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Abstract. We propose a multiview model of appearance of objects that
explicitly represents their variations of appearance with respect to their
3D pose. This results in a probabilistic, generative model capable of pre-
cisely synthesizing novel views of the learned object in arbitrary poses,
not limited to the discrete set of trained viewpoints. We show how to
use this model on the task of localization and full pose estimation in
2D images, which benefits from its particular capabilities in two ways.
First, the generative model is used to improve the precision of the pose
estimate much beyond nearest-neighbour matching with training views.
Second, the pose/appearance relations stored within the model are used
to resolve ambiguous test cases (e.g. an object facing towards/away from
the camera). Here, changes of appearance as a function of incremental
pose changes are detected in the test scene, using a pair or triple of views,
and are then matched with those stored in the model. We demonstrate
the effectiveness of this method on several datasets of very different na-
ture, and show results superior to state-of-the-art methods in terms of
accuracy. The pose estimation of textureless objects in cluttered scenes
also benefits from the proposed contributions.

1 Introduction and related work

We focus on the problem of 3D pose estimation of known objects in 2D im-
ages, using multiple registered images of the objects as training examples. Pose
estimation, which is closely coupled to the related tasks of object recognition
and localization, is a fundamental problem in computer vision and has naturally
received great interest over the years. The main contribution of this paper is to
explicitly include, in an existing multiview model of appearance [14], the possi-
ble changes of appearance undergone by the object as it pose varies between the
trained viewpoints. With the exception of [9], this is, to our knowledge, the only
work to include such information within a model of appearance in the context
of pose estimation. We make use of this additional information in two different
ways to improve the precision and accuracy of pose estimation. In the following
we relate our approach to related work.

Multiview models of appearance. The traditional methods for object
recognition using 2D images alone, known as appearance-based, typically use
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specific models for individual viewpoints, e.g. a model for cars seen from the
front, and another for cars seen from the side. Recent contributions in object
recognition have introduced more and more models of appearance that include
different viewpoint and that are also relevant to pose estimation. Some methods
still treat those different viewpoints somewhat independently [14,18], while oth-
ers try to match and link features across viewpoints [5,10,16]. Savarese et al. [10],
for example, model an object as a collection of planar parts that can appear in
different views. We follow an intermediate approach, by storing independently
the image features that make up the different views, but we also store, along
with every each image feature, how its appearance varies with respect to the
pose of the object. The multiview models mentioned above were mainly used on
the task of localization and recognition, without recovering a 3D pose explicitly,
or only as rough estimate such as “frontal view” or “side view”. We rather focus
on continuous pose estimation, to recover precise 3D position and orientation,
as is needed, e.g. for robotic applications [7,18].

Continuous pose estimation. The classical approach to pose estima-
tion using 2D training examples is to match highly discriminative features be-
tween the test and training views. These matches then vote for the most similar
training example, yielding a nearest-neighbour classification of limited precision.
Some authors have proposed averaging [18] and probabilistic smoothing [14,15]
schemes to increase precision beyond the resolution of the training examples on
the viewing sphere. While these procedures basically perform some averaging be-
tween trained viewpoints, we rather explicitly detect, and include in the model,
the deformations and the transformations of appearance between the discrete
viewpoints seen during training. We then use this information in our generative
model to finely optimize the 3D pose, starting from a rough nearest-neighbour
estimate. Another, radically different approach was proposed by Torki and El-
gammal [17], who learn a regression from local image features to the pose of
the object. This original approach recovers a precise pose, but cannot handle
significant clutter or occlusions, and the accurate pose estimation depends on
the (supervised) enforcement of a one-dimensional manifold constraint (corre-
sponding to the 1D rotation of the object in the training examples). It is not
clear how that approach would extend to the estimation of the full 3D pose of
an object.

New view synthesis. Our approach uses dense optical flow to identify
the deformations between pairs of neighbouring training views. Only those parts
of this dense information are then retained that correspond to the sparse image
features actually stored in the model. This information can then be used in a
generative manner, to synthesize the appearance of the object in a new, unseen
pose, by transforming the image features of nearby trained viewpoints according
to those stored deformations. The problem of new view synthesis has been stud-
ied in the field of computer graphics through the technique of morphing [1,2,11].
Most methods only consider pairs or triples of views, whereas we are interested
in modeling and using transformations over the whole viewing sphere. Morph-
ing algorithms also often rely on established correspondences between specific
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image features of the input views [11], whereas we use dense optical flow to iden-
tify deformations between neighbouring views, before applying them to sparse
features. As an advantage, our approach readily applies to difficult-to-match
features (as opposed to the competing method of Savarese et al. [9]). This prac-
tically allows handling non-textured objects containing little detail. Although
some global consistency in the detected deformations is enforced by optical flow
algorithm, each image feature independently stores its possible deformations.
This does not limit the model to a particular class of overall transformations.
On the contrary, Savarese et al. [9] specifically models affine transformations of
object parts, assuming that large planar parts can be identified (which is not
a universal property of objects). Note also that we use a sparse set of training
views (typically spaced about 20◦ apart on the viewing sphere) and do not re-
quire videos or dense sequences of images to track features between frames, as
opposed to Sun et al. [13]. One may also note a similarity in spirit with the clas-
sical active appearance models used mainly for object tracking; they are however
based on and limited by point-wise matches of specific landmarks.

Active vision. In addition to the generative model we use to refine pose
estimates, we show how to use the deformations stored in the model to resolve
ambiguous test cases (Section 4). In such scenes, the 2D appearance of the ob-
ject can equally correspond to several 3D poses (see Fig. 4 for an example).
We propose to also identify the changes of appearance with respect to the pose
in the test scene. The camera is therefore allowed to move slightly in two or-
thogonal directions on the viewing sphere (around the test scene). The changes
of appearance are detected — as with the training views — and used as ex-
tra dimensions in the descriptor of the image features. The features of the test
scene can then be matched more discriminatively with those of the training data,
and effectively identify the single correct pose unambiguously. This procedure,
which can prove crucial in robotic applications, has been proposed in the field
of active vision [3,12], but not integrated, to our knowledge, in such a straight-
forward manner within a pose estimation method. It resembles the way humans
themselves resolve such perception ambiguities (in addition to stereo vision) by
moving around the scene. Note that a similar effect can be obtained by fusing the
result of independent pose estimations from multiple 2D images [14,18]. Our in-
tegrated procedure is however arguably more efficient, the displacement (change
of camera position) does not need to be precisely know, and can also be very
small (theoretically infinitesimal small, even though image noise and resolution
dictate minimum displacements in practice).

2 Representation of training and test views

2.1 Notations for image features and object poses

The contributions of this paper are integrated with the method proposed in
earlier work [14]. That method performs object recognition and pose estimation
in 2D images, and is applicable to various types of image features. This includes
features that cannot easily be matched between training and test views, such as
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Fig. 1: Left: schematic representation of training data, in the dimensions of pose
and appearance. Image features (blue points) are extracted from training images,
and their possible changes of appearance (red arrows) are identified between
neighbouring views. The appearance of the model at a novel view w (orange) is
generated by adjusting the features of close-by views, according to those stored
deformations. Right: representation of a set of training viewpoints (black dots)
on the viewing sphere. The changes of appearance are detected between pairs of
neighbouring views (red links). The appearance of a novel view (orange dot) is
generated using the closest training viewpoints, four in this case (orange circles).

the edge points we use in our implementation. We will first review the notation
for representing the test and training views, followed by the generative model,
capable of synthesizing novel views.

The test data corresponds to a single 2D image of a scene, from which we
extract image features. In general, an image feature x is defined by its localization
in the image xp, and an optional appearance descriptor xa. Together, they are
defined on the appearance space A. Practically, we use points identified along
edges, combined with the local orientation of the edge (see Fig. 3), so that
A = R2 × S+

1 (the 2D localization plus an orientation without direction). The
image features from the test view form a set of observations O = {xi}i, with
xi ∈ A. The training data correspond to a series of K images of the object of
interest, in different poses wk ∈ SE(3) with k = 1, . . . ,K. Image features are
extracted from each training view k to form a set Tk = {xi}Mk

i=1, with xi ∈ A.

A pose w ∈ SE(3), which defines a 3D location together with a 3D orien-
tation, conveniently decomposes into separate sets of dimensions wv and wt.
We call wv the viewpoint transformations (defining which side of the object
is facing the camera, i.e. an element of S2) and wt the set of in-plane trans-
formations (i.e. translations and rotations parallel to the image plane, and
depth/scale changes). In-plane and viewpoint transformations are considered
separately, since the changes of appearance induced by the former are fixed
by the calibration of the camera. The calibration is assumed to be known,
and those transformations can thus be formally hard-coded in the function
transformInPlanewt(T ) = T ′, which transforms a set of image features T accord-
ing to the in-plane transformations wt. Without loss of generality, the following
discussion will assume that the training views have been normalized for in-plane
transformations, that is, centered and set to a similar scale/rotation1.

1 Formally, Tk ← transformInPlane−wt
k
(Tk) and wt

k ← 0, ∀ k.
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2.2 Generative model of training data

The training data, as presented above, defines the appearance of the object of
interest at a set of discrete trained viewpoints. The goal of our generative model
is to fill in the gaps between those viewpoints. Although it may be possible
to establish explicit correspondences between image features of nearby training
images, this approach may not always be reliable, and it does not generalize to
dense or non-discriminative image features such as our edge points. Therefore, we
choose to identify dense deformations between pairs of adjacent training views,
using an optical flow algorithm. Those deformations will then be combined to
deform the image features of the training images into the novel viewpoint.

More precisely, for an arbitrary viewpoint wv, we identify its closest training
viewpoints nb(wv) = {k : d(wv, wv

k) ≤ t}, where d(·, ·) measures the angular
distance between two viewpoints. The threshold t is chosen similar to the typical
angular distance between neighbouring viewpoints in the training data. We also
identify the set of all neighbouring training viewpoints as NB = {(k, k′) : k′ ∈
nb(wv

k), k 6= k′}. During an off-line training phase, an optical flow algorithm [6]
is applied on all pairs of views (k, k′) ∈ NB. Each pair produces a dense flow map
UVk→k′(x) that corresponds, in our case, to the local deformation (translation in
the image plane) undergone at an image location x when moving from viewpoint
k to k′. Although we compute a dense optical flow, we only need to store the
actual values of the maps UV for the positions of the few image features of each
view. We can now define our generative model T (w), which produces a set of
image features corresponding to the appearance of the object in an arbitrary
pose w. Its definition combines the image features of all nearby training views,
individually translated using the stored deformations, then adjusted for in-plane
transformations. Formally,

T (w) =
⋃

k∈nb(wv)

transformInPlanewt
k→wt

(
deformwv

k→wv(Tk)
)
. (1)

The functions transformInPlane() and deform() adjust a set of image features
respectively for in-plane and out-of-plane transformations. While the definition
of the former is trivial (it just applies the translation, scaling and rotation of
its parameter), the latter is more complex. It uses a linear combination of two
available deformations to translate each image feature. We denote those two
deformations by the indices of the viewpoints that generated them, and call
them (k, k′) and (k, k′′). They are chosen from NB so that the novel viewpoint
can be reached (on the viewing sphere) by a positive linear combination of them.
Consequently, ∃ α, β ∈ R+ : wv = wv

k + α(wv
k′ −wv

k) + β(wv
k′′ −wv

k). Practically,
this means that the viewpoints k, k′ and k′′ cannot be collinear on the viewing
sphere. With training viewpoints spaced on a grid, as in our experiments, we
simply choose k′ and k′′ respectively along the changes in azimuth and elevation.
It is now straightforward to define the deform() function that combines those
two chosen deformations:

deformwv
k→wv(Tk) = {x′i : x′pi = xpi + αUVk→k′(x

p
i ) + βUVk→k′′(x

p
i )

and x′ai = xai , ∀xi ∈ Tk } .
(2)
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3 Refinement of pose with generative model

3.1 Method

The proposed generative model readily integrates with the method proposed in
[15]. That method for pose estimation relies on continuous distributions of image
features in the appearance space to represent the training and test views, using
kernel density estimation. These distributions are simply built using the elements
of O and T (w) as particles, giving respectively φO(x) = 1

|O|
∑

xi∈O K(x, xi) and

φT (w)(x) = 1
|T (w)|

∑
xi∈T (w) K(x, xi) , with K(·, ·) a kernel on A.

We reuse the base method proposed in [15] to obtain initial proposals for the
3D pose of the object in the new scene. That method iterates over the training
viewpoints and some discrete values of scale and in-plane rotation, then uses
a probabilistic voting scheme between matching training and test features to
identify the most probable image location. The peaks with high voting scores
are then retained as initial pose estimates. This method basically corresponds
to a nearest-neighbour identification of the training views in the test scene, and
gives us initial estimates to refine by local optimization.

Using the two distributions of image features presented above, and a cross-
correlation between them as a measure of similarity [14,15], we now have a
likelihood function that can be used to evaluate any arbitrary pose w:

p(w) =

∫
A
φO(x)φT (w)(x) dx , approximated with

p(w) ≈ 1

n

n∑
i

φO(xi) where xi ∼ φT (w) ,

(3)

using Monte Carlo integration, which gives a convenient expression, relatively
inexpensive to evaluate. This function p(w) constitutes the objective function
that we seek to maximize when optimizing a pose estimate. In practice, it is
generally smooth in the neighbourhood of the global optimum, but no assump-
tion can be made about its convexity, and its definition on the 6-dimensional
pose space SE(3) makes the evaluation of its gradient difficult. Fortunately, our
initial pose estimate can be assumed to be a close approximation of the global
optimum. All those conditions motivated the use of a simple hill-climbing al-
gorithm. We iteratively optimize pairs of dimensions at a time, namely the 2
viewpoint angles, the image location, then the scale and in-plane rotation. We
empirically observed that a close approximation of the global optimum can be
reached in this way after only a few iterations (see Fig. 5, bottom right).

3.2 Results

Rotating car. We first evaluate our method on the first sequence of the “ro-
tating car” dataset [8]. It consists of 118 images of a car on a rotating platform,
shot at a motor show. Although it only includes a single degree of freedom (the
rotation around the vertical axis), this dataset is interesting as it was shot in real
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conditions, features a highly textured object of complex structure and allows a
comparison of precision with two state-of-the-art methods. We report in Fig. 2
the precision (error of the estimated rotation angle of the car) of our initial pose
estimate and of the pose estimates optimized using our generative model (Sec-
tion 3.1). We show a clear advantage, with different sizes of training sets (which
contain uniformly spaced images from the sequence).

Number of training views 15 30 40

Baseline comparison 1 [17] 5.47 1.93 1.84
Baseline comparison 2 [15] 4.42 1.62 1.49

Initial estimate (nearest neighbour) 6.79 3.78 3.00
Optimized w/ generative model 1.99 0.92 0.78

p
(w

)

0 360

Fig. 2: Results of pose estimation on the rotating car dataset; mean error in
degrees. Center: for one test image, we verify that our objective function (blue;
evaluated over the whole range of the 1D rotation for demonstration) presents
its global optimum near the ground truth (green line). Also represented: training
poses (black dots) and our optimized result (red dot). Right: samples test images.

3D pose dataset. We now evaluate our method using the “3D pose
dataset” of Viksten et al. [4,19]. It is one of the few public datasets available with
views spanning more than a 1D rotation, and precisely annotated (in this case
with the azimuth/elevation angles of the viewpoint). We use the only object
(Volvo car) that was evaluated individually [4], using the same experimental
conditions. This allows a comparison with a classical method [4], which uses
discriminative image descriptors with a voting and averaging scheme; this con-
stitutes the classical approach for robust 3D pose estimation. The small and large
training sets contain views spaced respectively 20◦ and 10◦ apart (on both az-
imuth and elevation angles), with test views in between. With the larger training
set, we obtain results superior to [4] in terms of accuracy (Fig. 3). The smaller
training set is more challenging for detecting deformations between views, reach-
ing the limits of the optical flow algorithm we use. Our large mean error is caused
by two views that yield wrong initial pose estimates, with a large error of almost
180◦, due to the similar aspect of the front and rear of the car.

Spacing between train. views 20◦ 10◦

Baseline comparison [4] 4.21◦ / 2.66◦ 1.25◦ / 1.06◦

Initial estimate (near. neigh.) 34.44◦ / 10.00◦ 5.14◦ / 5.00◦

5.00◦ / 5.00◦ 1.23◦ / 1.23◦

Optimized w/ gen. model 27.22◦ / 1.78◦ 0.92◦ / 0.88◦

2.00◦ / 2.00◦ 1.00◦ / 1.00◦

Fig. 3: Results on 3D pose dataset; mean (median) error of azimuth/elevation
angles. Clockwise: one test image, its image features, features produced by our
generative model at the optimized pose, and features of closest training view;
the generative model closely approximates the appearance of the unseen view.
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4 Matching pose/appearance relations in ambiguous test
scenes

4.1 Method

We propose to make use of the pose/appearance relations identified and stored
within the model in a second manner, as extra dimensions of the descriptor of
the image features. In this context, the same changes of appearance with respect
to the pose are identified in the test view, using additional images obtained by
moving the camera slightly around the test scene (which effectively changes the
relative pose between the camera and the object of interest). Those additional
images are only used to identify the deformations (as in Section 2.2); only the
features of the original test image are actually used. Each image feature x ∈ A
of both the training set and the test image is then complemented with an extra
information xd, a first-order approximation of the derivative of its position in
the image with respect to the viewpoint, i.e. xd ≈ ∂xp

∂wv (∈ R2 × R2). This
conveniently constitutes a compact representation of the local deformations. In
practice, considering an image feature x of a training view k, we approximate
xd by averaging the deformations identified with the neighbouring views:

xd = averagek′∈nb(k)

(
UVk→k′(x

p)

wv
k′ − wv

k

)
. (4)

Using azimuth and elevation angles to parametrize a viewpoint on the 2-sphere,
this expression gives us two vectors (each ∈ R2), corresponding to the transla-
tion in the image place relative resp. to azimuth and elevation changes of the
viewpoint. These extra feature descriptors are similarly extracted in the test
view. We then use them, both when matching observations between the training
and test views for voting for an initial pose estimate, and when measuring the
similarity between the test view and a generated view (Section 3.1). In both
cases, we set a hard threshold for classifying two features x1 and x2 as similar2:

angle(xd1, x
d
2) < 135◦ or ‖xd1‖ < t′ or ‖xd2‖ < t′ . (5)

The threshold t′ on the magnitude of the deformations discards small and
insignificant deformations, which cannot be identified reliably. The function
angle(·, ·) measures the difference in direction between the two deformations.
The maximum value of 135◦ discards matches of truly opposite directions (as is
the case with the ambiguous situations we are interested in), while still keeping
most (even uncertain) matches (maybe simply due to noise), which is important
in the voting algorithm [15] for the initial pose estimate.

4.2 Results

We finally evaluate the second proposed use of image deformations, for resolv-
ing ambiguous test cases by matching them. No dataset suitable for this very

2 To shorten notations, we express the condition on a single vector, but it must be
verified by both parts of xd.
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Without detecting deformations in test scene
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with training views

p
(w

)
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−90 0 +90

Using deformations for matching

Only 1 matching
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Fig. 4: Left: ambiguous test scene. The extracted edges correspond equally well to
training images of the bottle facing towards/away from the camera, and our pose
likelihood function p(w) presents two strong peaks (incorrect one in red, ground
truth in green). Right: using a second image taken after moving the camera
slightly to the top, we detect deformations of image features (red arrows), and
match them with the training examples; only the correct peak of p(w) remains.

Objects

No deform. + near. neigh. 55% 80% 68% 69% 51%

6.3◦ 5.0◦ 6.5◦ 5.2◦ 16.7◦

Match. def. + near. neigh. 66% 82% 81% 79% 60%

6.2◦ 16.6◦ 6.2◦ 5.4◦ 17.5◦

Match. def. + gen. model 70% 82% 92% 77% 60%

5.0◦ 14.0◦ 4.6◦ 1.4◦ 14.7◦
V L S V L S

42

56

Fig. 5: Left: results on synthetic scenes without/with matching of deformations;
success rate (localization error < 20px and pose error < 20◦) and mean pose
error of successes. Right: sample test images with localization results as bounding
boxes. Bottom right: typical evolution of our objective function after successive
optimizations for viewpoint, image localization and scale/in-plane rotations.

particular problem is currently available, and we resorted to synthetic images,
featuring simple objects. Although simple in appearance, they actually prove
challenging for pose estimation due to their lack of detail and texture. The test
data is now a “central” 2D image, complemented by 2 additional views obtained
by moving the camera slightly to the right and to the top. This allows recovering
the changes of appearance of the scene with respect to the pose, and matching
them with the training data (Fig. 4). As reported in Fig. 5, this eases the local-
ization and improves the precision of the pose estimation.

5 Conclusions

We integrated, within a multiview model of appearance, the explicit transfor-
mations undergone by the image features between the training viewpoints. The
deformations between example images are detected with dense optical flow and
stored for the discrete image features. First, we used this information in a gen-
erative model, to refine an initial estimate of the 3D pose of the object in a
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new scene. Second, we showed how to match deformations between training and
test data, in order to resolve the pose in ambiguous test images. We clearly
demonstrated the advantage of those contributions on several datasets, and over
existing methods. As future work, it will be interesting to integrate and evaluate
these principles within the context and practical conditions of robotic applica-
tions.
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