of greater density, the neighbourhood being
defined by a fixed radius in the pose space. This procedure,
efficiently implemented by processing the poses of R in order
of decreasing density, therefore selects the poses that are the
closest to the peaks of the distribution (Fig. 2d).



IV. EXTENSION TO MULTIPLE SOURCES OF EVIDENCE

The method presented above uses a single source of infor-
mation as input data, i.e. a single 2D image, to evaluate the
most probable poses of the object. However, it is sometimes
desirable to use several sources of information to disambiguate
the result, or make it more precise. Such extra information
could be available, e.g. as multiple images of the same scene,
observed under different viewpoints, or as several types of
image features, extracted from one same image. This section
proposes a rigorous method for fusing the results produced
by each different cue, thereby determining globally consistent
poses. The method is presented in the concrete context of
multiple views, but it directly extends to other scenarios, e.g.
with multiple types of image features.

We represent by the random variable W ∈ SE(3) the
pose of the object, and by Xi ∈ A the distribution of
observations in the ith view. The dependency between these
random variables can be represented by a pairwise Markov
random field [24], [17], organized in a tree structure, W being
the root node (see Fig. 3). The compatibility potential functions
parameterizing the relationship between W and a Xi are called
ψi. These are identical to the ψ introduced in Section II,
apart from now taking into account the actual viewpoint of
the corresponding view. Each node Xi is moreover connected
to its corresponding observed variable, Yi , their relationship
being parameterized by ϕi, defined similarly to the ϕ of
Section II. To determine the marginal density of the top node
W , inference on such a graphical model can be performed
using Non-parametric Belief Propagation (NBP), as proposed
in [24]. The application of the NBP algorithm on a model as
simple as that considered here allows many simplifications. In
particular, the distribution of W is simply given by

p(w) =

q∏
i=1

mi(w) , (9)

with a message mi(w), conceptually sent from a node Xi to
the root node W (see Fig. 3), and expressing its belief about
the state of W , being defined as

mi(w) =

∫
A
ψi(w, x)ϕi(x) dx . (10)

Note that this definition of mi(w) is identical to Eq. 6, but
is now indexed on the source of the observations. Practically,
each mi(w) can be independently evaluated, using the method
of Section II-C. This method returns a set of poses in the most
dense regions of SE(3), which can directly be used to represent
the distribution mi(w) in a non-parametric fashion, using
KDE, weighting each of them with its evaluated probability
density. Fusing the results from all sources of evidence, via
Eq. 9, then amounts to computing the product, or intersection,
of all of these non-parametric representations of densities on
SE(3). In practice, the representation of each mi(w) is usually
quite compact, and the evaluation of p(w) for a given w
can thus be performed at a reasonable computational cost.
We therefore identify the maxima of p(w) with a Markov
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Fig. 3. Markov tree representing the integration of multiple source of
evidence, in this case 2 views from which edge segments are extracted. The
messages mi(w) represent the belief about the state of W sent from each
node Xi; they are fused to determine the values of W globally consistent
with the two views.

Chain Monte Carlo (MCMC) type search, using a simple
random walk scheme [18]. This local optimization process is
performed from several different starting points, selected from
the supporting particles of the mi(w). Using this process, the
output of the algorithm is finally the set of poses corresponding
to the local maxima of p(w) as defined by Eq. 9, i.e. the
poses globally the most consistent with all available sources
of evidence.

V. EVALUATION

The evaluation of a pose estimation method is not trivial,
due to the difficulty of obtaining the ground truth 3D poses
themselves, especially in realistic scenes. We considered us-
ing various existing datasets, as reviewed below, but finally
decided to produce new datasets, with synthetic images and
thus known ground truth, which allowed performing a rigorous
quantitative evaluation. Practically, the image features were
extracted using the well-known Canny edge detector, followed
by a smoothing and subsampling step to reduce the noise in the
observations (Fig. 1b). All images used were 640× 480 pixel
grayscale images, and all the parameters of the algorithm were
set to identical values for all the tests (with both synthetic and
real images).

Among candidates public datasets, we considered the ETHZ
Shape dataset [15], which features shape-based object classes
in various cluttered scenes. It is however specifically targeted
at class recognition algorithms, designed to handle variations
in shape, as opposed to our method, which actually uses
those slight changes in appearance as clues for estimating
the 3D pose of the object. The dataset does not include any
suitable training data or any ground truth for 3D pose. The
NORB dataset [25] is made up of images of toy objects in
different poses, and of artificial compositions of such images
proposed as cluttered scenes. In addition to being evaluated
only with class recognition methods (as far as we are aware),
the very-low-resolution images prevent any reliable use of
edge features, as our method requires. The RGB-D dataset
[26] is made up of household objects on a turntable, viewed
at 3 different elevations, thus in a fairly limited range of
poses. We also argue that the basic evaluation methodology
proposed for those sequences, which is basically to use every



other image for training and test alternatively, in the absence
of clutter and object translations, is overly simplistic and of
limited diagnostic value. The capture setup (e.g. constant-
speed turntable) is also acknowledgedly imprecise and ruled
out this dataset as an interesting candidate for a rigorous
evaluation.

A. Quantitative evaluation on synthetic images

The synthetic datasets were produced with manually de-
signed 3D models and rendered with ray tracing software.
The training examples (Fig. 1c) correspond to different views
of the object of interest on a uniform background; the poses
of the object in the training set are chosen uniformly in
the orientation space. The amount of clutter in a test image
is measured as the ratio of the number of observations not
belonging to the object of interest over the total number of
observations in the image. For example, a clutter ratio of 0%
corresponds to absence of clutter, whereas a clutter ratio of
80% means that about 4/5 of the observations are actually
noise. We measure the success rate as the ratio of experiments
that returned a correct pose in the first k results (the algorithm
returns a list of poses sorted by decreasing probability density).
This aspect is important, as the ambiguities the 2D input data
often prevent one from distinguishing between different 3D
poses that have very similar appearances on the image plane.
The threshold for considering a pose as correct was set in
accordance to the typical dimensions of a scene: considering
our objects are of a size of 100–200mm and distant from
the camera of 1000–2000mm, this threshold was set to a
translation error of 20mm parallel to the image plane (XY ),
100mm in depth (Z), and a maximum rotation error of 20◦.
The greater tolerance on the Z translation is justified by the
fact that the use of a single 2D image makes the determination
of depth very difficult. Note however that this error threshold
remains a small fraction of the actual depth of the scenes.
Using these conventions, the success rates of the algorithm for
various conditions are reported in Fig. 5a. Please also note that
relaxing the threshold discussed above does not necessarily
lead to better quantitative results, as we also report, in Fig. 5c,
the mean error of the first correct result returned by each
run of the algorithm. The reported average numbers were
computed over 30 runs of the algorithm for each of the 6
objects considered (Fig. 5b), each scene being generated at
random, with clutter made up of different objects disposed
randomly in the background. The measure of the error in
orientation for the cylindrically symmetric objects (e.g. the
bottle) naturally takes only their relevant degrees of freedom
into account.

Systematic test cases including occlusions are hard to
design, as the amount of occlusion is difficult to quantify:
masking one half or the other of an object can have dramat-
ically different effects due to different levels of detail. We
are however confident in the ability of the system to cope
with significant occlusion, since this is actually simulated by
a common large fraction of missing observations (Fig. 4), due
to background clutter preventing a good extraction of edges.

The algorithm presents very good success rates under com-
mon amounts of clutter (Fig. 5a). This success rate even
remains acceptable as the amount clutter is raised to very
challenging values (Fig. 4). Increasing the number of training
views for each object was not found to have a significant
impact on the success rate, but increased the accuracy of
the results (Fig. 5c). Similarly, the amount of clutter did not
have a significant influence on the precision of the results
(Fig. 5c), but only makes harder the identification of the modes
of the distribution. In general, the erroneous results can be
attributed to two sources (see Fig. 4, last row). First, the edge
segments we restrict ourselves to cannot always be extracted
consistently. For example, in an image of the kettle, if the
edges of the handle are extracted on one of its sides but not on
the other, this side may be “matched” with any of the two sides
of a training view, potentially leading to a large error on the
orientation of the recovered pose – despite both being globally
good matches with the 2D input view. Second, using the 2D
projections of any 3D object introduces inevitable ambiguities.
For example, it may be very difficult to differentiate between
a cylindrical object pointing away and towards the camera
(Fig. 4, bottom left); this effect is particularly true for our
objects consisting of mostly homogeneous surfaces.

We used a similar protocol to evaluate the use of multiple
views of a same scene, as proposed in Section IV. In those
experiments, we used, instead of a single 2D image, 2 images
of the scene from viewpoints spaced by 45◦. Such a wide
baseline is generally too large to be handled by traditional
stereo methods, and thus demonstrates one of the interests of
our approach. The success rate was generally not noticeably
affected by the use of two views over one, but the error was
almost always substantially decreased, as reported in Fig. 5c.
Using a second view helps the algorithm disambiguating
between the different possible orientations of the object, and
also provides much better clues for determining the actual
depth of the scene (Z translation).

B. Real test images

The method was evaluated on real test images. For practical
reasons, we relied here again on computer-generated images
as training data. We used 128 training views of each object,
that were produced as explained above (Fig. 1c), through ray
tracing with manually-designed 3D models. In a realistic appli-
cation, such images are to be acquired, e.g. by a robotic agent
taking pictures of the real object under various viewpoints
[27]. This alternative option was chosen purely for practical
reasons, but added an additional challenge as the models used
for generating the training images inevitably did not match
the real objects perfectly. The test images were taken with a
handheld camera at about 1000–2000mm from the scenes.

We performed many experiments on typical household
scenes with common objects. We purposely chose objects
presenting large homogeneous surfaces with little texture
and details, on which classical feature-based pose estimation
would likely fail. We present, in Fig. 6, typical results of
both successful and failed experiments. As the ground truth



Fig. 4. Sample results of our quantitative evaluation (for each: test image, edge map used as input, rendering of object model in the first pose proposed by
the algorithm); these tests used a single test view, 128 training views per object, and clutter=80%. The last row shows typical incorrect results: although a
close match is found with the given edges, the 3D pose is incorrect.

clut t er = 0.8clut t er = 0.4clut t er = 0.0

1 3 5 7 91 3 5 7 9k= 1 3 5 7 9

0.0

0.5

0.8
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(a) (b)

N. of train. examples 32 128 512 128, stereo obs.
Translation (mm) 44.1 30.5 31.1 14.2
XY only 4.6 3.1 2.1 N/A
Z (depth) only 43.2 30.1 30.9 N/A

Orientation (◦) 11.6 8.3 7.7 8.1
Rank (k) 2.9 1.8 1.3 1.2

(c)

Fig. 5. Quantitative results on synthetic images (see text for details); (a) for each object, success rate of having a correct result among the first k ones (128
training examples), in scenes of no/medium/heavy clutter; (b) test objects used; (c) average error of first correct result.

Fig. 6. Sample results on real images (similar conditions as Fig. 4); for visualization, we render, in yellow, the outline of artificial models set in the first pose
found. The last two images show common failures, typically due to uncertainty in the limited input data used (edges): the mitten identified in background
clutter, and the rim of the plate matched onto its shadow.

(a) (b)

Fig. 7. Recovery of probability distribution of 3D pose; (a) input image; (b) plot of 3D position as a non-parametric description (blue points), and local
maxima (green points). Each occurrence of the object in the image correctly generates one mode in the distribution.



pose is not available, measuring the errors is not possible.
Instead, we visualize the results by rendering, onto the input
images, synthetic models of the objects in the poses found
by the algorithm. One can observe good matches with the
input images, demonstrating the good use made of the 2D
information available. As discussed before, the use of 2D
observations, especially edge segments alone, often makes it
hard to distinguish between different poses that may appear
similar in one image. The first pose returned by the algorithm
may thus correspond to an erroneous result, but the correct
result will often be found in the other poses proposed by
the algorithm (identified with slightly lower probability). The
actual disambiguation is thus to be left to the end application,
which may best make use of this uncertainty in the results.

C. Retrieval of full pose distribution

One key capability that we propose is to recover a distribu-
tion of 3D poses, rather than a single optimum. We illustrate
this in Fig. 7: the pose of a bottle is evaluated in an image
containing several occurrences of the object. The distribution
is recovered in a non-parametric fashion as a collection of
particles, of which we plot the 3D position. One mode is
correctly identified for each occurrence of the object, the main
uncertainty remaining unsurprisingly in the depth dimension,
extending along the camera projection axis.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel method for exemplar-based pose
estimation in single images. Relying on a general, probabilistic
formulation of the problem, the method avoids establishing
specific correspondences between training and test views, thus
allowing similar-looking types of images features. The pose of
the object is treated as a probability density over the 3D pose
space, from which we identify the different modes, thereby
accounting for the ambiguities of 2D input data. We also
proposed an elegant way of fusing evidence from multiple
sources, such as several views of the same scene, or different
types of image features. A first validation of the overall
approach showed promising results. Further developments will
mainly focus on the use of other types of image features
within this framework, extending its applicability further to
more types of scenes, objects and imaging conditions.
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