
Bottom-Up Learning of Object Categories, Action Effects and Logical

Rules: From Continuous Manipulative Exploration to Symbolic

Planning

Emre Ugur and Justus Piater

Abstract— This work aims for bottom-up and autonomous
development of symbolic planning operators from continuous
interaction experience of a manipulator robot that explores
the environment using its action repertoire. Development of
the symbolic knowledge is achieved in two stages. In the
first stage, the robot explores the environment by executing
actions on single objects, forms effect and object categories,
and gains the ability to predict the object/effect categories from
the visual properties of the objects by learning the nonlinear
and complex relations among them. In the next stage, with
further interactions that involve stacking actions on pairs of
objects, the system learns logical high-level rules that return
a stacking-effect category given the categories of the involved
objects and the discrete relations between them. Finally, these
categories and rules are encoded in Planning Domain Definition
Language (PDDL), enabling symbolic planning. We realized our
method by learning the categories and rules in a physics-based
simulator. The learned symbols and operators are verified by
generating and executing non-trivial symbolic plans on the real
robot in a tower building task.

I. INTRODUCTION

There exists a representational gap between the continuous

sensorimotor world of a robot and the discrete symbols used

by advanced AI planning methods. One approach for bridg-

ing this gap is to learn the mapping between the symbols

and the sensorimotor readings of the robot. The studies that

follow this approach typically assume the existence of pre-

coded planning symbols, and investigate how to learn the

relations between these pre-coded symbols and continuous

world of the robot [1]. They generally define transition rules

that are linked by logical preconditions and postconditions,

and use the sensorimotor experience of the robot to associate

the predicates of the preconditions and postconditions to the

robot percepts [2], [3].

On the other hand, Sun argued that symbols “are not

formed in isolation”, and “they are formed in relation to the

experience of agents, through their perceptual/motor appara-

tuses, in their world and linked to their goals and actions”

[4]. In this vein, symbol formation in a robot interacting with

its world was investigated in a number of studies. In [5], self-

organizing maps were used to cluster the low-level sensory

data of a mobile robot. Each cluster was assigned to a new

perceptual state, and planning was achieved by successively

This research was supported by European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Specific Programme Cooperation, Theme
3, Information and Communication Technologies) under grant agreement no.
270273, Xperience.

University of Innsbruck Institute of Computer Science, IIS Innsbruck,
Austria firstname.lastname@uibk.ac.at

predicting the next perceptual states. Our previous work

[6] also addresses planning in perceptual space, where the

affordances that the robot learned during its interactions

with the environment were used to develop multi-step plans

in perceptual space with effect predictions and forward

chaining in continuous domain. However, in these studies,

the structures that were used for multi-step planning were

still in continuous space, limiting the use of powerful AI

planning techniques. [7], on the other hand, took a path in

between, and used a teacher to learn grounded relational non-

predefined symbols.

Very few recent studies have addressed bottom-up con-

struction of symbolic structures for planning in robotics. Mu-

gan and Kuipers [8] proposed a system that learns qualitative

representations of states and predictive models in a bottom-

up manner by discretizing the continuous variables of the

environment. Based on the predictive models that are learned

using Dynamic Bayesian Networks (DBNs), the Markov

decision process (MDP) framework is used to plan goal-

oriented hand/arm control in the simulator. Konidaris et al.

[9] studied construction of symbols that are directly used as

preconditions and effects of actions. PDDL is automatically

generated from these symbols, enabling high-level planning

in a simulated 2d environment with a rich set of actions

and effects. Our system, different from the ones above, can

learn non-linear and highly-complex relations between the

discovered discrete symbols and the continuous world of the

robot in real world settings.

The current study is part of a research effort where a

robot system gradually develops skills and competencies in

subsequent stages of development, similar to human infants.

Previously we showed that a robot that is initialized with

a basic reach-and-grasp movement capability can discover

a set of action primitives, learn a library of affordances

and associated predictors, and finally use these structures to

bootstrap complex imitation with the help of a cooperative

tutor [10]. The methods provided in the current study enable

the robot to reach a higher level of cognitive competence,

where it forms structures for planning at a symbolic level.

II. METHODS

A. Representation

The robot is equipped with a number of manually-coded

actions that enable single- and multi-object manipulation.

The robot can poke a single object from different sides

using front-poke (f-poke), side-poke (s-poke), and top-poke

(t-poke) actions; grasp it using the pick action, and drop it

at a given position using the release action. It can also stack

one object onto another using the stack action, which is a

combination of pick and release, where the vertically-aligned

gripper grasps the object first, carries it on top of the other,

and releases it.

Continuous object state is represented by fo, and in-

cludes the list of object features obtained from the visual

perception, including features related to the existence, shape

and size of the object. The continuous proprioceptive state of

the robot, which includes the gripper position, is represented

by fr. Thus, the continuous world state with n objects is

represented by

(fo1
,fo1

, . . . ,fon
,f r)

Continuous effect of an action on an object is represented

by ∆(fo,f r)
a, and corresponds to the changes in object

features and proprioceptive readings. Effect category (εao),

on the other hand, is discovered by the robot during its

development.

An object can categorically be represented as the list of

action possibilities it offers to the robot. For example, a

mug can be represented as a list of action effects including

‘up’ effect when lifted, ‘reduce-weight’ effect when poured,

etc. Therefore, object category corresponds the collection

of effect categories that are expected to be obtained by the

m available actions:

So = (εa1 , εa2 , ..εam)o (1)

where each unique combination of the effects is assigned to

a different index.

Finally, discrete world state is represented by the collec-

tion of object categories and discrete relations (R) between

the objects:

S = (So1 , So2 , . . . , Son , R1o1,o2 , R2o1,o2 , . . .)

Note that the discrete relations are pre-defined in the current

study.

B. Development of symbols and prediction capability

The robot explores the environment using its action reper-

toire, and encodes its observations in the form of continuous

world states and effects. While exploring the environment,

the robot progressively acquires the ability to represent the

world with learned symbolic predicates, and to predict effects

of its own actions based on learned logical rules. These

predicates and rules are later used for symbolic planning.

The stages of development are as follows:

1) Stage I: Learning object categories: In the first stage,

the robot explores the environment with its actions that are

executed on single objects such as poke, pick and release. It

observes and stores the continuous effects generated during

these interactions. After experiencing Na number of interac-

tions for any action a, unsupervised clustering methods are

applied in continuous effect space

{εai }
I
i=1

= Cluster({∆(fo,fr)
a
j }

Na

j=1
), (2)

in order to find I effect categories for each action. Recall

that in (1) we defined an object category as a collection of

the effect categories. Thus, through this clustering process,

the robot learns the object categories it encountered in terms

of the action effects.

Next, the robot learns to relate these categories to the

features of the objects in order to detect object categories

without any action execution. For this purpose, it learns the

mapping from continuous object features to the effect cate-

gories by training multi-category classifiers (Predictorai(fo))
for each action ai, with the following training data:

{(fo,f r)j , ε
a
j }

Na

j=1
(3)

After learning, given object features, the robot can predict

the list of offered effect categories, i.e. the object category:

So = (Predictora1(fo), ...Predictoram(fo)) (4)

For instance, if one object is predicted to be rolled with a

poke action, lifted with pick action, and tumbled-off when it

is released, it is categorized as (rolled, lifted, and unstable)

tuple. At the end of this phase, the robot acquires the ability

to categorize the observed objects with the type of effects its

action repertoire can generate.

2) Stage II.a: Discovering the effect categories of stack

action: In this stage, the robot explores the environment with

its stack action that involves pairs of objects. Similar to the

previous stage, the robot executes this action on different

pairs of objects, observes the continuous effects generated,

and finds representative and meaningful effect categories

created on the pairs.

For the effect category generation, we observed that a

naive clustering in continuous effect space was not effective

as the interacting objects can generate various effects due

to the complex interactions between them. Applying further

exploratory actions on the objects after stacking might help

the system to handle this complexity. For example, after

a stack action, if the robot grasps the object below, lifts

and rotates it, the stack relation between those objects will

be more clearly seperable in the effect space (e.g. if they

move together then they are properly-inserted). In the current

work, the poke action is used as the exploratory action. After

stacking, the robot pokes both of the objects one by one,

observes the additional generated effects, and includes all

these data to find a grouping in interactions:

{εstack
i }Ii=1

= Cluster({∆(fo1
,fo2

,f r)
astack ,

∆(fo1
,fo2

,fr)
af-poke,o1 ,∆(fo1

,fo2
,f r)

af-poke,o2})
(5)

where af-poke,oi corresponds to the front-poke action that is

applied to the object pair (o1, o2). The order of pairing is

important, and the indexes will be replaced with the ‘below’

and ‘above’ keywords, in the rest of the text.

3) Stage II.b: Learning logical rules for stack: In this

stage, the robot builds rules that encode the effects of the

stack action. It uses decision tree rule learning methods to

build a decision tree for a compact set of rules using the

object categories and the relations between the objects:

{(So1 , So2 , R1o1,o2 , R2o1,o2) → εastack} (6)

(a) Real robot (b) Simulation

Fig. 1. The robot arm and gripper are used for manipulation, and Kinect is
used to compute object features. The simulation environment includes one
and two objects during single-object and paired-object affordance learning
experiments, respectively. Several objects are included while testing the
planning capability for tower-building task in the real world.

where R1 and R2 represent discrete relations between ob-

jects, and εas is the effect category obtained by the stack

action, that was found in (5).

4) Stage III: Symbolic planning: In this stage, the robot

builds symbolic domain and problem descriptions based

on the object states and the rules learned in the previous

stages. This description, realized in the STRIPS notation,

includes all the predicates and the actions. The predicates

correspond to the automatically discovered object categories

and relations. Actions correspond to the learned rules. The

actions in PDDL contain the following three fields:

• Action name: We used stack action in this work.

• Preconditions: The list of the predicates that should be

valid in order to apply the action. This corresponds to

the object categories and their discrete relations (left

part of (6)) for each learned rule.

• Effects: The list of the predicates that change if the

preconditions are satisfied, and the action is executed.

The predicted effect categories (right part of (6)) are

provided in this field.

Therefore, domain description includes a separate action for

each learned rule along with the corresponding preconditions

and effects. The initial state of the world, i.e. object cate-

gories and discrete relations between the objects, and the goal

is defined in the problem description, in STRIPS notation

as well. Given domain and problem descriptions, off-the-

shelf symbolic planners are used to acquire the desired tasks.

Please see Section III-E for the implementation details.

III. EXPERIMENTS

A. Robot Platform

Our experimental setup is composed of a KUKA Light

Weight Robot arm and a Schunk gripper for manipulation, a

Kinect sensor for environment perception, and a number of

objects that are placed on the table for exploration (Fig. 1a).

The workspace consists of several objects and a table,

where the region of interest (ROF) is defined as the volume

over the table. After extracting ROF from the point cloud

of Kinect, the objects are segmented by the Connected

Component Labeling algorithm which differentiates object

regions that are spatially separated by a preset threshold

value (3 cm in the current implementation). After segmen-

tation, continuous object state is found by computing the

following features:

fo = (viso, poso, shapeo, dimo, disto)

where, vis feature encodes the knowledge regarding the

existence of the object. shape features are encoded as the

distribution of local surface normal vectors from object

surface. Specifically histograms of normal vectors along

each axis, 8 bins each, are computed to form 3×8 = 24 sized

feature vector (see [6] for details). pos and dim correspond

to the center and size of the object, respectively. Finally,

dist features encode the distribution of the local distance

of all pixels to the neighboring pixels. For this purpose, for

each pixel we computed distances to the neighboring pixels

along each 4 direction on Kinect’s 2D depth image. For each

direction, we created a histogram of 20 bins with bin size of

0.5cm, obtaining a 4× 20 = 100 sized vector for the dist.

The robot can manipulate objects using its action reper-

toire that includes pick, release, f-poke, t-poke, s-poke, and

stack actions. These actions are parameterized with target

object position (poso), and the orientation of the gripper,

depending on the action type. Once the target pose in task

space is identified, the corresponding target joint angles

are computed using inverse kinematics. functions provided

by the and Dynamics Library. Finally, given the current

and target joint angles, a smooth trajectory is computed by

the Reflexxes library, and this point-to-point movement is

executed. The object is gripped from the top using the built-

in spherical grip of the Schunk hand.

For learning, the robot is required to make large number of

interactions with the objects, which is time-consuming and

risky in the real world. For this purpose, we used the V-Rep

robot simulation platform (Fig. 1b) with the Bullet physics

engine. The objects used in training include boxes, cylinders,

spheres, box walls, cylinder walls as shown in Fig. 1b.

B. Learned object categories

In the first stage of learning, the simulated robot ex-

ecutes poke, pick, and release actions on single objects,

monitors the environment, and stores the continuous ob-

ject states along with the continuous effects generated by

different actions. After collecting the interaction instances

TABLE I

DISCOVERED EFFECT CATEGORIES FOR SINGLE-OBJECT ACTIONS.

Action Effect prototype εai Interpretation

Pick - 0 Grasped

Release
change in object position 0 Tumbled
no change 1 Stable

Front-poke
change in object visibility 0 Rolled off the table
no change 1 Pushed

Side-poke
change in object visibility 0 Rolled off the table
no change 1 Pushed

Top-poke
large change in gripper pos 0 Finger goes through
small change in gripper pos 1 Finger obstructed

TABLE II

DISCOVERED EFFECT CATEGORIES OF STACK ACTION. NUMBER OF OCCURRENCES OF THE CLUSTERS, THE CORRESPONDING CHANGES IN OBJECT

FEATURES, AND THEIR INTERPRETATION ARE GIVEN.

After stacko1,o2 After f-pokeo1 After f-pokeo2 Interpretation

∆viso1 ∆viso2 ∆poso1 ∆poso2 ∆viso1 ∆viso2 ∆poso1 ∆poso2 ∆viso1 ∆viso2
49 1 1 1 1 1 1 1 1 1 1 INSERTED

127 1 1 1 1 1 0 1 1 1 1 STACKED1

28 1 1 1 1 1 0 0 1 1 1 STACKED2

67 1 1 0 0 0 1 0 1 0 1 TUMBLED1

13 1 1 0 1 0 1 0 1 0 1 TUMBLED2

6 1 1 1 1 1 1 0 0 1 1 -

4 1 1 0 0 0 0 0 0 0 0 -

..

{fo,f r,∆(fo,fr)
aj , aj}, it first applies clustering in the

effect space, {∆(fo,f r)
aj}, and finds a number of effect

categories for each different action. We applied clustering in

object position, object visibility and gripper position spaces,

and obtained the effect categories presented in Table I. The

effect categories εai are indexed seperately for each different

action. Note that a stable object that is released on the table

does not tumble, so no change in its position occurs.

As all the objects used in the experiments were graspable,

the effect of applying pick action were always same. For

other actions, different distinguishable effects were created

in different spaces. When these effects are enumerated, the

following compact object category representation is obtained:

So ∈ {SOLID, ROLLABLE, HOLLOW, UNSTABLE}

where

SOLID = (0, 1, 1, 1, 1) ROLLABLE = (0, 1, 0, 0, 1)
HOLLOW = (0, 1, 1, 1, 0) UNSTABLE = (-, 0, -, -, -)

The effect categories for UNSTABLE objects are unknown,

as they are generally thin objects that lie on the ground, risky

to interact with.

Finally, the mapping from object features to object cat-

egories, i.e. fo → So, is learned using a Support Vector

Machine (SVM) with the Radial Basis Function (RBF) kernel

and optimized parameters [11]. Note that SVMs mainly used

shape and dist features to predict object categories, but

further analysis is not within the scope of this paper.

C. Discovered stack effect categories

In this stage, the simulated robot executes stack action on

pairs of objects, monitors the environment, and stores the

continuous object states along with the continuous effects

generated by different actions. As we described before, the

effects do not only correspond to the immediate effect of the

stack action, but is a collection of effects generated by the

following exploratory front-poke actions applied to both of

the objects. Furthermore, as the effect space was very com-

plex, only the changes in the visibility and position of the ob-

ject are used as the effect features. The grouped instances of

these features are provided in Table II. We interpreted these

effect categories based on position and visibility changes,

and provided labels for each effect category in the table.

STACKED1 and STACKED2 effect categories are generated

TABLE III

K-MEANS CLUSTERING IN EFFECT CATEGORY SPACE.

εstack µ1 σ1 µ2 σ2 Cat.

INSERTED [0,0,0] [0,0,-9] [0, 2, 0] [2, 4, 4] 0

STACKED1 [0,0,0] [1,0,-2] [1, 1, 0] [4, 3, 5] 1

STACKED2 [0,0,0] [1,-1,-1] [0, 1, 0] [4, 4, 2] 1

TUMBLED1 [2,0,0] [0,-9,-12] [3, 3, 0] [7, 11, 4] 2

TUMBLED2 [-1,0,0] [1,-5,-16] [3, 2, 0] [9, 13, 3] 2

by SOLID-on-SOLID and ROLLABLE-on-SOLID stacking in

general. TUMBLED1 and TUMBLED2 effect categories on

the other hand are created by SOLID-on-ROLLABLE stacking

interactions, where in the first case poking one object does

not affect the other, and in the second case, the poked

ROLLABLE object also pushes the SOLID object. The labels

of the effect categories will be used in the rest of the text

(similar to use of object category labels) solely to ease the

understandability of the text.

If we assume that the number of meaningful effect cat-

egories is 3, and apply further clustering (K-Means) using

mean and variance of the object position changes for each

effect category, a more ‘intuitive’ categorization can be

obtained at the end as shown in Table III. As seen in the table,

STACKED1 and STACKED2 are assigned to a single category;

and TUMBLED1 and TUMBLED2 are assigned to another

category. While these results with a hierarchical clustering

give some insights about the complexity of the problem,

and the necessity for human intervention to obtain the most

meaningful clusters, we are not going to use these clusters.

Instead, the most occuring five effect categories (Table II)

will be transferred to the next stage.

D. Rule Learning

Based on the discovered object categories and the dis-

covered effect categories, now the robot can represent the

interactions with discrete variables. Here, to represent dis-

crete world state, we use discovered object categories, and

size and height relations. The set of interactions the robot

observed is encoded as

{(So1 , So2 ,Rel-Widtho1,o2 ,Rel-Heighto1,o2), (ε
stack)}

where

So = {SOLID, ROLLABLE, HOLLOW, TUMBLED}

Rel-Width = {below-bigger, is-same, below-smaller}

Rel-Height = {below-higher, is-same, below-shorter}

εstack ={INSERTED, STACKED1, STACKED2, TUMBLED1, TUMBLED2}

A number of sample interaction instances obtained during

experiments and encoded in the discovered discrete struc-

tures are shown below, where the first and second objects

corresponds to the object below and above during stacking.

’HOLLOW’,’HOLLOW’,’below-smaller’,’below-shorter’,’STACKED1’
’HOLLOW’,’HOLLOW’,’below-bigger’,’below-shorter’,’INSERTED’
’HOLLOW’,’SOLID’,’same-width’,’below-higher’,’STACKED1’
’SOLID’,’HOLLOW’,’below-smaller’,’below-shorter’,’STACKED1’
’SOLID’,’ROLLABLE’,’below-smaller’,’same-height’,’STACKED2’
’ROLLABLE’,’SOLID’,’below-bigger’,’same-height’,’TUMBLED1’

C4.5 decision tree learning with pruning is used to find

a compact representation of rules with the Weka software

package. The obtained decision tree is presented in Fig. 2.

As shown, if the object below is HOLLOW, then depending

on the size of the object above, the effects are different.

For example, if the object below is bigger, then the resulting

effect is always INSERTED, independently of any other factor.

Otherwise, depending on the category of the above object

and its relative width, it can get INSERTED into or stacked

onto the HOLLOW object. If the object below is SOLID,

then, again depending on the object above, different types

of stacked effects are expected to be generated. Note that in

both STACKED1 and STACKED2, the above object stacks on

the below object, but the STACKED2 case is more UNSTA-

BLE (as detected and learned by the successive exploratory

poke actions). Finally according to the decision tree, if the

below object is ROLLABLE or UNSTABLE, independent of

the object above, the effect would be tumbled or stacked,

respectively. The tumbled effect in response to a stack action

on ROLLABLE objects was expected. However, the stacked

Below = HOLLOW

— Rel-Width = below-smaller

01 — — Above = HOLLOW: STACKED1

02 — — Above = SOLID: STACKED1

03 — — Above = ROLLABLE: INSERTED

04 — — Above = UNSTABLE: INSERTED

— Rel-Width = same-width

05 — — Above = HOLLOW: STACKED1

06 — — Above = SOLID: STACKED1

07 — — Above = ROLLABLE: INSERTED

08 — — Above = UNSTABLE: INSERTED

09 — Rel-Width = below-bigger: INSERTED

Below = SOLID

10 — Above = HOLLOW: STACKED1

11 — Above = SOLID: STACKED1

12 — Above = ROLLABLE: STACKED2

13 — Above = UNSTABLE: STACKED1

14 Below = ROLLABLE: TUMBLED1

15 Below = UNSTABLE: STACKED1

Fig. 2. Results of decision tree learning. For example the rule 01 states
that if the object below is HOLLOW, and it is smaller than a HOLLOW object
that is dropped, then STACKED1effect is predicted to occur.

(define (domain stack)

(:predicates (hollow ?x)

(solid ?x) (below-smaller ?x ?y)

(rollable ?x) (below-bigger ?x ?y)

(unstable ?x) (same-size ?x ?y)

(pickloc ?x) (below-shorter ?x ?y)

(stackloc ?x) (below-higher ?x ?y)

(instack ?x)) (same-height ?x ?y)

Fig. 3. Predicates that are used in domain definition.

effect in response to stack action on UNSTABLE objects

is not intuitive, and needs more elaborate analysis of the

decision tree learner. Note that the rule learner was able

to discover that the relative height of the objects do not

have any significant influence on the generated effects in the

simulated interactions; thus height relation is not included in

any learned rule.

E. Planning

Based on the rules learned in the previous section, the do-

main definition can be automatically constructed in STRIPS

notation using the learned predicates (object and effect

categories) and the discrete relations, Here, the stack action

is included into the domain file, with the preconditions and

effects given in Fig. 2. The predicates used in planning are

given in Fig. 3. We introduced a number of predicates for the

tower-building task. (pickloc ?x) and (stackloc ?x)

predicates are set to true if the objects are at pick-up and

stacked locations, respectively. (instack ?x) predicate is

set to true if the effect category is in the following set:

{INSERTED, STACKED1, STACKED2}.

Fig. 4 gives sample action descriptions generated from

rules 01, 03, and 14, which have effects of TUMBLED1,

INSERTED and STACKED1, respectively. We also added

predicates that represent the height of the stack (‘H’) and the

number of the objects (’S’) in the stack. As the increment

operator is not supported in STRIPS notation, a separate

action is automatically generated for each level of height

and stack increment.

While INSERTED does not affect the height of the stack

significantly, STACKED1 and STACKED2 do increase the

height according to the mean position changes of objects

provided in Table III. Thus, ‘H’ is increased in rule (01),

but not in rule (03). The number of objects is increased with

STACKED1 and INSERTED effects, not with the TUMBLED1

effect; thus there is no change in ‘S’ in TUMBLED1 effect

(rule no 14). Finally, in this study we assumed that the

category of the tower/stack is determined by the latest

included element. For example, if a ROLLABLE object is

added to the stack with SOLID or HOLLOW object on top, the

next category of the stack is set as ROLLABLE. We plan to

relax this constraint in our next work, by learning a rule that

predicts the next ’category’ of the stack, depending on the

categories and relations of the pairs of objects being stacked.

In this way, the system should learn that the category of the

stack should be kept HOLLOW, if a very small ROLLABLE

object is dropped-on a big HOLLOW object.

(:action stack ;;; rule no: 01

:parameters (?Below ?Above)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (hollow ?Below) (H0) (S0)

(below-smaller ?Below ?Above) (hollow ?Above))

:effect

(not (pickloc ?Above)) (not (H0)) (H1) (not (S0)) (S1)

(instack ?Above) (stackloc ?Above)

(not (stackloc ?Below)))

(:action stack ;;; rule no: 03

:parameters (?Below ?Above)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (hollow ?Below) (S0)

(below-smaller ?Below ?Above) (rollable ?Above))

:effect

(not (pickloc ?Above)) (not (S0)) (S1)

(instack ?Above) (stackloc ?Above)

(not (stackloc ?Below)))

(:action stack ;;; rule no: 14

:parameters (?Below ?ABOVE)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (rollable ?Below))

:effect

(not (pickloc ?ABOVE)))

Fig. 4. Automatically generated sample actions in PDDL.

(define (problem simple-1)

(:domain stack)

(:objects o1 o2 table)

(:init (stackloc table)

(solid table)

(pickloc o1) (pickloc o2)

(hollow o1) (solid o2)

(below-bigger o1 o2)

(H0) (S0))

(:goal (and (S2) (H2))))

PLAN:

1 (stack table o2)

2 (stack o2 o1)

Fig. 5. Left: Sample domain and problem descriptions that include initial
world state and the goal. Initial world contains one HOLLOW and one SOLID

object, and an empty stack (S0), with 0 height, (H0). The goal is to build
a stack of height 2 (H2) with 2 objects (S2). Right: The generated plan
first stacks the SOLID object onto the empty table, then stacks the HOLLOW

object on top of the SOLID.

The goal/problem is defined with STRIPS notation as well.

When we define the initial world state, we also introduce a

location for tower-building by (stackloc table) predi-

cate where table is a SOLID object. Fig. 5 shows a sample

world with two objects, that were categorized as HOLLOW

and SOLID. The goal is to obtain a predicate with (H2),

i.e. a stack of height 2. In order to achieve this goal, the

system plans to stack the HOLLOW object on top of the

SOLID object. But with the same objects, if the goal is set to

have two objects in a stack of height 1, (S2) (H1), then

the plan would be different, stacking SOLID object on the

bigger HOLLOW one. Note that, if the height of the stack is

not important, the tower-building goal can also be defined

by using the (instack o) predicate.

For plan generation, we use the Blackbox off-the-shelf

planning software, which transforms the facts and operators

defined in STRIPS notation into propositional satisfiability

(SAT) problem and solves the problem with randomized

systematic solvers.

F. Real World Experiment

In this section, our system is partially validated by real-

robot experiments, where the effect category prediction

Fig. 6. Tower building experiment. The goal is to build a tower of height
1 with 4 objects. The plan first stacks the HOLLOW objects on top of each
other, starting from the bigger ones; and stacks the ball at the end.

(learned in the real world) and the rules (learned in the

simulator as described above) are used to build and execute

plans in a tower-building task. Given a number of objects,

the task of the robot is to build compact towers with all

objects included. Thus, the robot needs to plan a sequence

of stack actions, and ensure that all objects are stacked with

minimal final height of a single tower. Such a task is useful

in transporting objects together, to ensure the stability by

keeping the stack compact.

Given objects, the robot first finds the object categories

using the trained classifiers, and generates the domain de-

scription based on object categories. Next, it runs the planner,

setting the ‘S’ predicate to the number of objects, and the

‘H’ predicate to the minimum number (1) initially. In case

no plan is found, the constraint is relaxed, i.e. the goal

‘H’ predicate is increased by one in a loop, until a plan

is found. After the plan is constructed, the robot selects the

next objects to stack according to the plan and sequentially

executes the stack actions. As the planned effect categories

are grounded, the robot can also monitor the plan execution,

and check whether the observed effect categories are in

accordance with the expected ones; but this feature is not

implemented in the current system.

In the first experiment, three cups and one ball is presented

to the robot as shown in Fig. 6. The robot first detects that

they belong to ‘HOLLOW’ and ‘ROLLABLE’ categories, and

encodes the category information along with the relative size

and height relations in the initial world state as follows:

(define (problem tower-real-1)

(:domain stack) (:objects o0 o1 o2 o3 table)

(:init (stackloc table) (solid table) (S0) (H0)

(pickloc o0) (pickloc o1) (pickloc o2) (pickloc o3)

(hollow o0) (hollow o1) (rollable o2) (hollow o3)

;;; width and height relations

(:goal (and (S4) (H1))))

Above, the objects correspond to the white-cup, the green-

cup, the ball, and the bigger coffee mug, respectively. The

robot generated a plan where the HOLLOW objects are

stacked on top of each other in decreasing order of width

first, and the ball is stacked as the final action. The actions

were successfully executed, and a compact and complete

tower is built as shown in the snapshots of Fig. 6.

In the second case study, three cups, one ball and a

cylindrical shaped salt container are presented to the robot

as shown in Fig. 7. The robot first detected that they belong

to HOLLOW, ROLLABLE and SOLID. Next, it encoded the

category information along with the relative size and height

relations in the initial world state as follows:

Fig. 7. Tower building experiment. The goal is to build a tower of (S5) and (H2). The generated plan first stacks two HOLLOW objects on top of
each other, starting from the biggest one; adding salt-container and small cup next, and finally stacking the ball at the end. The execution of the same
plan fails in one execution, and succeeds in the other one due to the noise in the perception and the actuation. Please see the robot execution video at
http://emreugur.net/icra2015/ for details.

(define (problem tower-simple)

(:domain stack) (:objects o0 o1 o2 o3 o4 table)

(:init (stackloc table) (solid table) (H0) (S0)

(rollable o0) (hollow o1) (solid o2) (hollow o3)

(hollow o4) (pickloc o0) (pickloc o1) (pickloc o2)

;;; relations here

(:goal (and (S5) (H1))))

A plan was not generated with these constraints, thus

the constraints were relaxed by incrementing the target

height of the tower: (:goal (and (S5) (H2))). The plan

generated for this goal is as follows: the largest two HOLLOW

objects and the salt-container are ‘inserted’ in each other

first; then the white-cup is ‘stacked’, increasing the size; and

finally the ball is ‘inserted’. This plan was executed two

times, leading to successful and unsuccessful results at the

end, as shown in the final snapshots of Fig. 7. First of all,

the inconsistency between two plan executions were partly

due to the inaccuracies in computing the object centers that

are used for aligning objects during stacking. One can also

notice that the height of the tower is more than (H2), i.e.

more than height of 2 objects, because, contrary to the action

predictions, the ‘inserted’ tall salt container and the ‘inserted’

ball increased the height considerably. A more compact tower

could have been obtained by inserting all cups into each

other and inserting salt-container into the inserted cups. Also,

note that while object category classification is correct in all

instances, the rules that were learned in the simulator are

not always valid. For example, the action with the ‘stacked’

effect is not reliable, i.e. the objects tumble more easily in

the real world. Re-learning in the real world while building

the towers is necessary to handle these situations.

IV. CONCLUSION

In this study, we developed a system that forms symbols

and operators in the continuous sensorimotor experience of

the robot through self-exploration. These formed structures

were used to generate symbolic plans in the robot in a sample

tower building task. While study provides a proof-of-the-

concept realization of the proposed system, it only uses one

action, namely stacking, in plan generation and execution.

Our system should be verified with a richer set of action

repertoire where principles that regulate the unsupervised

effect categorization process (such as the number of clusters

or the feature space that is being clustered) should be inves-

tigated in detail. We also introduced a number of discrete

features such as smaller-than, and a number of task-related

predicates such as pick-loc and stack-loc; which should be

discovered by the system autonomously in the future.

The most immediate extension of this research is to

incorporate probabilistic techniques in discovering symbols,

learning operators and generating plans. Particularly, we plan

to construct probabilistic rules from the robot’s noisy inter-

actions based on category prediction confidences, and use

planners that can deal with incomplete and noisy information

[12]. During our experiments, we observed that, in addition

to noise in sensing and perception, failures in plan execution

were partially due to the simple encoding of the currently

used motion primitives and the object perception that only

relies on vision. Therefore, our system should incorporate

vision and force guided closed-loop motion representation

frameworks.

REFERENCES

[1] V. Klingspor, K. Morik, and A. D. Rieger, “Learning concepts from
sensor data of a mobile robot,” Machine Learning, vol. 23, no. 2-3,
pp. 305–332, 1996.

[2] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr, “Cogni-
tive agents: A procedural perspective relying on the predictability of
Object-Action-Complexes OACs,” Robotics and Autonomous Systems,
vol. 57, no. 4, pp. 420–432, Apr. 2009.

[3] K. Mourao, R. P. Petrick, and M. Steedman, “Using kernel perceptrons
to learn action effects for planning,” in CogSys, 2008, pp. 45–50.

[4] R. Sun, “Symbol grounding: A new look at an old idea,” Philosophical

Psychology, vol. 13, no. 149–172, 2000.
[5] J. Pisokas and U. Nehmzow, “Experiments in subsymbolic action

planning with mobile robots,” in Adaptive Agents and Multi-Agent

Systems II, Lecture Notes in AI. Springer, 2005, pp. 80–87.
[6] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[7] J. Kulick, M. Toussaint, T. Lang, and M. Lopes, “Active learning for

teaching a robot grounded relational symbols,” in Proc. 23rd Int. Joint.

Conf. AI. AAAI Press, 2013, pp. 1451–1457.
[8] J. Mugan and B. Kuipers, “Autonomous learning of high-level states

and actions in continuous environments,” Autonomous Mental Devel-

opment, IEEE Transactions on, vol. 4, no. 1, pp. 70–86, 2012.
[9] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Constructing

symbolic representations for high-level planning,” in 28th AAAI Conf.

on AI, 2014.
[10] E. Ugur, Y. Nagai, E. Sahin, and E. Oztop, “Staged development of

robot skills: Behavior formation, affordance learning and imitation
with motionese,” IEEE Transactions on Autonomous Mental Devel-

opment, 2015, submitted.
[11] C.-C. Chang and C.-J. Lin, “Libsvm : a library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 27, pp. 1–27, 2011.

[12] R. P. A. Petrick and F. Bacchus, “Extending the knowledge-based
approach to planning with incomplete information and sensing,” in
ICAPS, 2004, pp. 2–11.

