
Refining discovered symbols with multi-step interaction experience

Emre Ugur and Justus Piater

Abstract— In our previous work, we showed how symbolic
planning operators can be formed in the continuous perceptual
space of a manipulator robot that explored the world with
its single-step actions. In this paper, we extend our previous
framework by enabling the robot to progressively update the
previously learned concepts and rules in order to better deal
with novel situations that appear during multi-step action
executions. Our proposed system can infer categories of the
novel objects based on previously learned rules, and form new
object categories for these novel objects if their interaction
characteristics and appearance do not match with the existing
categories. Our system further learns probabilistic rules that
predict the action effects and the next object states. There rules
are automatically encoded in Planning Domain and Definition
Language (PDDL), enabling use of powerful symbolic AI
planners. Using this framework, our manipulator robot updated
its reasoning skills from multi-step stack action executions.
After learning, the robot was able to build stable towers in real
world, exhibiting some interesting reasoning capabilities such
as stacking larger objects before smaller ones, and predicting
that cups remain insertable even with other objects inside.

I. INTRODUCTION

Autonomous robots require high-level grounded cognitive

capabilities to achieve general-purpose complicated tasks. In

our previous research [1], a manipulator robot built symbolic

planning concepts and operators from it’s own continuous in-

teraction experience with the world. Starting from low-level

object percepts, the robot organized its sensorimotor space

forming object and effect categories; and learned logical rules

that encode the relations between these categories in a form

suitable for direct utilization of off-the-shelf AI planners.

With this, we argue that we closed the loop by going all the

way from continuous sensorimotor experience to symbolic

level, finally executing the plans in a real robot.

In the system described above, the symbols and rules were

learned from robot’s isolated action executions. However,

when the robot executes the sequence of actions planned

towards a goal, it would encounter with completely novel

situations that cannot be perceived or reasoned about with

the knowledge that the robot acquired in previous learning.

Therefore, the previously learned perceptual and prediction

mechanisms should be updated based on robot’s further

experience obtained from different sequences of actions.

In our case, the robot previously learned operators from

isolated stacking actions, where individual objects were

stacked on top of other individual objects. After learning,

This research was supported by European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Specific Programme Cooperation, Theme
3, Information and Communication Technologies) under grant agreements
no. 270273, Xperience, and no. 610532, Squirrel.

University of Innsbruck, Institute of Computer Science, IIS Innsbruck,
Austria firstname.lastname@uibk.ac.at

Fig. 1. The learning cycle. Adapted from the conceptual cycle defined
in Xperience project: http://www.xperience.org/. The contributions in this
paper are marked with underlined text.

we showed that the robot was able plan sequence of stack

actions in order to build towers of arbitrary heights based

on self-discovered object categories. However, the previously

acquired knowledge would fail to capture the characteristics

of a tower building task as the system cannot do reasoning

over the compound objects formed during this task. There-

fore, the robot is required to learn new concepts and rules

related to the towers from its observation of sequential stack

execution.

Fig. 1 provides an overview of our approach to progressive

cognitive skill development. As we described above, our pre-

vious work went all the way from object category discovery

to the execution of the symbolic plans, however it did not

acquire further knowledge from the sequence of interactions.

The contributions of this paper, which are marked in the

figure, are as follows:

1) The categories of the novel complex objects, which are

generated during interactions, are extracted from the

learned rules, based on what kind of effects the objects

generate in the following interactions. The previously

learned rules are updated based on new information.

2) The novel objects are assimilated into the existing

categories or new categories are accommodated for the

novel objects depending on the visual properties of the

novel objects. New object categories are formed if the

visual appearance of components of this novel objects

are not predicted to belong to the inferred category.

3) Probabilistic rules are learned from real-world inter-

actions of objects, and symbolic planning is achieved

using these learned operators.

Very few recent studies have addressed bottom-up con-

struction of symbolic or sub-symbolic structures for planning

in robotics. Ugur et al. and Pisoka and Nehmzow clustered

the continuous sensory space of the robot and generated

multi-step plans in continuous perceptual space with learned

effect predictions [2], [3]. Mugan and Kuipers proposed a

system that learns qualitative representations of states and

predictive models in a bottom-up manner by discretizing the

continuous variables of the environment [4]. Konidaris et

al. studied construction of symbols that are directly used

as preconditions and effects of actions for generation of

deterministic [5] and probabilistic [6] plans in simulated

environments. Pasula et al. [7] and Lang et al. [8] studied

learning of symbolic operators using pre-defined predicates

in simulated blocks world domains. Our framework, on the

other hand, learns non-linear relations between the discov-

ered discrete symbols and the continuous percept of a real

manipulation robot.

II. METHODS

In this section, we first give the manually designed per-

ceptual and motor capabilities of the robot. In Section II-

B, we summarize what kind of structures and rules were

autonomously learned in and transferred from our previous

study [1]. Finally, in Section II-C, we provide the main

contribution of this paper, where the robot detects categories

of novel objects, forms new categories, develops new pre-

diction capabilities and probabilistic rules from observations

of object interactions generated by sequence of actions.

A. Built-in knowledge

The robot is equipped with a number of manually-coded

actions (aj) that enable single- and multi-object manipula-

tion. It can push a single object from different sides, pick-

up, and release it; and also stack one object onto another.

The single-object actions were used to find action-grounded

object categories in previous stages, and not further explored

in this paper.

The robot has the built-in functionality of detecting objects

and extracting a number of visual features from them. The

list of these features represent the objects in continuous

sensory space and is denoted as fo throughout the text.

The continuous effect created in object features during action

executions are also observed by the robot to find the discrete

effect categories, as detailed in the next section.

B. Capabilities transferred from previous learning stages

In previous learning stages [1], the robot executed actions

that involve single objects and pairs of objects, and pro-

gressively learned the following information. Effect space

was discretized. For this, effect categories (εao) were formed

by applying unsupervised clustering methods to the set of

observed continuous effects for each action. The formed

effect categories for different actions were as follows:

ε
pick-up ∈ {GRASPED}

ε
release ∈ {STABLE, TUMBLED}

ε
front-poke ∈ {ROLLED, PUSHED}

ε
side-poke ∈ {ROLLED, PUSHED}

ε
top-poke ∈ {INSERTED, OBSTRUCTED}

ε
stack ∈ {STACKED, INSERTED, TUMBLED}

(1)

Action-grounded object categories ({co}) were formed. For

this, objects that were affected similarly from the robot

actions were grouped together. Therefore, object categories

were encoded as the collection of effect categories generated

by the five single-object actions (co = (εa1 , εa2 , ..εa5)o). The

formed object categories were as follows:

co ∈ {HOLLOW, SOLID, ROLLABLE, UNSTABLE} (2)

where

HOLLOW = (GRASPED, STABLE, PUSHED, PUSHED, INSERTED)

SOLID = (GRASPED, STABLE, PUSHED, PUSHED, OBSTRUCTED)

ROLLABLE = (GRASPED, STABLE, ROLLED, ROLLED, OBSTRUCTED)

UNSTABLE = (-, TUMBLED, -, -, -)

Prediction of object categories from their visual appearance

was acquired. For this, the mapping from object features to

the corresponding object categories was learned by training

non-linear classifiers (SVMs):

co = C(fo) (3)

Finally, predicting more complex action effects, i.e. effects

of stack action, was learned. For this purpose, decision tree

learners were trained to find logical rules that return the stack

effect category given categories of the involved objects and

their relations :

εstack = R(cb, cr, rel(ob, or)) (4)

Table I gives the results of decision tree learning along

with the corresponding rules. Given categories of objects

and discrete relations between them, the effect category is

predicted according to this table [1].

TABLE I

THE DETERMINISTIC RULES LEARNED FROM THE ROBOT SIMULATOR.

Below = HOLLOW Below = SOLID

.. Rel-Width = below-smaller 10 .. Above = HOLLOW: STACKED

01 Above = HOLLOW: STACKED 11 .. Above = SOLID: STACKED

02 Above = SOLID: STACKED 12 .. Above = ROLLABLE: STACKED

03 Above = ROLLABLE: INSERTED 13 .. Above = UNSTABLE: TUMBLED

04 Above = UNSTABLE: INSERTED 14 Below = ROLLABLE: TUMBLED

.. Rel-Width = same-width
05 Above = HOLLOW: STACKED

06 Above = SOLID: STACKED

07 Above = ROLLABLE: INSERTED

08 Above = UNSTABLE: INSERTED

09 .. Rel-Width = below-bigger: INSERTED

C. Learning from sequence of actions

After learning logical rules on how to stack pairs of

objects, the robot could build towers of arbitrary size using

the available objects in the environment by planning and

executing sequence of stacking actions. However, as the rules

were learned from isolated single stacking interactions, the

Fig. 2. One hypothetical episode used in learning from action execution
sequence. This episode is composed of three interactions.

sequential effects of the successive action executions are not

represented in these rules. In this section, we detail the meth-

ods that aim to enhance the learned rules by directly learning

from the experience of sequence of stacking interactions.

The learning is achieved in episodes that are composed

of successive stacking interactions. Each episode starts with

stacking two objects on top of each other, continues with

putting new objects on top of the stack, and finishes when

the object tower collapses. Fig. 2 shows one hypothetical

episode, which lasts three interactions, where er and eb
correspond to the released and base entities, respectively.

Note that the perception system cannot distinguish between

touching objects, therefore the concept ‘entity’ will be used

to refer to both individual and composite objects. If the entity

e corresponds to an individual object o, than e = o, otherwise

the entity is encoded as the list of the objects included:

e = {o0, o1, ..}.

The robot observes, computes, and stores the following

information in each interaction i:

• Visual features of the detected entities before and after

the interaction. The point clouds in beginning and at the

end of the interaction are processed to compute visual

features of the entities (fei
r

,fei
b

).

• Object category of the released entity, i.e. cei
r
. The

classifier introduced in (3) is used to find the object

category based on visual features of the object.

• Object category of the base entity, i.e. cei
b

. If this is the

first interaction of the episode, cei
b

= coi
b

= C(foi
b

)
(recall the classifier in (3)). If this is not the first

interaction, i.e. the base entity is a composite object, the

category of this entity is assigned to be unknown.One

major aim of this paper is to reveal the categories of

these composite objects by observing how they affect

the subsequent stack interactions.

• The list of the objects that compose the base entity:

eib = {oi−1

r , . . . o1r, o
0

r, o
0

b} (5)

• The result of the stack interaction (εi). It is assigned

to one of the three effect categories ({STACKED, IN-

SERTED, or TUMBLED}), which were provided in (1).

From above, one can notice that the interaction instances

lack the information regarding the category of the entity on

the ground (eb), if this entity is a composite object. As shown

in Fig. 2, entities on the ground are composed of several

objects with different categories, and which category this

composite object belongs to is ambiguous. As the objects

might be inserted in others or remain on the top of the

stack, the resulting category might be one of the categories

that constitute the composite object. If the orientation of

the released object change or the top surface is combination

of several objects, the resulting category of the base object

might be something completely different.

Algorithm 1 Inferring category of complex base entities

1: for all episodes do
2: for all interactions i do
3: for all objects o′ ∈ eib do
4: if εi = R(co′ , cei

r
, rel(o′, eir)) then

5: eib ← o′

6: assimilate fei
b

into cir
7: go to 2
8: for all possible categories cj do
9: if εi = R(cj , cei

r
, rel(∗, eir)) then

10: cei
b

← cj

11: if C(fei
b

) = cj then

12: assimilate fei
b

into cj
13: else
14: accommodate fei

b

into cnew
j

15: go to 2

1) Inferring categories of complex entities: Categories of

base entities are inferred using Algorithm 1. This algorithm

finds the category of the base entity in each interaction (i),

given the category of the released object (cir), the effect

observed in that interaction (εi), and the set of previously

learned rules that predict the effect category given the

categories of the objects and their relations (See (4) and

Table I). The algorithm first checks if any possible interaction

with one of the objects that is included in the base entity

is represented in the set of rules (lines 3-7). These objects

are checked starting from the last one as the latter added

objects have higher probability to influence the category of

the composite base entity. If no object satisfies the conditions

expressed in rules, then the system checks all possible object

categories, even if they were not used previously in the

current episode (lines 8-15). If the conditions of any rule is

satisfied with this possible category, i.e. if the observed effect

can be generated based on the rules with this category, then

the base category is assumed to be this one. Please note that

there is an important distinction between assigning a previous

object to the base entity (line 5), and assigning a possible

category (line 10). In the first case, the other features of the

entity (such as width and height) are also known and stored,

whereas in the latter one, the features of the base entity are

left unknown.

2) Assimilation/accommodation mechanism: In Algo-

rithm 1, we also described our assimilation and accommoda-

tion mechanism. The novel complex entity is assimilated into

an existing category either if an object of the same category

is a part of the complex entity (line 6) or the objects in the

inferred category are visually similar to the complex entity

(line 12). If these conditions are not satisfied, a new category

is forked from the inferred category, and novel similar objects

that are assigned to this new category.

Fig. 3. The robot arm and gripper are used for manipulation, and Kinect
is used to compute object features.

3) Rule learning: After categories of base entities are

inferred, the system learns to predict the effect and the

category of the formed entity given the categories of the

released and base entities, and their relations:

(cer , ceb , rel(er, eb)) → (ε, ce′
b
) (6)

4) Symbolic planning: The robot builds symbolic domain

and problem descriptions based on the object categories and

the learned rules. The predicates correspond to the auto-

matically discovered object categories and relations. Actions

correspond to the learned rules with following fields:

• Preconditions: The list of the predicates that should be

valid in order to apply the action. This corresponds to

the object categories and their discrete relations (left

part of (6)) for each learned rule.

• Effects: The list of the predicates that change if the

preconditions are satisfied, and the action is executed.

The predicted effect categories (right part of (6)) are

provided in this field.

The initial state of the world, i.e. object categories and

discrete relations between the objects, and the goal is de-

fined in the problem description, in STRIPS notation as

well. Given domain and problem descriptions, off-the-shelf

symbolic planners are used to acquire the desired tasks.

The learned rules are represented probabilistically, how-

ever planning directly in probabilistic domain is inherently

more complex compared to deterministic domain because of

the high computation complexity [9]. In this paper, we take

a path in between, compute deterministic plans using rules

with highest probabilities, and re-plan with other rules if no

plan is formed. Depending on the joint probability of the

actions, the plan might or might not be executed - however

we did not further analyze this verification step.

III. EXPERIMENTS

A. Robot Platform and Interactions

Our experimental setup is composed of a KUKA Light

Weight Robot arm and a Schunk gripper for manipulation, a

Kinect sensor for environment perception, and a number of

objects that are placed on the table for exploration (Fig. 3).

The workspace consists of several objects and a table. First,

the point cloud is segmented in order to detect the existing

Fig. 4. Sample snapshots from stack interactions. The objects on the left
are always stacked on top of the objects on the right.

(a) Assimilate (b) Accommodate

Fig. 5. (a) Assimilate the entities into ROLLABLE category. (b) Accom-
modate a new category ROLLABLE-NEW for the entities.

objects. Next, continuous object state is found by computing

the following features:

fo = (viso, poso, shapeo, dimo, disto)

where vis feature encodes the knowledge regarding the

existence of the object, shape encodes the distribution of

local surface normal vectors from the object surface. pos

and dim correspond to the center and size of the object,

respectively. Finally, dist features encode the distribution of

the local distance of all pixels to the neighboring pixels [1].

The robot is equipped with a manually-coded stack action,

where the vertically-aligned gripper grasps an object using

built-in spherical grip first, carries it on top of the another

object, and releases it.

B. Interactions

In order to collect the interaction dataset, a human imitated

stack action of the robot. The initial and final point clouds of

each interaction are stored for later processing. The dataset

contains 26 episodes and 66 interactions in total. A number

of sample interactions are provided in Fig. 41

C. Learned categories and category predictions

In this section, we analyze the learned rules that predict the

next category of the base entity given the current categories

of the base and released entities, and their relations.

First of all, the system formed a new object category,

which has similar dynamics with ROLLABLE objects under

stacking interactions, but different visual appearance. As

shown in Fig. 5b, the entities represented by this new

category generally correspond to towers of objects which

1In order to imitate the noise in perception and the crude stacking skill of
the robot, we introduced small offsets while dropping objects; and instead
of carefully and gently placing the objects, we dropped the objects from
the air similar to the release behavior of the robot. While ideally learning
should be achieved through robot’s own exploration, we discuss that it
might be acceptable to make such simplifications in exploring object-object
interactions as long as the learning results are verified with the real robot.
In future, we will use robot’s own interaction experience in order to better
capture uncertainty in robot actions.

TABLE II

THE PROBABILITIES OF GENERATING THE NEXT BASE ENTITY

CATEGORY GIVEN INTERACTING ENTITIES.

Base Released Rel-Width H
O

L
L

O
W

S
O

L
ID

R
O

L
L

A
B

L
E

U
N

S
T

A
B

L
E

R
O

L
L

-N
E

W

U
N

D
E

F
IN

E
D

01 HOLLOW * Base-small 0.3 0.0 0.3 0.00 0.0 0.3

02 HOLLOW HOLLOW Base-big 0.7 0.0 0.2 0.0 0.2 0.0

03 HOLLOW SOLID Base-big 0.0 1.0 0.0 0.0 0.0 0.0

04 HOLLOW ROLLABLE Base-big 0.6 0.0 0.4 0.0 0.0 0.0

05 HOLLOW UNSTABLE Base-big 0.5 0.0 0.2 0.0 0.2 0.0

06 SOLID HOLLOW Base-small 0.0 0.0 0.0 0.0 0.7 0.3

07 SOLID HOLLOW Base-big 0.7 0.0 0.3 0.0 0.0 0.0

08 SOLID SOLID Base-small 0.0 0.2 0.0 0.0 0.2 0.6

09 SOLID SOLID Base-big 0.0 0.7 0.1 0.0 0.1 0.0

10 SOLID ROLLABLE * 0.0 0.0 0.0 0.0 0.0 1.0

11 SOLID UNSTABLE * 0.0 0.0 0.0 0.0 0.0 1.0

12 ROLLABLE * * 0.0 0.0 0.0 0.0 0.0 1.0

13 ROLL-NEW * * 0.0 0.0 0.0 0.0 0.0 1.0

are not stable or which do not allow further stacking. Not

allowing further stacking is a similar characteristic with

ROLLABLE objects, but as shown, the visual appearances of

these entities are very different from ROLLABLE objects.

Table II provides the rules that are obtained from de-

cision tree learning. The system revealed several different

important underlying characteristic of the sequential stacking

operations. In a number of cases, the next category of base

entity is UNDEFINED, which corresponds to TUMBLED effect.

In some situations, the category of the released entity is

transferred to the formed base entity (rules 03, 07, 09). For

example, if a HOLLOW entity is stacked on top of a bigger

SOLID entity (rule 08), the new formed base entity becomes

HOLLOW with higher probability. In some other situations,

the category of the base entity is preserved. For example,

when a small ROLLABLE object or an UNSTABLE object

is stacked on top of a HOLLOW entity (rules 04 and 05),

then base entity remains HOLLOW. Finally, a new category

is formed from different categories. For example, when a

HOLLOW object is stacked on top of a smaller SOLID object

(rule 06), the category of the generated base entity becomes

NEW-ROLLABLE.

We argue that these rules reveal some interesting under-

lying characteristics of sequential stacking actions such as

HOLLOW objects filled with small objects remain HOLLOW.

However, these rules are neither inclusive nor all correct. For

example, we can argue that rule 06 is not really intuitive:

a HOLLOW object that is stacked on top of smaller SOLID

object should generate a HOLLOW or UNDEFINED entity, but

it generates ROLLABLE-NEW or UNDEFINED instead. When

investigated in detail, this rule was extracted from instances,

where these two objects are stacked on other HOLLOW

objects, whose walls prevent the objects from falling, but

also creating a structure which is not stackable anymore. We

still believe that even the learned information is not perfect,

it will enable construction of more safe and conservative

plans. Rule 07, for example, will try to avoid stacking of

large HOLLOW object on smaller SOLID objects, which would

create unstable towers.

TABLE III

THE PROBABILITIES OF GENERATING AN EFFECT GIVEN OBJECT

CATEGORIES AND THEIR RELATIONS.

Base Released Rel-Width STACKED INSERTED TUMBLED

01 HOLLOW * Base-small 0.22 0.44 0.33

02 HOLLOW * Below-big 0.00 1.00 0.00

03 SOLID HOLLOW * 0.83 0.00 0.16

04 SOLID SOLID Base-small 0.40 0.00 0.60

05 SOLID SOLID Below-big 1.00 0.00 0.00

06 SOLID ROLLABLE * 0.00 0.00 1.00

07 SOLID UNSTABLE * 0.00 0.00 1.00

08 ROLLABLE * * 0.00 0.00 1.00

09 ROLL-NEW * * 0.00 0.00 1.00

D. Learned effect prediction

We used C4.5 decision tree learning algorithm to find

the set of rules with the corresponding probabilities from

real interactions. Table III provides the results of decision

learning. The results can be interpreted as follows:

• (01-02): If the base entity is HOLLOW and has a larger

width, then always an insertion occurs. However, if the

base entity is smaller, then STACKED and TUMBLED

also become possible. TUMBLED was not learned in the

original rules that had been trained in the simulator.

• (04-05): If both entities are SOLID, then they would

be STACKED unless the released object is bigger. If the

released object is bigger, the objects might be STACKED

or TUMBLED with similar probabilities.

• (03): HOLLOW objects released over base objects would

be probably STACKED, but there is small probably of

observing TUMBLED effect.

• (06-07): The ROLLABLE or UNSTABLE entities that are

released on SOLID objects generate TUMBLED effect.

In the rules learned from the robot simulator, the

ROLLABLE objects was creating STACKED effect when

released on the SOLID objects, however in reality we

observed that they roll off the objects after released.

• (08-09): If the entity on the base belongs to ROLLABLE

or ROLLABLE-NEW category, then the effect is always

TUMBLED.

The set of rules above (Table III) make more realistic

predictions in the real world compared to the set of rules

learned from the robot simulator (Table I).

E. Generated STRIPS rules

We used C4.5 decision tree learners to predict both the

effect of the action and the category of the formed base

object. The set of rules (in Table IV) are then automatically

transferred to PDDL. An explanatory sample action that

corresponds to rule 04 is provided in Fig. 6. Lines 2-3 state

preconditions and 4-6 state effects of the action. Predicate

‘U’, which is ‘U0’ for all objects in the beginning, encodes

the order of the object in stacking. ‘N’ and ‘H’ predicates

correspond to the number of objects in the stack and height

of the stack, and they change based on the predicted effect.

F. Real World Experiments

Given objects, the robot first finds the object categories

from visual features of objects using the trained non-linear

TABLE IV

THE PREDICTED (EFFECT, ENTITY) GIVEN STACKED ENTITIES.

Below = HOLLOW

01 — Rel-Width = below-smaller: TUMBLED (0.3), UNDEFINED (0.3)

— Rel-Width = below-bigger
02 — — Above = HOLLOW: INSERTED (1.0), HOLLOW (0.6)
03 — — Above = SOLID: INSERTED (1.0), SOLID (1.0)
04 — — Above = ROLLABLE: INSERTED (1.0), HOLLOW (0.6)

05 — — Above = UNSTABLE: INSERTED (1.0), HOLLOW (0.5)
Below = SOLID

— Above = HOLLOW:
06 — — Rel-Width = below-smaller: STACKED (0.6), ROLLABLE-NEW (0.6)

07 — — Rel-Width = below-bigger: STACKED (1.0), HOLLOW (0.6)
— Above = SOLID:

08 — — Rel-Width = below-smaller: TUMBLED (0.6), UNDEFINED (0.6)
09 — — Rel-Width = below-bigger: STACKED (1.0), SOLID (0.7)

10 — Above = ROLLABLE: TUMBLED (1.0), UNDEFINED (1.0)
11 — Above = UNSTABLE: TUMBLED (1.0), UNDEFINED (1.0)
12 Below = ROLLABLE : TUMBLED (1.0) , UNDEFINED (1.0)

13 Below = ROLLABLE -new: TUMBLED (1.0) , UNDEFINED (1.0)

1 (:action stack :parameters (?Below ?Above) ;;; rule no: 04

2 :precondition (and (Hollow ?Below) (Rollable ?Above)

3 (Below-bigger ?Below ?Above) (U0 ?Above)(U2 ?Below) (N2) (H0)

4 :effect (not (U0 ?Above)) (U3 ?Above) (U2 ?Below)

5 (N3) (not (N2)) (not (Hollow ?Below)) (not (Rollable ?Above))

6 (Hollow ?Above))

Fig. 6. Automatically generated sample action in PDDL that corresponds
to rule 04 in Table IV. ?Above variable takes the role of formed base entity
in the effect field.

classifiers, and generates the domain description based on

object categories. Next, it runs the Blackbox off-the-shelf

planning software [10], setting the ‘S’ predicate to the num-

ber of objects, and the ‘H’ predicate to the minimum number

initially. If no plan is generated, the goal ‘H’ predicate is

increased by one in a loop. For plan generation, we use the

Fig. 7 provides snapshots from a representative plan gener-

ated and (blindly) executed for the goal of building tower

that include all the objects independent of any constraint

on compactness or height. As seen, given various objects

with different affordances, the robot planned the sequence of

actions that generate a stable tower. Due to the the learned

probabilistic rules that favor stacking small objects on larger

objects (e.g. rules 04 and 05 in Table III), the robot implicitly

learned building stable towers from objects of different sizes.

Note that this knowledge was not encoded in the rules that

were transferred from previous stages (Table I), which shows

the advantages of further learning from real interactions. One

can also observe that the robot correctly reasoned about the

properties of the containers by planning to insert several

board-markers (detected as UNSTABLE objects) into the cup.

During the experiments, we observed that the robot some-

times suffered from incorrect categorization of objects based

on visual features obtained from Kinect. The second reason

for the failures was the inaccuracies in perception of the

release location and execution of the stack action. Finally,

there were some new categories that do not conform to any

extracted rules, therefore not learned by the system.

We argue that the problems addressed above can be

avoided by better perception, more training, and more ad-

vanced action representations. However, there are other more

major limitations which are not straightforward to address

with our current approach. For example, while our system

Fig. 7. Stack of objects with mixed categories. Snapshots show that the
robot builds the stacks starting from larger objects, and can reason about
inserting several small objects into the containers. The robot execution
videos are available at http://emreugur.net/humanoids2015/.

provides the capability to detect whether the objects remain

HOLLOW or not from their visual perception during action

executions; it does not have the capability to reason about

how many objects can fit into a HOLLOW objects. This

kind of reasoning probably requires other concepts (such as

volume of the hole instead of width and height of the object)

and learning of more complex capabilities such as arithmetic

processing over learned concepts.

IV. CONCLUSION

In this paper, we showed how the robot can further develop

previously learned concepts and reasoning skills in order to

better represent multi-step interaction characteristics and to

make better plans. As we partially discussed at the end of the

previous section, our system is currently limited to predicting

the next state based on small number of object categories of

only the current state with simple object relation information.

In future, we plan to investigate how the robot can discover

other task dependent and potentially hidden concepts and

variables such as stability and height of the towers, and how

it can learn more challenging rules that can make reasoning

with higher-level knowledge.

REFERENCES

[1] E. Ugur and J. Piater, “Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to
symbolic planning,” in ICRA, 2015, pp. 2627–2633.

[2] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[3] J. Pisokas and U. Nehmzow, “Experiments in subsymbolic action

planning with mobile robots,” in Adaptive Agents and Multi-Agent

Systems II, Lecture Notes in AI. Springer, 2005, pp. 80–87.
[4] J. Mugan and B. Kuipers, “Autonomous learning of high-level states

and actions in continuous environments,” Autonomous Mental Devel-

opment, IEEE Transactions on, vol. 4, no. 1, pp. 70–86, 2012.
[5] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Constructing

symbolic representations for high-level planning,” in 28th AAAI Conf.

on AI, 2014.
[6] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol acquisition

for probabilistic high-level planning,” in International Joint Confer-

ence on Artificial Intelligence, 2015.
[7] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-

bolic models of stochastic domains,” Journal of Artificial Intelligence

Research, pp. 309–352, 2007.
[8] T. Lang and M. Toussaint, “Planning with noisy probabilistic relational

rules,” Journal of Artificial Intelligence Research, vol. 39, no. 1, pp.
1–49, 2010.

[9] A. L. Blum and J. C. Langford, “Probabilistic planning in the
graphplan framework,” in Recent Advances in AI Planning. Springer,
2000, pp. 319–332.

[10] H. Kautz and B. Selman, “Unifying sat-based and graph-based plan-
ning,” in IJCAI, vol. 99, 1999, pp. 318–325.

