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Abstract—We present a general method for tackling the related
problems of pose estimation of known object instances and object
categories. By representing the training images as a probability
distribution over the joint appearance/pose space, the method
is naturally suitable for modeling the appearance of a single
instance of an object, or of diverse instances of the same category.
The training data is weighted and forms a generative model, the
weights being based on the informative power of each image
feature for specific poses. Pose inference is performed through
probabilistic voting in pose space, which is intrinsically robust to
clutter and occlusions, and which we render tractable by treating
separately the least interdependent dimensions. The scalability
of category-level models is ensured during training by clustering
the available image features in the joint appearance/pose space.
Finally, we show how to first efficiently use a category-model,
then possibly recognize a particular trained instance to refine
the pose estimate using the corresponding instance-specific model.
Our implementation uses edge points as image features, and was
tested on several existing datasets. We obtain results on par with
or superior to state-of-the-art methods, on both instance- and
category-level problems, including for generalization to unseen
instances.

I. INTRODUCTION AND RELATED WORK

The problem we focus on is the localization and the estima-
tion of the precise 3D pose of objects in a new scene, given a
single image of that scene, and multiple images of the objects
as training examples. This is a central problem in computer
vision, and there exists a wealth of literature on the topic,
especially when dealing with specific object instances, e.g. a
particular car or a particular coffee mug. The classical methods
rely on the use discriminative image features and descriptors
(such as SIFT or Geometric Blur), matched between the test
view and the training examples. Such features are sometimes
stored together with a rigid explicit 3D model of the object
[1], [2], which brings viewpoint-invariance to the model. Other
techniques have been proposed to encode viewpoint-invariant
models, especially in the context of object recognition, e.g.
by linking the observed features across different viewpoints
[3], [4], [5], or modeling the object as a collection of planar
parts [4]. Those methods however were used mainly with
the goal or localizing and recognizing those objects in the
images, but without recovering their 3D pose explicitly. One
exception is the work of Savarese et al. [4], but the recovered
pose is only a rough identification, such as “frontal view” or
“side view”. This limitation is present in many other methods
[6], [7], [4], [8] which use discretized pose values, treated

as separate classes, with different classifiers tuned to each of
them. There exist however methods, often presented in the
robotics community (with applications such as object grasping
in mind), which can provide accurate pose estimates [9], [10],
but they are mostly limited to specific object instances.

One particular aspect we are interested in is to provide the
capability for pose estimation at the category level. There is an
increased interest for this more challenging task; the goal is for
example to train the system with a set of different mugs, then
to recognize the pose of a new, unseen mug. The categories in
such a scenario are defined implicitly by the training instances
used as examples.

Previous work on object recognition does acknowledge
the close link between handling the variability of object
appearance as a function of pose and due to the diversity
of objects within a category. Gu and Ren [11] showed how
to solve for instance and discrete (coarse) pose recognition
at the same time. Lai et al. [12] did so as well, using a
tree of classifiers tuned for the different tasks. However, they
use presegmented views of the objects, without any clutter
or occlusions, and provide modest results on the accuracy of
the retrieved pose. The methods mentioned in the previous
paragraphs, while modeling the change of appearance due
to different viewpoints, generally cannot directly handle the
variability within categories of objects [3], [5]. One way this
capability has been provided is by encoding — in addition to
a rough 3D model — the possible variations in appearance
[13], [14]; one limitation however is that no shape variability
is possible. Our model, on the contrary, is purely appearance-
based, and naturally accommodates variability in shape as
well as in appearance. The traditional models of rigid ge-
ometrical constraints and highly discriminative features [2]
are not adequate for encoding within-category variations. One
exception to most methods here is again the model of Savarese
et al. [4], which is specifically designed to provide viewpoint-
invariance while handling within-category differences — but
still provides only coarse pose estimates.

Recently, some methods have been introduced that can
handle category variability and perform localization together
with precise pose estimation. Glasner et al. [15] uses structure-
from-motion to reconstruct accurate 3D models from the train-
ing images. They then account for within-category variability
simply by merging multiple exemplars in their non-parametric
model, in a fashion very similar to us. They perform pose infer-
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Fig. 1: Proposed method for representing training/test data and for pose estimation. Images features (blue points) are extracted
from training and images; their appearance descriptor (in the case of our edge points, a position and orientation in the image) is
defined on the generic space A. Training/test observations define, using KDE, continuous probability distributions, respectively
ψ and φ (gray shaded areas). Our pose inference algorithm (Fig. 2) returns approximations (red bars) of the pose likelihood
function p(w) at some discrete poses w∗i . Finally, we locally fit, on those approximations, a simple distribution in the pose
space (orange curve), and keep its mean as our final, precise pose estimate (orange dot).

ence through probabilistic voting in the 6D pose space, again
in a similar way as we do, thereby solving for localization and
viewpoint identification together. However, the reconstruction
of such dense 3D models relies on the initial availability
of a large number of views. By contrast, the appearance-
based model used in this paper can use an arbitrary number
of views and can be incrementally updated as more views
become available. In a very different approach, Torki and
Elgammal [16] learn a regression from local image features
to the pose of the object. They recover a precise pose, but
cannot handle significant clutter or occlusions, and the accurate
pose estimation depends on the (supervised) enforcement of a
one-dimensional manifold constraint (corresponding to the 1D
rotation of the object in the training examples). It is not clear
how that approach would extend to the estimation of the full
3D pose of an object. On the contrary, our method is framed
from the start in the context of the full 3D pose.

Our method can accommodate different types of image
features, but we chose to use very basic points along edges
(combined with their tangent orientation) as opposed to more
elaborate features such as SIFT descriptors. Recognition by
matching such descriptors, while easier with specific instances,
does not easily extend well to object categories. We differ from
most edge-based shape recognition methods (e.g. [17], among
many others) by avoiding intermediate representations such
as contour fragments, and leveraging the simplicity of low-
level features — in our implementation, simple points along
edges. These simple features provide invariance to viewpoint
and to within-category changes of appearance. Using such
non-discriminative features for recognition however raises an
additional challenge, since no matching is possible. This
motivated the use of the framework proposed by Teney and
Piater [18] for pose estimation in 2D images, which does
not rely on correspondences between the test and the training
data. Like [4], this model is generative and does not include
any discriminative aspects, but has however been shown to be
useful for localization and recognition in the presence of heavy
clutter and occlusions [18]. Compared to that work, (1) we use
a more efficient method for pose inference that does not need

to consider the whole 6D pose space at once, (2) we introduce
a weighting scheme of the training features which, as we will
show, enhances significantly the performance of the system,
and (3) we extend the methodology from instance-specific to
category-level models.

The capabilities of the approach proposed in this paper dif-
fer from existing work by (1) handling, within the same frame-
work, instance-specific models and category-specific models
of objects, in the latter case allowing variations in shape
and appearance, (2) performing continuous (precise) 3D pose
estimation using those models, as opposed to viewpoint classi-
fication and coarse pose estimates, and (3) using such models
to solve pose estimation and image localization together, as
opposed to competing methods that do not handle clutter or
occlusions. In addition, we present how to use category- and
instance-level models successively, for optimal accuracy and
efficiency: the category-model is used first to recover an initial
pose estimate, which then allows one to possibly recognize a
particular trained instance, so that the corresponding instance-
specific model can be used to refine the pose estimate. Finally,
in Section IV, the performance of our approach is compared
to the most closely related methods [7], [4], [16]; we obtained
promising results, on par with or superior to published data.

II. POSE ESTIMATION OF SPECIFIC OBJECT INSTANCES

A. Probabilistic representation of input data

The method we use is based on a probabilistic representation
of both the training and the test data. This approach can
be seen as a smoothing over the available data, providing
continuous distributions of features and interpolating, to some
extent, between the available data points (see Fig. 1, left and
middle). Practically, the training examples are a set of K
images of the object to learn, each annotated with the 3D pose
of the object, wk ∈ SE(3) with k = 1, . . . ,K. We extract,
from each training image, features xi, which are edge points
(see Section IV) with their tangent orientation, and which are
thus defined on R2 × S+

1 (accounting for the position in the
image, plus an orientation without direction). In the general
case, we will call this space the appearance space, A. We then



pair all features xi of a view k with the pose wk, so that we
obtain a set of pose/appearance pairs (xi, wk)i. Considering
the whole training set, the pairs from all example images are
concatenated to form our full training set T = {(wi, xi)}Mi=1,
with xi ∈ A, and wi ∈ SE(3).

The elements of our training set are then simply used
to define a continuous probability distribution ψ on the
pose/appearance space, in a non-parametric manner, with
kernel density estimation:

ψ(w, x) =
1

M

∑
(wi,xi)∈T

K1(w,wi)K2(x, xi) , (1)

where w ∈ SE(3) and x ∈ A. The kernel functions K1(·, ·)
and K2(·, ·) handle respectively the pose and the appearance
spaces. Details on suitable kernels can be found, e.g. in [18],
[19]; the first is an isotropic kernel allowing small deviations
in both position and orientation, and the second, similarly,
allows small variations in the location in the image and tangent
orientation of the image feature.

The test data, which is a single 2D image of a new scene,
is handled in a similar fashion as the training data. We extract
the same type of image features, which we store as a set of
observations O = {xi}Ni=1, where xi ∈ A. This set is then
used to define the continuous probability density φ on A:

φ(x) =
1

N

∑
xi∈O

K2(x, xi) . (2)

As noted in [18], the transformations in the pose/appearance
space corresponding to in-plane rotations/translations/scale
changes are known from the camera calibration; those trivial
transformations (e.g. a change in depth corresponds to a
change of scale) are thus hard-coded. This allows us, when
using ψ as a generative model, to extend its definition to parts
of the pose space not explicitly covered by the training data.

B. Pose inference

The pose of the object of interest in the test scene is modeled
as random variable W ∈ SE(3), the distribution of which is
given by the likelihood function

p(w) =

∫
A
ψ(w, x)φ(x) dx , (3)

This expression simply measures the compatibility of the
training data at a pose w, with the distribution of features
observed in the test image. The objective is to identify the
main modes and peaks of the distribution of W , which was
accomplished in [18] by a probabilistic voting scheme on the
6D pose space. This procedure is extremely costly in memory
and processing [15], [18] due to the high dimensionality of the
pose space. We now propose an approximation of that method
that handles different dimensions of the pose space in different
ways. Formally, a pose w ∈ SE(3) can be decomposed as a
concatenation of 3 simpler entities, such that w = w3◦w2◦w1.
The first, w1, corresponds to the “viewpoint”, i.e. which side of
the object is facing the camera; w2 is a combination of an in-
plane rotation and scale change, and w3 corresponds to a pure

Input: training pairs T = {(wi, xi)}i defining ψ
test observations O = {xi}i defining φ

Output: set R of approximations of the pose likelihood function
R =

{(
w∗i , p̂(w∗i)

)}
i

Procedure:
R ← ∅
For each discrete w1 in T (viewpoint)

For each discrete step of w2 (in-plane rotation and scale)
Considering pose w′ = w2 ◦ w1,
find best w3 (image translation) between ψ(w′, x) and φ(x):

Get samples: (wψi , x
ψ
i ) ∼ ψ(w

′, x)

xφj ∼ φ(x)
Each possible pairing (xψi , x

φ
j ) cast a vote in space of w3

of weight wt(wψi , x
ψ
i )

Keep highest density peak in vote space: w3
∗ of vote score s

R ← R ∪ (w∗, s) with w∗ = w3
∗ ◦ w2 ◦ w1

Fig. 2: Pose inference algorithm

translation parallel to the image plane. The main supporting
observation for our proposed method is that a significant peak
in the distribution of W will most likely appear as a peak in
the distribution corresponding to the dimensions of w3 alone.
Indeed, an object of the test scene in any specific pose w will
appear at a precisely defined image location (dimensions of
w3). This leads to the algorithm presented in Fig. 2, which
iterates over discretized values for the dimensions of w1 and
w2, and uses probabilistic voting only on the dimensions of
w3 (the 2D localization in the image). The peaks in those
last two dimensions are thus identified by the algorithm
for discrete viewpoints, scale and in-plane rotation values.
This formulation is reminiscent of the classical Hough voting
scheme used extensively for object localization [20]. The main
advantage over [15], [18] is to avoid considering the entire
pose space at once.

We also propose an additional step for refining the pose
estimate, beyond the precision of the discretized pose values.
As illustrated in Fig. 1 (right), we use the peaks identified by
the algorithm in the pose space, together with their score value,
as approximations of the likelihood function p(w) (Eq. 3) at
some discrete “probing” points. We simplistically assume that
the main modes in the underlying distribution of W must
locally approximate a simple isotropic distribution in the pose
space. We therefore locally fit such a distribution (isotropic
Gaussian and von Mises-Fisher distributions [19]) on the main
peaks of p(w), using non-linear least squares. The mean of the
fitted distribution is then retained as the peak of that particular
mode of the distribution (Fig. 1, right). This provides a much
more accurate estimate of the optimal pose(s) compared to the
above algorithm (as demonstrated in Section IV-A), at a very
small additional computational cost.

C. Weighting of training data

We now present a way of weighting the available training
data. The model we use does not include any discriminative



Fig. 3: Visualization of the weights attributed to each image
feature (edge fragments) on a toy example; darker colors
correspond to heavier weights. The parts looking similar
in different views (e.g. the cylindrical base) receive lower
weights, while the image features that can unambiguously
determine a precise pose (e.g. non-silhouette edges) receive
high weights.

aspects per se, and this weighting proved to significantly en-
hance the overall performance of the method (see Section IV).
Appropriately weighting training data in the context of object
recognition was previously shown to increase performance
e.g. in [21], [22], [23], [24]. The formulation proposed here
is different, suited to our non-discriminative low-level image
features, and does not rely on massive amounts of training
examples. The idea is to weight each image feature, depending
on how informative it actually is for determining a specific
pose. As detailed in the algorithm of Fig. 2, a training feature
(w, x) is allowed to cast a vote of weight wt(w, x), given by

wt(w, x) = 1−
[
1

K

∑
w′:(w′,·)∈T

ψ′(w′, x)
(
1− K′1(w,w

′)
)]

(4)

with ψ′ and K′1 being variants of ψ and K1 with maximum
values of 1. This definition yields numerically-convenient
weights in the range [0, 1].

In Eq. 4, the expression in square brackets measures, for an
image feature x observed in a training pose w, how likely this
feature would be in poses very different than w. The weight is
then defined using the opposite of that value. This effectively
corresponds to the specificity of that feature x for the pose w
(see also Fig. 3).

III. LEARNING OBJECT CATEGORY MODELS

The model and methods presented above naturally extend
to category-level models. In that case, the training images
include different objects, which together implicitly define the
category. This capability of our model is due both to the
fact that we can use very simple, non-discriminative image
features (points along edges), which often generalize well
across different objects of a same category, and by the non-
parametric representation of the training data, which can
naturally handle variability in the training data, in this case
coming from several object instances.

Formally, each object instance ` ∈ [1, L] used for training
produces a training set T`, as defined in Section II-A. A
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Fig. 4: Size of the category-level model of rotating cars built
using different numbers of training instances: without (black)
and with (green) the pruning of features by clustering. The
proposed approach ensures a sublinear growth of the model.

category-level model is then simply created using all features
of all example instances, T =

⋃
` T`.

A. Pruning of training features by clustering

The above formulation uses a linearly growing number
of training points (pose/appearance pairs) as more object
instances are used to learn a given category. This correspond-
ingly increases the computational requirements of using the
model. Fortunately, object instances within a category often
share common appearance traits, and the elements of T can
thus be pruned at a very small cost of the representative
capabilities of the model (as shown in Section IV). Practically,
the elements of T are grouped using a simple agglomerative
clustering scheme on the joint pose/appearance space, and only
the cluster centers are retained. A maximum variance is en-
forced within the clusters, both in pose and appearance, which
determines the amount of discarded training points. Note that
the clustering procedure is most efficiently performed after
normalizing the training examples from different instances for
in-plane translation, rotation and scale, using the hardcoded
transformations mentioned in Section II-A.

B. Recognizing a particular trained instance

The clustering of training features limits the size of a
category model for efficiency. To compensate for lost accuracy,
after identifying an initial pose estimate w∗ with this category
model, one can determine whether the recognized object
corresponds to a specific trained instance. We measure the
score of each trained instance ` at the pose w∗ with

p`(w∗) =

∫
A
ψ`(w∗, x)φ(x) dx , (5)

where ψ` is defined as in Eq. 1, but using only the elements
T` of the instance `. The value is easily approximated [18]
with

p`(w∗) ≈
1

n

n∑
i

ψ`(w, xi) where xi ∼ φ(x) . (6)

If the value of p`(w∗) is significantly higher for a certain `,
the corresponding model of that instance ` (using all training
data available for that instance) is then used to obtain a new,
more accurate pose estimate (Section IV-A).



IV. EXPERIMENTAL EVALUATION

We now evaluate the proposed method under various con-
ditions, using publicly-available datasets. We first analyze
the incremental improvements in performance due to the
individual ideas proposed in this paper. We then compare our
results to existing, competing methods. The image features
used are simple points identified along image edges, extracted
with the classical Canny detector (see the examples in Fig. 3).
Each of those points is characterized by its position in the
image, and by the local orientation (smoothed for stability) of
the edge at that point (an angle in [0, π[). As a ballpark figure
of efficiency, on a standard laptop, our Matlab implementation
of the method takes 20-30 seconds to process an image of the
dataset of Section IV-B.

A. COIL Dataset

We first evaluate our method on the classical COIL dataset
[25]. This dataset has been used in a variety of contexts, but
not in the particular conditions we were interested in. The
purpose of this part of our evaluation is to demonstrate the
merits of the proposed method, by highlighting the incremental
improvements brought by each proposed key point.

We selected a few objects from the original dataset, which
correspond to reasonable categories (rectangular boxes, toy
cars, flat bottles; see Fig. 5). Most other objects of the dataset
were not suitable for estimating their pose (e.g. bell peppers,
cylindrical cans) or could not be grouped into categories (e.g.
duck toy). The dataset contains 72 images of each object
undergoing a full rotation around a single (vertical) axis, with a
fixed elevation. The estimated pose is thus similarly limited to
this degree of freedom. For training, we use 18 images of each
object (thus 20◦ apart), and the others for testing. We report
the error as the median and mean (over all test images) of the
absolute error of the estimated orientation. The rectangular
boxes and the flat bottles present a 180◦ rotational symmetry,
the error is accordingly evaluated on the half-circle.

1) Seen instances: The first series of tests uses 4 instances
of each object (2 for the bottles) for training category models,
and those same objects for testing. The basic method (algo-
rithm of Fig. 2 without weighting the training data) already
provides accurate results (see Fig. 5), with a median error
of 5◦ which is the best achievable for the nearest-neighbour
classification of the algorithm (Fig. 2) iterating on the discrete
viewpoint values of the training data. The mean error decreases
as we use the weights on the training data, as a few ambiguous
test images are now better classified, which indicates the
superior discriminability between different poses when using
those weights. Interestingly, the fitting of a distribution on the
pose space over the discrete approximations of the likelihood
function (Section II-B) reduces the error significantly, as
this allows accuracy beyond the resolution of the nearest-
neighbour classification mentioned above. Finally, we refine
the pose using the procedure proposed in Section III-B: the
pose estimate obtained with the category model is used to
efficiently check the resemblance with a particular trained
instance. If one trained instance receives a significantly higher

Toy cars Boxes Flat bottles

Seen instances
Without weights 5.0 12.1 5.0 13.5 5.0 7.9

With weights on training data 5.0 10.1 5.0 11.6 5.0 8.3

Weights + pruning of train. data 5.0 8.7 5.0 11.0 5.0 6.8

Weights + pruning + fitting of dist. 2.9 7.2 3.4 10.2 5.5 6.1

Refined w/ instance-specific model 2.0 5.8 3.2 9.4 4.2 5.3

Unseen instances
Without weights 10.0 36.8 10.0 14.4 25.0 28.2

With weights on training data 5.0 39.7 10.0 11.0 30.0 31.2

Weights + pruning of train. data 10.0 44.6 10.0 11.8 15.0 25.5

Weights + pruning + fitting of dist. 2.9 41.8 4.3 8.8 16.8 23.6

Fig. 5: Results of category-level pose estimation with objects
from the COIL dataset. Image top row: objects used for
training and as seen test instances; image bottom row: objects
used as unseen test instances. We report median (black) and
mean (gray) error in degrees; large mean error is caused by
(near-)symmetries which often induce errors of 90◦ and 180◦.

likelihood than the others (Eq. 6), its corresponding instance-
specific model is used to perform a (hopefully) more accurate
estimation; this is indeed the case as reported in Fig. 5. This
procedure thus makes use of both the category- and instance-
models for best efficiency without sacrificing accuracy.

2) Unseen instances: The second series of tests uses the
same category models, but with a test set of other, unseen
objects (Fig. 5, second row). The purpose is to verify the
generalization capability of the category models. The results,
as reported in Fig. 5, show accurate pose estimation results
in all of the 3 tested categories, even though the test objects
vary in shape, appearance and proportions from the training
instances. This is made possible by the combination of dif-
ferent appearance traits of different training instances, which
is possible in our non-parametric representation of the model.
The flat bottles however yielded slightly worse results, which
indicate the difficulty of generalizing the appearance of such
objects on the category level. A test view of a novel instance
could equally correspond to a wide bottle seen from its side,
or to a front-facing thin one.

B. Rotating cars

We evaluated our method using the “Multiview car dataset”
used by [7] and [16]. It includes about 2000 images of 20 very
different rotating cars filmed at a motor show. The dataset is
very challenging due to clutter, changing lighting conditions,
high within-class variance in appearance, shape and texture,
and highly symmetric side views, or similar front and rear
views, which are sometimes hard to discriminate even for a
human. The dataset was used in [7] for pose classification in
16 discrete bins, and in [16] for continuous pose estimation.



Number of training examples 15 30 40

Baseline comparison: Torki and Elgammal [16] 5.47 1.93 1.84

Without weights 6.75 3.83 2.94

With proposed weights on training data 6.68 3.81 2.91

Weights + fitting of pose distribution 4.42 1.62 1.49

Fig. 6: Results of pose estimation on a single car; mean error
in degrees.

We first evaluated our method, as in [16], on the first car of
the dataset, using thus an instance-specific model. We select
15, 30 or 40 equally-spaced images of the sequence as training
images, and use all other images (spaced about 3–4◦ apart) for
testing. Using all the key techniques proposed in this paper,
we obtain superior results to [16] (see Fig. 6 for details). We
then performed an evaluation the “10/10 split”, where the first
10 cars of the dataset are used for training, and the other 10 for
testing. We obtain again accurate pose estimation results. As
highlighted in Fig. 8, most estimated poses are very accurate,
while a number have an error of about 180◦. This is caused
by the symmetric aspects of some cars in the side views, as
well as to confusion between front- and rear-facing views.
This explains the seemingly large error reported as the mean
in Fig. 7, even though the median error is clearly better than
the results reported by [16]. In this case, the median as an
evaluation metric better reflects the actual precision of the pose
estimates, focusing on all the “successful” test cases.

We tested again the generalization capabilities of our model.
As proposed in [7], we used the model trained on the cars
at the motor show for testing on the database of Savarese
et al. [4]. The cars appear here in natural environments with
more clutter and in very diverse conditions; nevertheless,
we obtained interesting results, of which we show some
representative examples in Fig. 9. This again demonstrates
the good capability of our system to generalize category-
level models to conditions very different from those trained
for. Note that, unfortunately, no quantitative results for these
particular test conditions (proposed in [7]) — that we could
compare to — were previously reported.

As a side note, let us mention that we tested our method
on this same dataset [4] under the conditions of [8], i.e.
training the model with 5 instances of that dataset. We
obtained performance on pose estimation of the same order
of magnitude as [8], but we missed some information for
an exact quantitative comparison (which instances to use for
training, and whether or not to include pose estimation results
of inaccurate detections). Those experimental conditions were
also evaluating coarse pose classification, whereas we focus
on continuous pose estimation.
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Fig. 8: Histogram showing distribution of error (in degrees)
during experiments on multiple cars and sample test images
that yielded an error of about 180◦, due to ambiguous appear-
ance.

Fig. 9: Detection and pose estimation results on the database
of [4], using the model trained with Fig. 7. Boxes indicate the
localization of the object as identified by our system, and the
roses in the upper-left corners indicate the orientation of the
front of the car as seen from the top (as in [7]). The last column
contains failure cases, often due to the symmetrical appearance
of the cars, or to too much clutter in the background.

V. CONCLUSIONS AND FUTURE WORK

We presented a framework for representing the appearance
of object instances or categories, together with its mechanisms
to perform object localization and pose estimation in 2D
images. The training examples are represented by a probability
distribution, stored in a non-parametric manner, in the joint
pose/appearance space. This approach can naturally represent
a single object, or a whole object category by including
different training exemplars of that category. The localization
and identification of the pose of the object in a new scene
is accomplished via probabilistic voting in the pose space,
intrinsically robust to background clutter and occlusions. The
overall approach was shown to be competitive or outperform
comparable methods. As future work, it will be interesting
to evaluate the method in the context of robotic applications,



Median Mean 90%ile Mean Error<22.5◦ Error<45◦ Used training features
Baseline comparison: Ozuysal et al. [7] – – 46.5 41.7% 71.2%

Baseline comparison: Torki and Elgammal [16] 11.3 19.4 34.0 70.3% 80.7%

Without weights on training data 9.3 33.1 47.4 65.1% 70.0% 100%
With weights and fitting of distribution 5.8 23.7 39.0 78.1% 79.7% 100%
Same + moderate pruning of features 6.1 25.8 41.0 77.0% 78.7% 54%
Same + aggressive pruning of features 9.4 32.4 46.8 67.1% 70.0% 30%

Fig. 7: Results of pose estimation on multiple cars; instances 1–10 used for training (top), 11–20 for testing (bottom). Errors
of 180◦ are common (e.g. on instances 16 and 19) and explain the greater mean but smaller median error compared to [16].

with training sets spanning the whole viewing sphere around
the objects to learn.
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